Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           c6grid_00;
96     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128           one_half  = _mm_set1_ps(0.5);
99     __m128           minus_one = _mm_set1_ps(-1.0);
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = sse41_invsqrt_f(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213             vdwjidx0C        = 2*vdwtype[jnrC+0];
214             vdwjidx0D        = 2*vdwtype[jnrD+0];
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             r00              = _mm_mul_ps(rsq00,rinv00);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_ps(iq0,jq0);
224             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,
226                                          vdwparam+vdwioffset0+vdwjidx0C,
227                                          vdwparam+vdwioffset0+vdwjidx0D,
228                                          &c6_00,&c12_00);
229
230             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
231                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
232                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
233                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _mm_mul_ps(r00,ewtabscale);
239             ewitab           = _mm_cvttps_epi32(ewrt);
240             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
241             ewitab           = _mm_slli_epi32(ewitab,2);
242             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
243             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
244             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
245             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
246             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
247             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
248             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
249             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
250             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
251
252             /* Analytical LJ-PME */
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
255             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
256             exponent         = sse41_exp_f(ewcljrsq);
257             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
258             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
259             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
260             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
263             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
264             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_ps(velecsum,velec);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272             /* Calculate temporary vectorial force */
273             tx               = _mm_mul_ps(fscal,dx00);
274             ty               = _mm_mul_ps(fscal,dy00);
275             tz               = _mm_mul_ps(fscal,dz00);
276
277             /* Update vectorial force */
278             fix0             = _mm_add_ps(fix0,tx);
279             fiy0             = _mm_add_ps(fiy0,ty);
280             fiz0             = _mm_add_ps(fiz0,tz);
281
282             fjptrA             = f+j_coord_offsetA;
283             fjptrB             = f+j_coord_offsetB;
284             fjptrC             = f+j_coord_offsetC;
285             fjptrD             = f+j_coord_offsetD;
286             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
287
288             /* Inner loop uses 69 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             /* Sign of each element will be negative for non-real atoms.
300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
302              */
303             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             j_coord_offsetA  = DIM*jnrA;
309             j_coord_offsetB  = DIM*jnrB;
310             j_coord_offsetC  = DIM*jnrC;
311             j_coord_offsetD  = DIM*jnrD;
312
313             /* load j atom coordinates */
314             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
315                                               x+j_coord_offsetC,x+j_coord_offsetD,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_ps(ix0,jx0);
320             dy00             = _mm_sub_ps(iy0,jy0);
321             dz00             = _mm_sub_ps(iz0,jz0);
322
323             /* Calculate squared distance and things based on it */
324             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
325
326             rinv00           = sse41_invsqrt_f(rsq00);
327
328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
329
330             /* Load parameters for j particles */
331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
332                                                               charge+jnrC+0,charge+jnrD+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             r00              = _mm_mul_ps(rsq00,rinv00);
343             r00              = _mm_andnot_ps(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm_mul_ps(iq0,jq0);
347             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
348                                          vdwparam+vdwioffset0+vdwjidx0B,
349                                          vdwparam+vdwioffset0+vdwjidx0C,
350                                          vdwparam+vdwioffset0+vdwjidx0D,
351                                          &c6_00,&c12_00);
352
353             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
354                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
355                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
356                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
361             ewrt             = _mm_mul_ps(r00,ewtabscale);
362             ewitab           = _mm_cvttps_epi32(ewrt);
363             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
364             ewitab           = _mm_slli_epi32(ewitab,2);
365             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
366             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
367             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
368             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
369             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
370             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
371             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
372             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
373             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
374
375             /* Analytical LJ-PME */
376             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
377             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
378             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
379             exponent         = sse41_exp_f(ewcljrsq);
380             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
381             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
382             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
383             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
384             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
385             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
386             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
387             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm_andnot_ps(dummy_mask,velec);
391             velecsum         = _mm_add_ps(velecsum,velec);
392             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
393             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
394
395             fscal            = _mm_add_ps(felec,fvdw);
396
397             fscal            = _mm_andnot_ps(dummy_mask,fscal);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx00);
401             ty               = _mm_mul_ps(fscal,dy00);
402             tz               = _mm_mul_ps(fscal,dz00);
403
404             /* Update vectorial force */
405             fix0             = _mm_add_ps(fix0,tx);
406             fiy0             = _mm_add_ps(fiy0,ty);
407             fiz0             = _mm_add_ps(fiz0,tz);
408
409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
413             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
414
415             /* Inner loop uses 70 flops */
416         }
417
418         /* End of innermost loop */
419
420         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
421                                               f+i_coord_offset,fshift+i_shift_offset);
422
423         ggid                        = gid[iidx];
424         /* Update potential energies */
425         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
426         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
427
428         /* Increment number of inner iterations */
429         inneriter                  += j_index_end - j_index_start;
430
431         /* Outer loop uses 9 flops */
432     }
433
434     /* Increment number of outer iterations */
435     outeriter        += nri;
436
437     /* Update outer/inner flops */
438
439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
440 }
441 /*
442  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
443  * Electrostatics interaction: Ewald
444  * VdW interaction:            LJEwald
445  * Geometry:                   Particle-Particle
446  * Calculate force/pot:        Force
447  */
448 void
449 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
450                     (t_nblist                    * gmx_restrict       nlist,
451                      rvec                        * gmx_restrict          xx,
452                      rvec                        * gmx_restrict          ff,
453                      struct t_forcerec           * gmx_restrict          fr,
454                      t_mdatoms                   * gmx_restrict     mdatoms,
455                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
456                      t_nrnb                      * gmx_restrict        nrnb)
457 {
458     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
459      * just 0 for non-waters.
460      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
461      * jnr indices corresponding to data put in the four positions in the SIMD register.
462      */
463     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
464     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
465     int              jnrA,jnrB,jnrC,jnrD;
466     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
467     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
468     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
469     real             rcutoff_scalar;
470     real             *shiftvec,*fshift,*x,*f;
471     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
472     real             scratch[4*DIM];
473     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
474     int              vdwioffset0;
475     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
476     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
477     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
478     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
479     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
480     real             *charge;
481     int              nvdwtype;
482     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
483     int              *vdwtype;
484     real             *vdwparam;
485     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
486     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
487     __m128           c6grid_00;
488     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
489     real             *vdwgridparam;
490     __m128           one_half  = _mm_set1_ps(0.5);
491     __m128           minus_one = _mm_set1_ps(-1.0);
492     __m128i          ewitab;
493     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
494     real             *ewtab;
495     __m128           dummy_mask,cutoff_mask;
496     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
497     __m128           one     = _mm_set1_ps(1.0);
498     __m128           two     = _mm_set1_ps(2.0);
499     x                = xx[0];
500     f                = ff[0];
501
502     nri              = nlist->nri;
503     iinr             = nlist->iinr;
504     jindex           = nlist->jindex;
505     jjnr             = nlist->jjnr;
506     shiftidx         = nlist->shift;
507     gid              = nlist->gid;
508     shiftvec         = fr->shift_vec[0];
509     fshift           = fr->fshift[0];
510     facel            = _mm_set1_ps(fr->ic->epsfac);
511     charge           = mdatoms->chargeA;
512     nvdwtype         = fr->ntype;
513     vdwparam         = fr->nbfp;
514     vdwtype          = mdatoms->typeA;
515     vdwgridparam     = fr->ljpme_c6grid;
516     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
517     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
518     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
519
520     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
521     ewtab            = fr->ic->tabq_coul_F;
522     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
523     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
524
525     /* Avoid stupid compiler warnings */
526     jnrA = jnrB = jnrC = jnrD = 0;
527     j_coord_offsetA = 0;
528     j_coord_offsetB = 0;
529     j_coord_offsetC = 0;
530     j_coord_offsetD = 0;
531
532     outeriter        = 0;
533     inneriter        = 0;
534
535     for(iidx=0;iidx<4*DIM;iidx++)
536     {
537         scratch[iidx] = 0.0;
538     }
539
540     /* Start outer loop over neighborlists */
541     for(iidx=0; iidx<nri; iidx++)
542     {
543         /* Load shift vector for this list */
544         i_shift_offset   = DIM*shiftidx[iidx];
545
546         /* Load limits for loop over neighbors */
547         j_index_start    = jindex[iidx];
548         j_index_end      = jindex[iidx+1];
549
550         /* Get outer coordinate index */
551         inr              = iinr[iidx];
552         i_coord_offset   = DIM*inr;
553
554         /* Load i particle coords and add shift vector */
555         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
556
557         fix0             = _mm_setzero_ps();
558         fiy0             = _mm_setzero_ps();
559         fiz0             = _mm_setzero_ps();
560
561         /* Load parameters for i particles */
562         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
563         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
564
565         /* Start inner kernel loop */
566         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
567         {
568
569             /* Get j neighbor index, and coordinate index */
570             jnrA             = jjnr[jidx];
571             jnrB             = jjnr[jidx+1];
572             jnrC             = jjnr[jidx+2];
573             jnrD             = jjnr[jidx+3];
574             j_coord_offsetA  = DIM*jnrA;
575             j_coord_offsetB  = DIM*jnrB;
576             j_coord_offsetC  = DIM*jnrC;
577             j_coord_offsetD  = DIM*jnrD;
578
579             /* load j atom coordinates */
580             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
581                                               x+j_coord_offsetC,x+j_coord_offsetD,
582                                               &jx0,&jy0,&jz0);
583
584             /* Calculate displacement vector */
585             dx00             = _mm_sub_ps(ix0,jx0);
586             dy00             = _mm_sub_ps(iy0,jy0);
587             dz00             = _mm_sub_ps(iz0,jz0);
588
589             /* Calculate squared distance and things based on it */
590             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
591
592             rinv00           = sse41_invsqrt_f(rsq00);
593
594             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
595
596             /* Load parameters for j particles */
597             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
598                                                               charge+jnrC+0,charge+jnrD+0);
599             vdwjidx0A        = 2*vdwtype[jnrA+0];
600             vdwjidx0B        = 2*vdwtype[jnrB+0];
601             vdwjidx0C        = 2*vdwtype[jnrC+0];
602             vdwjidx0D        = 2*vdwtype[jnrD+0];
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             r00              = _mm_mul_ps(rsq00,rinv00);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq00             = _mm_mul_ps(iq0,jq0);
612             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
613                                          vdwparam+vdwioffset0+vdwjidx0B,
614                                          vdwparam+vdwioffset0+vdwjidx0C,
615                                          vdwparam+vdwioffset0+vdwjidx0D,
616                                          &c6_00,&c12_00);
617
618             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
619                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
620                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
621                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_ps(r00,ewtabscale);
627             ewitab           = _mm_cvttps_epi32(ewrt);
628             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
629             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
630                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
631                                          &ewtabF,&ewtabFn);
632             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
633             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
634
635             /* Analytical LJ-PME */
636             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
637             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
638             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
639             exponent         = sse41_exp_f(ewcljrsq);
640             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
641             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
642             /* f6A = 6 * C6grid * (1 - poly) */
643             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
644             /* f6B = C6grid * exponent * beta^6 */
645             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
646             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
647             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
648
649             fscal            = _mm_add_ps(felec,fvdw);
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm_mul_ps(fscal,dx00);
653             ty               = _mm_mul_ps(fscal,dy00);
654             tz               = _mm_mul_ps(fscal,dz00);
655
656             /* Update vectorial force */
657             fix0             = _mm_add_ps(fix0,tx);
658             fiy0             = _mm_add_ps(fiy0,ty);
659             fiz0             = _mm_add_ps(fiz0,tz);
660
661             fjptrA             = f+j_coord_offsetA;
662             fjptrB             = f+j_coord_offsetB;
663             fjptrC             = f+j_coord_offsetC;
664             fjptrD             = f+j_coord_offsetD;
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
666
667             /* Inner loop uses 59 flops */
668         }
669
670         if(jidx<j_index_end)
671         {
672
673             /* Get j neighbor index, and coordinate index */
674             jnrlistA         = jjnr[jidx];
675             jnrlistB         = jjnr[jidx+1];
676             jnrlistC         = jjnr[jidx+2];
677             jnrlistD         = jjnr[jidx+3];
678             /* Sign of each element will be negative for non-real atoms.
679              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
680              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
681              */
682             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
683             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
684             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
685             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
686             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               x+j_coord_offsetC,x+j_coord_offsetD,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm_sub_ps(ix0,jx0);
699             dy00             = _mm_sub_ps(iy0,jy0);
700             dz00             = _mm_sub_ps(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
704
705             rinv00           = sse41_invsqrt_f(rsq00);
706
707             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
711                                                               charge+jnrC+0,charge+jnrD+0);
712             vdwjidx0A        = 2*vdwtype[jnrA+0];
713             vdwjidx0B        = 2*vdwtype[jnrB+0];
714             vdwjidx0C        = 2*vdwtype[jnrC+0];
715             vdwjidx0D        = 2*vdwtype[jnrD+0];
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             r00              = _mm_mul_ps(rsq00,rinv00);
722             r00              = _mm_andnot_ps(dummy_mask,r00);
723
724             /* Compute parameters for interactions between i and j atoms */
725             qq00             = _mm_mul_ps(iq0,jq0);
726             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
727                                          vdwparam+vdwioffset0+vdwjidx0B,
728                                          vdwparam+vdwioffset0+vdwjidx0C,
729                                          vdwparam+vdwioffset0+vdwjidx0D,
730                                          &c6_00,&c12_00);
731
732             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
733                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
734                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
735                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
736
737             /* EWALD ELECTROSTATICS */
738
739             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
740             ewrt             = _mm_mul_ps(r00,ewtabscale);
741             ewitab           = _mm_cvttps_epi32(ewrt);
742             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
743             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
744                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
745                                          &ewtabF,&ewtabFn);
746             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
747             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
748
749             /* Analytical LJ-PME */
750             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
751             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
752             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
753             exponent         = sse41_exp_f(ewcljrsq);
754             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
755             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
756             /* f6A = 6 * C6grid * (1 - poly) */
757             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
758             /* f6B = C6grid * exponent * beta^6 */
759             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
760             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
761             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
762
763             fscal            = _mm_add_ps(felec,fvdw);
764
765             fscal            = _mm_andnot_ps(dummy_mask,fscal);
766
767             /* Calculate temporary vectorial force */
768             tx               = _mm_mul_ps(fscal,dx00);
769             ty               = _mm_mul_ps(fscal,dy00);
770             tz               = _mm_mul_ps(fscal,dz00);
771
772             /* Update vectorial force */
773             fix0             = _mm_add_ps(fix0,tx);
774             fiy0             = _mm_add_ps(fiy0,ty);
775             fiz0             = _mm_add_ps(fiz0,tz);
776
777             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
778             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
779             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
780             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
781             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
782
783             /* Inner loop uses 60 flops */
784         }
785
786         /* End of innermost loop */
787
788         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
789                                               f+i_coord_offset,fshift+i_shift_offset);
790
791         /* Increment number of inner iterations */
792         inneriter                  += j_index_end - j_index_start;
793
794         /* Outer loop uses 7 flops */
795     }
796
797     /* Increment number of outer iterations */
798     outeriter        += nri;
799
800     /* Update outer/inner flops */
801
802     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
803 }