Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     real             *vdwgridparam;
109     __m128           one_half  = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128           dummy_mask,cutoff_mask;
115     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116     __m128           one     = _mm_set1_ps(1.0);
117     __m128           two     = _mm_set1_ps(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm_set1_ps(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134     vdwgridparam     = fr->ljpme_c6grid;
135     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
136     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
137     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233             rinv00           = gmx_mm_invsqrt_ps(rsq00);
234             rinv10           = gmx_mm_invsqrt_ps(rsq10);
235             rinv20           = gmx_mm_invsqrt_ps(rsq20);
236
237             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r00              = _mm_mul_ps(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_ps(iq0,jq0);
261             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,
263                                          vdwparam+vdwioffset0+vdwjidx0C,
264                                          vdwparam+vdwioffset0+vdwjidx0D,
265                                          &c6_00,&c12_00);
266
267             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
268                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
269                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
270                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
271
272             /* EWALD ELECTROSTATICS */
273
274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275             ewrt             = _mm_mul_ps(r00,ewtabscale);
276             ewitab           = _mm_cvttps_epi32(ewrt);
277             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
278             ewitab           = _mm_slli_epi32(ewitab,2);
279             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
280             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
281             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
282             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
283             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
284             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
285             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
286             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
287             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
288
289             /* Analytical LJ-PME */
290             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
291             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
292             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
293             exponent         = gmx_simd_exp_r(ewcljrsq);
294             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
295             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
296             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
297             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
298             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
299             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
300             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
301             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_ps(velecsum,velec);
305             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
306
307             fscal            = _mm_add_ps(felec,fvdw);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_ps(fscal,dx00);
311             ty               = _mm_mul_ps(fscal,dy00);
312             tz               = _mm_mul_ps(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm_add_ps(fix0,tx);
316             fiy0             = _mm_add_ps(fiy0,ty);
317             fiz0             = _mm_add_ps(fiz0,tz);
318
319             fjx0             = _mm_add_ps(fjx0,tx);
320             fjy0             = _mm_add_ps(fjy0,ty);
321             fjz0             = _mm_add_ps(fjz0,tz);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             r10              = _mm_mul_ps(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _mm_mul_ps(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_ps(r10,ewtabscale);
336             ewitab           = _mm_cvttps_epi32(ewrt);
337             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
341             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
342             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
343             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
344             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
345             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
346             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
347             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm_mul_ps(fscal,dx10);
356             ty               = _mm_mul_ps(fscal,dy10);
357             tz               = _mm_mul_ps(fscal,dz10);
358
359             /* Update vectorial force */
360             fix1             = _mm_add_ps(fix1,tx);
361             fiy1             = _mm_add_ps(fiy1,ty);
362             fiz1             = _mm_add_ps(fiz1,tz);
363
364             fjx0             = _mm_add_ps(fjx0,tx);
365             fjy0             = _mm_add_ps(fjy0,ty);
366             fjz0             = _mm_add_ps(fjz0,tz);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             r20              = _mm_mul_ps(rsq20,rinv20);
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm_mul_ps(iq2,jq0);
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = _mm_mul_ps(r20,ewtabscale);
381             ewitab           = _mm_cvttps_epi32(ewrt);
382             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
383             ewitab           = _mm_slli_epi32(ewitab,2);
384             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
385             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
386             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
387             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
388             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
389             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
390             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
391             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
392             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velecsum         = _mm_add_ps(velecsum,velec);
396
397             fscal            = felec;
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx20);
401             ty               = _mm_mul_ps(fscal,dy20);
402             tz               = _mm_mul_ps(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm_add_ps(fix2,tx);
406             fiy2             = _mm_add_ps(fiy2,ty);
407             fiz2             = _mm_add_ps(fiz2,tz);
408
409             fjx0             = _mm_add_ps(fjx0,tx);
410             fjy0             = _mm_add_ps(fjy0,ty);
411             fjz0             = _mm_add_ps(fjz0,tz);
412
413             fjptrA             = f+j_coord_offsetA;
414             fjptrB             = f+j_coord_offsetB;
415             fjptrC             = f+j_coord_offsetC;
416             fjptrD             = f+j_coord_offsetD;
417
418             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
419
420             /* Inner loop uses 151 flops */
421         }
422
423         if(jidx<j_index_end)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrlistA         = jjnr[jidx];
428             jnrlistB         = jjnr[jidx+1];
429             jnrlistC         = jjnr[jidx+2];
430             jnrlistD         = jjnr[jidx+3];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
434              */
435             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
436             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
437             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
438             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
439             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
440             j_coord_offsetA  = DIM*jnrA;
441             j_coord_offsetB  = DIM*jnrB;
442             j_coord_offsetC  = DIM*jnrC;
443             j_coord_offsetD  = DIM*jnrD;
444
445             /* load j atom coordinates */
446             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
447                                               x+j_coord_offsetC,x+j_coord_offsetD,
448                                               &jx0,&jy0,&jz0);
449
450             /* Calculate displacement vector */
451             dx00             = _mm_sub_ps(ix0,jx0);
452             dy00             = _mm_sub_ps(iy0,jy0);
453             dz00             = _mm_sub_ps(iz0,jz0);
454             dx10             = _mm_sub_ps(ix1,jx0);
455             dy10             = _mm_sub_ps(iy1,jy0);
456             dz10             = _mm_sub_ps(iz1,jz0);
457             dx20             = _mm_sub_ps(ix2,jx0);
458             dy20             = _mm_sub_ps(iy2,jy0);
459             dz20             = _mm_sub_ps(iz2,jz0);
460
461             /* Calculate squared distance and things based on it */
462             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
463             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
464             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
465
466             rinv00           = gmx_mm_invsqrt_ps(rsq00);
467             rinv10           = gmx_mm_invsqrt_ps(rsq10);
468             rinv20           = gmx_mm_invsqrt_ps(rsq20);
469
470             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
471             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
472             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
473
474             /* Load parameters for j particles */
475             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
476                                                               charge+jnrC+0,charge+jnrD+0);
477             vdwjidx0A        = 2*vdwtype[jnrA+0];
478             vdwjidx0B        = 2*vdwtype[jnrB+0];
479             vdwjidx0C        = 2*vdwtype[jnrC+0];
480             vdwjidx0D        = 2*vdwtype[jnrD+0];
481
482             fjx0             = _mm_setzero_ps();
483             fjy0             = _mm_setzero_ps();
484             fjz0             = _mm_setzero_ps();
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             r00              = _mm_mul_ps(rsq00,rinv00);
491             r00              = _mm_andnot_ps(dummy_mask,r00);
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq00             = _mm_mul_ps(iq0,jq0);
495             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
496                                          vdwparam+vdwioffset0+vdwjidx0B,
497                                          vdwparam+vdwioffset0+vdwjidx0C,
498                                          vdwparam+vdwioffset0+vdwjidx0D,
499                                          &c6_00,&c12_00);
500
501             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
502                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
503                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
504                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
505
506             /* EWALD ELECTROSTATICS */
507
508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509             ewrt             = _mm_mul_ps(r00,ewtabscale);
510             ewitab           = _mm_cvttps_epi32(ewrt);
511             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
512             ewitab           = _mm_slli_epi32(ewitab,2);
513             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
514             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
515             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
516             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
517             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
518             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
519             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
520             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
521             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
522
523             /* Analytical LJ-PME */
524             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
525             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
526             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
527             exponent         = gmx_simd_exp_r(ewcljrsq);
528             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
529             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
530             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
531             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
532             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
533             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
534             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
535             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
541             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
542
543             fscal            = _mm_add_ps(felec,fvdw);
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547             /* Calculate temporary vectorial force */
548             tx               = _mm_mul_ps(fscal,dx00);
549             ty               = _mm_mul_ps(fscal,dy00);
550             tz               = _mm_mul_ps(fscal,dz00);
551
552             /* Update vectorial force */
553             fix0             = _mm_add_ps(fix0,tx);
554             fiy0             = _mm_add_ps(fiy0,ty);
555             fiz0             = _mm_add_ps(fiz0,tz);
556
557             fjx0             = _mm_add_ps(fjx0,tx);
558             fjy0             = _mm_add_ps(fjy0,ty);
559             fjz0             = _mm_add_ps(fjz0,tz);
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r10              = _mm_mul_ps(rsq10,rinv10);
566             r10              = _mm_andnot_ps(dummy_mask,r10);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_ps(iq1,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = _mm_mul_ps(r10,ewtabscale);
575             ewitab           = _mm_cvttps_epi32(ewrt);
576             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
577             ewitab           = _mm_slli_epi32(ewitab,2);
578             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
579             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
580             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
581             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
582             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
583             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
584             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
585             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
586             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm_add_ps(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_ps(fscal,dx10);
598             ty               = _mm_mul_ps(fscal,dy10);
599             tz               = _mm_mul_ps(fscal,dz10);
600
601             /* Update vectorial force */
602             fix1             = _mm_add_ps(fix1,tx);
603             fiy1             = _mm_add_ps(fiy1,ty);
604             fiz1             = _mm_add_ps(fiz1,tz);
605
606             fjx0             = _mm_add_ps(fjx0,tx);
607             fjy0             = _mm_add_ps(fjy0,ty);
608             fjz0             = _mm_add_ps(fjz0,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r20              = _mm_mul_ps(rsq20,rinv20);
615             r20              = _mm_andnot_ps(dummy_mask,r20);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq20             = _mm_mul_ps(iq2,jq0);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_ps(r20,ewtabscale);
624             ewitab           = _mm_cvttps_epi32(ewrt);
625             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
626             ewitab           = _mm_slli_epi32(ewitab,2);
627             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
628             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
629             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
630             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
631             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
632             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
633             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
634             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
635             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm_add_ps(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm_andnot_ps(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm_mul_ps(fscal,dx20);
647             ty               = _mm_mul_ps(fscal,dy20);
648             tz               = _mm_mul_ps(fscal,dz20);
649
650             /* Update vectorial force */
651             fix2             = _mm_add_ps(fix2,tx);
652             fiy2             = _mm_add_ps(fiy2,ty);
653             fiz2             = _mm_add_ps(fiz2,tz);
654
655             fjx0             = _mm_add_ps(fjx0,tx);
656             fjy0             = _mm_add_ps(fjy0,ty);
657             fjz0             = _mm_add_ps(fjz0,tz);
658
659             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
660             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
661             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
662             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
663
664             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
665
666             /* Inner loop uses 154 flops */
667         }
668
669         /* End of innermost loop */
670
671         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
672                                               f+i_coord_offset,fshift+i_shift_offset);
673
674         ggid                        = gid[iidx];
675         /* Update potential energies */
676         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
677         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
678
679         /* Increment number of inner iterations */
680         inneriter                  += j_index_end - j_index_start;
681
682         /* Outer loop uses 20 flops */
683     }
684
685     /* Increment number of outer iterations */
686     outeriter        += nri;
687
688     /* Update outer/inner flops */
689
690     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
691 }
692 /*
693  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
694  * Electrostatics interaction: Ewald
695  * VdW interaction:            LJEwald
696  * Geometry:                   Water3-Particle
697  * Calculate force/pot:        Force
698  */
699 void
700 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
701                     (t_nblist                    * gmx_restrict       nlist,
702                      rvec                        * gmx_restrict          xx,
703                      rvec                        * gmx_restrict          ff,
704                      t_forcerec                  * gmx_restrict          fr,
705                      t_mdatoms                   * gmx_restrict     mdatoms,
706                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
707                      t_nrnb                      * gmx_restrict        nrnb)
708 {
709     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
710      * just 0 for non-waters.
711      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
712      * jnr indices corresponding to data put in the four positions in the SIMD register.
713      */
714     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
715     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
716     int              jnrA,jnrB,jnrC,jnrD;
717     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
718     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
719     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
720     real             rcutoff_scalar;
721     real             *shiftvec,*fshift,*x,*f;
722     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
723     real             scratch[4*DIM];
724     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
725     int              vdwioffset0;
726     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
727     int              vdwioffset1;
728     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729     int              vdwioffset2;
730     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
732     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
733     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
734     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
735     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
736     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
737     real             *charge;
738     int              nvdwtype;
739     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
740     int              *vdwtype;
741     real             *vdwparam;
742     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
743     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
744     __m128           c6grid_00;
745     __m128           c6grid_10;
746     __m128           c6grid_20;
747     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
748     real             *vdwgridparam;
749     __m128           one_half  = _mm_set1_ps(0.5);
750     __m128           minus_one = _mm_set1_ps(-1.0);
751     __m128i          ewitab;
752     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
753     real             *ewtab;
754     __m128           dummy_mask,cutoff_mask;
755     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
756     __m128           one     = _mm_set1_ps(1.0);
757     __m128           two     = _mm_set1_ps(2.0);
758     x                = xx[0];
759     f                = ff[0];
760
761     nri              = nlist->nri;
762     iinr             = nlist->iinr;
763     jindex           = nlist->jindex;
764     jjnr             = nlist->jjnr;
765     shiftidx         = nlist->shift;
766     gid              = nlist->gid;
767     shiftvec         = fr->shift_vec[0];
768     fshift           = fr->fshift[0];
769     facel            = _mm_set1_ps(fr->epsfac);
770     charge           = mdatoms->chargeA;
771     nvdwtype         = fr->ntype;
772     vdwparam         = fr->nbfp;
773     vdwtype          = mdatoms->typeA;
774     vdwgridparam     = fr->ljpme_c6grid;
775     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
776     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
777     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
778
779     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
780     ewtab            = fr->ic->tabq_coul_F;
781     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
782     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
783
784     /* Setup water-specific parameters */
785     inr              = nlist->iinr[0];
786     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
787     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
788     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
789     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
790
791     /* Avoid stupid compiler warnings */
792     jnrA = jnrB = jnrC = jnrD = 0;
793     j_coord_offsetA = 0;
794     j_coord_offsetB = 0;
795     j_coord_offsetC = 0;
796     j_coord_offsetD = 0;
797
798     outeriter        = 0;
799     inneriter        = 0;
800
801     for(iidx=0;iidx<4*DIM;iidx++)
802     {
803         scratch[iidx] = 0.0;
804     }
805
806     /* Start outer loop over neighborlists */
807     for(iidx=0; iidx<nri; iidx++)
808     {
809         /* Load shift vector for this list */
810         i_shift_offset   = DIM*shiftidx[iidx];
811
812         /* Load limits for loop over neighbors */
813         j_index_start    = jindex[iidx];
814         j_index_end      = jindex[iidx+1];
815
816         /* Get outer coordinate index */
817         inr              = iinr[iidx];
818         i_coord_offset   = DIM*inr;
819
820         /* Load i particle coords and add shift vector */
821         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
822                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
823
824         fix0             = _mm_setzero_ps();
825         fiy0             = _mm_setzero_ps();
826         fiz0             = _mm_setzero_ps();
827         fix1             = _mm_setzero_ps();
828         fiy1             = _mm_setzero_ps();
829         fiz1             = _mm_setzero_ps();
830         fix2             = _mm_setzero_ps();
831         fiy2             = _mm_setzero_ps();
832         fiz2             = _mm_setzero_ps();
833
834         /* Start inner kernel loop */
835         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
836         {
837
838             /* Get j neighbor index, and coordinate index */
839             jnrA             = jjnr[jidx];
840             jnrB             = jjnr[jidx+1];
841             jnrC             = jjnr[jidx+2];
842             jnrD             = jjnr[jidx+3];
843             j_coord_offsetA  = DIM*jnrA;
844             j_coord_offsetB  = DIM*jnrB;
845             j_coord_offsetC  = DIM*jnrC;
846             j_coord_offsetD  = DIM*jnrD;
847
848             /* load j atom coordinates */
849             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
850                                               x+j_coord_offsetC,x+j_coord_offsetD,
851                                               &jx0,&jy0,&jz0);
852
853             /* Calculate displacement vector */
854             dx00             = _mm_sub_ps(ix0,jx0);
855             dy00             = _mm_sub_ps(iy0,jy0);
856             dz00             = _mm_sub_ps(iz0,jz0);
857             dx10             = _mm_sub_ps(ix1,jx0);
858             dy10             = _mm_sub_ps(iy1,jy0);
859             dz10             = _mm_sub_ps(iz1,jz0);
860             dx20             = _mm_sub_ps(ix2,jx0);
861             dy20             = _mm_sub_ps(iy2,jy0);
862             dz20             = _mm_sub_ps(iz2,jz0);
863
864             /* Calculate squared distance and things based on it */
865             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
866             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
867             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
868
869             rinv00           = gmx_mm_invsqrt_ps(rsq00);
870             rinv10           = gmx_mm_invsqrt_ps(rsq10);
871             rinv20           = gmx_mm_invsqrt_ps(rsq20);
872
873             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
874             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
875             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
876
877             /* Load parameters for j particles */
878             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
879                                                               charge+jnrC+0,charge+jnrD+0);
880             vdwjidx0A        = 2*vdwtype[jnrA+0];
881             vdwjidx0B        = 2*vdwtype[jnrB+0];
882             vdwjidx0C        = 2*vdwtype[jnrC+0];
883             vdwjidx0D        = 2*vdwtype[jnrD+0];
884
885             fjx0             = _mm_setzero_ps();
886             fjy0             = _mm_setzero_ps();
887             fjz0             = _mm_setzero_ps();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r00              = _mm_mul_ps(rsq00,rinv00);
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq00             = _mm_mul_ps(iq0,jq0);
897             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
898                                          vdwparam+vdwioffset0+vdwjidx0B,
899                                          vdwparam+vdwioffset0+vdwjidx0C,
900                                          vdwparam+vdwioffset0+vdwjidx0D,
901                                          &c6_00,&c12_00);
902
903             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
904                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
905                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
906                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_ps(r00,ewtabscale);
912             ewitab           = _mm_cvttps_epi32(ewrt);
913             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
914             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
915                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
916                                          &ewtabF,&ewtabFn);
917             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
918             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
919
920             /* Analytical LJ-PME */
921             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
922             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
923             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
924             exponent         = gmx_simd_exp_r(ewcljrsq);
925             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
926             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
927             /* f6A = 6 * C6grid * (1 - poly) */
928             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
929             /* f6B = C6grid * exponent * beta^6 */
930             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
931             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
932             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
933
934             fscal            = _mm_add_ps(felec,fvdw);
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_ps(fscal,dx00);
938             ty               = _mm_mul_ps(fscal,dy00);
939             tz               = _mm_mul_ps(fscal,dz00);
940
941             /* Update vectorial force */
942             fix0             = _mm_add_ps(fix0,tx);
943             fiy0             = _mm_add_ps(fiy0,ty);
944             fiz0             = _mm_add_ps(fiz0,tz);
945
946             fjx0             = _mm_add_ps(fjx0,tx);
947             fjy0             = _mm_add_ps(fjy0,ty);
948             fjz0             = _mm_add_ps(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r10              = _mm_mul_ps(rsq10,rinv10);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq10             = _mm_mul_ps(iq1,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_ps(r10,ewtabscale);
963             ewitab           = _mm_cvttps_epi32(ewrt);
964             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
965             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
966                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
967                                          &ewtabF,&ewtabFn);
968             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
969             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
970
971             fscal            = felec;
972
973             /* Calculate temporary vectorial force */
974             tx               = _mm_mul_ps(fscal,dx10);
975             ty               = _mm_mul_ps(fscal,dy10);
976             tz               = _mm_mul_ps(fscal,dz10);
977
978             /* Update vectorial force */
979             fix1             = _mm_add_ps(fix1,tx);
980             fiy1             = _mm_add_ps(fiy1,ty);
981             fiz1             = _mm_add_ps(fiz1,tz);
982
983             fjx0             = _mm_add_ps(fjx0,tx);
984             fjy0             = _mm_add_ps(fjy0,ty);
985             fjz0             = _mm_add_ps(fjz0,tz);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r20              = _mm_mul_ps(rsq20,rinv20);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq20             = _mm_mul_ps(iq2,jq0);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm_mul_ps(r20,ewtabscale);
1000             ewitab           = _mm_cvttps_epi32(ewrt);
1001             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1002             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1003                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1004                                          &ewtabF,&ewtabFn);
1005             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1006             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1007
1008             fscal            = felec;
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_ps(fscal,dx20);
1012             ty               = _mm_mul_ps(fscal,dy20);
1013             tz               = _mm_mul_ps(fscal,dz20);
1014
1015             /* Update vectorial force */
1016             fix2             = _mm_add_ps(fix2,tx);
1017             fiy2             = _mm_add_ps(fiy2,ty);
1018             fiz2             = _mm_add_ps(fiz2,tz);
1019
1020             fjx0             = _mm_add_ps(fjx0,tx);
1021             fjy0             = _mm_add_ps(fjy0,ty);
1022             fjz0             = _mm_add_ps(fjz0,tz);
1023
1024             fjptrA             = f+j_coord_offsetA;
1025             fjptrB             = f+j_coord_offsetB;
1026             fjptrC             = f+j_coord_offsetC;
1027             fjptrD             = f+j_coord_offsetD;
1028
1029             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1030
1031             /* Inner loop uses 131 flops */
1032         }
1033
1034         if(jidx<j_index_end)
1035         {
1036
1037             /* Get j neighbor index, and coordinate index */
1038             jnrlistA         = jjnr[jidx];
1039             jnrlistB         = jjnr[jidx+1];
1040             jnrlistC         = jjnr[jidx+2];
1041             jnrlistD         = jjnr[jidx+3];
1042             /* Sign of each element will be negative for non-real atoms.
1043              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1044              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1045              */
1046             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1047             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1048             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1049             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1050             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1051             j_coord_offsetA  = DIM*jnrA;
1052             j_coord_offsetB  = DIM*jnrB;
1053             j_coord_offsetC  = DIM*jnrC;
1054             j_coord_offsetD  = DIM*jnrD;
1055
1056             /* load j atom coordinates */
1057             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1058                                               x+j_coord_offsetC,x+j_coord_offsetD,
1059                                               &jx0,&jy0,&jz0);
1060
1061             /* Calculate displacement vector */
1062             dx00             = _mm_sub_ps(ix0,jx0);
1063             dy00             = _mm_sub_ps(iy0,jy0);
1064             dz00             = _mm_sub_ps(iz0,jz0);
1065             dx10             = _mm_sub_ps(ix1,jx0);
1066             dy10             = _mm_sub_ps(iy1,jy0);
1067             dz10             = _mm_sub_ps(iz1,jz0);
1068             dx20             = _mm_sub_ps(ix2,jx0);
1069             dy20             = _mm_sub_ps(iy2,jy0);
1070             dz20             = _mm_sub_ps(iz2,jz0);
1071
1072             /* Calculate squared distance and things based on it */
1073             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1074             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1075             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1076
1077             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1078             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1079             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1080
1081             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1082             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1083             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1084
1085             /* Load parameters for j particles */
1086             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1087                                                               charge+jnrC+0,charge+jnrD+0);
1088             vdwjidx0A        = 2*vdwtype[jnrA+0];
1089             vdwjidx0B        = 2*vdwtype[jnrB+0];
1090             vdwjidx0C        = 2*vdwtype[jnrC+0];
1091             vdwjidx0D        = 2*vdwtype[jnrD+0];
1092
1093             fjx0             = _mm_setzero_ps();
1094             fjy0             = _mm_setzero_ps();
1095             fjz0             = _mm_setzero_ps();
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r00              = _mm_mul_ps(rsq00,rinv00);
1102             r00              = _mm_andnot_ps(dummy_mask,r00);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq00             = _mm_mul_ps(iq0,jq0);
1106             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1107                                          vdwparam+vdwioffset0+vdwjidx0B,
1108                                          vdwparam+vdwioffset0+vdwjidx0C,
1109                                          vdwparam+vdwioffset0+vdwjidx0D,
1110                                          &c6_00,&c12_00);
1111
1112             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1113                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1114                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1115                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm_mul_ps(r00,ewtabscale);
1121             ewitab           = _mm_cvttps_epi32(ewrt);
1122             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1123             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1124                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1125                                          &ewtabF,&ewtabFn);
1126             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1127             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1128
1129             /* Analytical LJ-PME */
1130             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1131             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1132             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1133             exponent         = gmx_simd_exp_r(ewcljrsq);
1134             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1135             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1136             /* f6A = 6 * C6grid * (1 - poly) */
1137             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1138             /* f6B = C6grid * exponent * beta^6 */
1139             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1140             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1141             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1142
1143             fscal            = _mm_add_ps(felec,fvdw);
1144
1145             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1146
1147             /* Calculate temporary vectorial force */
1148             tx               = _mm_mul_ps(fscal,dx00);
1149             ty               = _mm_mul_ps(fscal,dy00);
1150             tz               = _mm_mul_ps(fscal,dz00);
1151
1152             /* Update vectorial force */
1153             fix0             = _mm_add_ps(fix0,tx);
1154             fiy0             = _mm_add_ps(fiy0,ty);
1155             fiz0             = _mm_add_ps(fiz0,tz);
1156
1157             fjx0             = _mm_add_ps(fjx0,tx);
1158             fjy0             = _mm_add_ps(fjy0,ty);
1159             fjz0             = _mm_add_ps(fjz0,tz);
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             r10              = _mm_mul_ps(rsq10,rinv10);
1166             r10              = _mm_andnot_ps(dummy_mask,r10);
1167
1168             /* Compute parameters for interactions between i and j atoms */
1169             qq10             = _mm_mul_ps(iq1,jq0);
1170
1171             /* EWALD ELECTROSTATICS */
1172
1173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174             ewrt             = _mm_mul_ps(r10,ewtabscale);
1175             ewitab           = _mm_cvttps_epi32(ewrt);
1176             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1177             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1178                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1179                                          &ewtabF,&ewtabFn);
1180             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1181             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1182
1183             fscal            = felec;
1184
1185             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm_mul_ps(fscal,dx10);
1189             ty               = _mm_mul_ps(fscal,dy10);
1190             tz               = _mm_mul_ps(fscal,dz10);
1191
1192             /* Update vectorial force */
1193             fix1             = _mm_add_ps(fix1,tx);
1194             fiy1             = _mm_add_ps(fiy1,ty);
1195             fiz1             = _mm_add_ps(fiz1,tz);
1196
1197             fjx0             = _mm_add_ps(fjx0,tx);
1198             fjy0             = _mm_add_ps(fjy0,ty);
1199             fjz0             = _mm_add_ps(fjz0,tz);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r20              = _mm_mul_ps(rsq20,rinv20);
1206             r20              = _mm_andnot_ps(dummy_mask,r20);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq20             = _mm_mul_ps(iq2,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_ps(r20,ewtabscale);
1215             ewitab           = _mm_cvttps_epi32(ewrt);
1216             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1217             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1218                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1219                                          &ewtabF,&ewtabFn);
1220             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1221             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm_mul_ps(fscal,dx20);
1229             ty               = _mm_mul_ps(fscal,dy20);
1230             tz               = _mm_mul_ps(fscal,dz20);
1231
1232             /* Update vectorial force */
1233             fix2             = _mm_add_ps(fix2,tx);
1234             fiy2             = _mm_add_ps(fiy2,ty);
1235             fiz2             = _mm_add_ps(fiz2,tz);
1236
1237             fjx0             = _mm_add_ps(fjx0,tx);
1238             fjy0             = _mm_add_ps(fjy0,ty);
1239             fjz0             = _mm_add_ps(fjz0,tz);
1240
1241             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1242             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1243             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1244             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1245
1246             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1247
1248             /* Inner loop uses 134 flops */
1249         }
1250
1251         /* End of innermost loop */
1252
1253         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1254                                               f+i_coord_offset,fshift+i_shift_offset);
1255
1256         /* Increment number of inner iterations */
1257         inneriter                  += j_index_end - j_index_start;
1258
1259         /* Outer loop uses 18 flops */
1260     }
1261
1262     /* Increment number of outer iterations */
1263     outeriter        += nri;
1264
1265     /* Update outer/inner flops */
1266
1267     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1268 }