Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           c6grid_00;
99     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     real             *vdwgridparam;
101     __m128           one_half  = _mm_set1_ps(0.5);
102     __m128           minus_one = _mm_set1_ps(-1.0);
103     __m128i          ewitab;
104     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126     vdwgridparam     = fr->ljpme_c6grid;
127     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
128     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
129     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm_invsqrt_ps(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
234                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
235                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
236                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
237
238             /* EWALD ELECTROSTATICS */
239
240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
241             ewrt             = _mm_mul_ps(r00,ewtabscale);
242             ewitab           = _mm_cvttps_epi32(ewrt);
243             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
244             ewitab           = _mm_slli_epi32(ewitab,2);
245             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
246             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
247             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
248             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
249             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
250             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
251             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
252             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
253             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
254
255             /* Analytical LJ-PME */
256             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
257             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
258             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
259             exponent         = gmx_simd_exp_r(ewcljrsq);
260             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
261             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
262             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
263             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
266             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
267             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velecsum         = _mm_add_ps(velecsum,velec);
271             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
272
273             fscal            = _mm_add_ps(felec,fvdw);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm_mul_ps(fscal,dx00);
277             ty               = _mm_mul_ps(fscal,dy00);
278             tz               = _mm_mul_ps(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm_add_ps(fix0,tx);
282             fiy0             = _mm_add_ps(fiy0,ty);
283             fiz0             = _mm_add_ps(fiz0,tz);
284
285             fjptrA             = f+j_coord_offsetA;
286             fjptrB             = f+j_coord_offsetB;
287             fjptrC             = f+j_coord_offsetC;
288             fjptrD             = f+j_coord_offsetD;
289             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
290
291             /* Inner loop uses 69 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             /* Get j neighbor index, and coordinate index */
298             jnrlistA         = jjnr[jidx];
299             jnrlistB         = jjnr[jidx+1];
300             jnrlistC         = jjnr[jidx+2];
301             jnrlistD         = jjnr[jidx+3];
302             /* Sign of each element will be negative for non-real atoms.
303              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
304              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
305              */
306             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
307             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
308             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
309             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
310             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
311             j_coord_offsetA  = DIM*jnrA;
312             j_coord_offsetB  = DIM*jnrB;
313             j_coord_offsetC  = DIM*jnrC;
314             j_coord_offsetD  = DIM*jnrD;
315
316             /* load j atom coordinates */
317             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
318                                               x+j_coord_offsetC,x+j_coord_offsetD,
319                                               &jx0,&jy0,&jz0);
320
321             /* Calculate displacement vector */
322             dx00             = _mm_sub_ps(ix0,jx0);
323             dy00             = _mm_sub_ps(iy0,jy0);
324             dz00             = _mm_sub_ps(iz0,jz0);
325
326             /* Calculate squared distance and things based on it */
327             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
328
329             rinv00           = gmx_mm_invsqrt_ps(rsq00);
330
331             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
332
333             /* Load parameters for j particles */
334             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
335                                                               charge+jnrC+0,charge+jnrD+0);
336             vdwjidx0A        = 2*vdwtype[jnrA+0];
337             vdwjidx0B        = 2*vdwtype[jnrB+0];
338             vdwjidx0C        = 2*vdwtype[jnrC+0];
339             vdwjidx0D        = 2*vdwtype[jnrD+0];
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             r00              = _mm_mul_ps(rsq00,rinv00);
346             r00              = _mm_andnot_ps(dummy_mask,r00);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq00             = _mm_mul_ps(iq0,jq0);
350             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
351                                          vdwparam+vdwioffset0+vdwjidx0B,
352                                          vdwparam+vdwioffset0+vdwjidx0C,
353                                          vdwparam+vdwioffset0+vdwjidx0D,
354                                          &c6_00,&c12_00);
355
356             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
357                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
358                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
359                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _mm_mul_ps(r00,ewtabscale);
365             ewitab           = _mm_cvttps_epi32(ewrt);
366             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
367             ewitab           = _mm_slli_epi32(ewitab,2);
368             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
369             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
370             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
371             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
372             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
373             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
374             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
375             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
376             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
377
378             /* Analytical LJ-PME */
379             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
380             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
381             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
382             exponent         = gmx_simd_exp_r(ewcljrsq);
383             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
384             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
385             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
386             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
387             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
388             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
389             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
390             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velec            = _mm_andnot_ps(dummy_mask,velec);
394             velecsum         = _mm_add_ps(velecsum,velec);
395             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
396             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
397
398             fscal            = _mm_add_ps(felec,fvdw);
399
400             fscal            = _mm_andnot_ps(dummy_mask,fscal);
401
402             /* Calculate temporary vectorial force */
403             tx               = _mm_mul_ps(fscal,dx00);
404             ty               = _mm_mul_ps(fscal,dy00);
405             tz               = _mm_mul_ps(fscal,dz00);
406
407             /* Update vectorial force */
408             fix0             = _mm_add_ps(fix0,tx);
409             fiy0             = _mm_add_ps(fiy0,ty);
410             fiz0             = _mm_add_ps(fiz0,tz);
411
412             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
413             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
414             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
415             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
416             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
417
418             /* Inner loop uses 70 flops */
419         }
420
421         /* End of innermost loop */
422
423         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
424                                               f+i_coord_offset,fshift+i_shift_offset);
425
426         ggid                        = gid[iidx];
427         /* Update potential energies */
428         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
429         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
430
431         /* Increment number of inner iterations */
432         inneriter                  += j_index_end - j_index_start;
433
434         /* Outer loop uses 9 flops */
435     }
436
437     /* Increment number of outer iterations */
438     outeriter        += nri;
439
440     /* Update outer/inner flops */
441
442     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
443 }
444 /*
445  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
446  * Electrostatics interaction: Ewald
447  * VdW interaction:            LJEwald
448  * Geometry:                   Particle-Particle
449  * Calculate force/pot:        Force
450  */
451 void
452 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
453                     (t_nblist                    * gmx_restrict       nlist,
454                      rvec                        * gmx_restrict          xx,
455                      rvec                        * gmx_restrict          ff,
456                      t_forcerec                  * gmx_restrict          fr,
457                      t_mdatoms                   * gmx_restrict     mdatoms,
458                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
459                      t_nrnb                      * gmx_restrict        nrnb)
460 {
461     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
462      * just 0 for non-waters.
463      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
464      * jnr indices corresponding to data put in the four positions in the SIMD register.
465      */
466     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
467     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
468     int              jnrA,jnrB,jnrC,jnrD;
469     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
470     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
471     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
472     real             rcutoff_scalar;
473     real             *shiftvec,*fshift,*x,*f;
474     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
475     real             scratch[4*DIM];
476     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
477     int              vdwioffset0;
478     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
479     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
480     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
481     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
482     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
483     real             *charge;
484     int              nvdwtype;
485     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
486     int              *vdwtype;
487     real             *vdwparam;
488     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
489     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
490     __m128           c6grid_00;
491     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
492     real             *vdwgridparam;
493     __m128           one_half  = _mm_set1_ps(0.5);
494     __m128           minus_one = _mm_set1_ps(-1.0);
495     __m128i          ewitab;
496     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
497     real             *ewtab;
498     __m128           dummy_mask,cutoff_mask;
499     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
500     __m128           one     = _mm_set1_ps(1.0);
501     __m128           two     = _mm_set1_ps(2.0);
502     x                = xx[0];
503     f                = ff[0];
504
505     nri              = nlist->nri;
506     iinr             = nlist->iinr;
507     jindex           = nlist->jindex;
508     jjnr             = nlist->jjnr;
509     shiftidx         = nlist->shift;
510     gid              = nlist->gid;
511     shiftvec         = fr->shift_vec[0];
512     fshift           = fr->fshift[0];
513     facel            = _mm_set1_ps(fr->epsfac);
514     charge           = mdatoms->chargeA;
515     nvdwtype         = fr->ntype;
516     vdwparam         = fr->nbfp;
517     vdwtype          = mdatoms->typeA;
518     vdwgridparam     = fr->ljpme_c6grid;
519     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
520     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
521     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
522
523     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
524     ewtab            = fr->ic->tabq_coul_F;
525     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
526     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
527
528     /* Avoid stupid compiler warnings */
529     jnrA = jnrB = jnrC = jnrD = 0;
530     j_coord_offsetA = 0;
531     j_coord_offsetB = 0;
532     j_coord_offsetC = 0;
533     j_coord_offsetD = 0;
534
535     outeriter        = 0;
536     inneriter        = 0;
537
538     for(iidx=0;iidx<4*DIM;iidx++)
539     {
540         scratch[iidx] = 0.0;
541     }
542
543     /* Start outer loop over neighborlists */
544     for(iidx=0; iidx<nri; iidx++)
545     {
546         /* Load shift vector for this list */
547         i_shift_offset   = DIM*shiftidx[iidx];
548
549         /* Load limits for loop over neighbors */
550         j_index_start    = jindex[iidx];
551         j_index_end      = jindex[iidx+1];
552
553         /* Get outer coordinate index */
554         inr              = iinr[iidx];
555         i_coord_offset   = DIM*inr;
556
557         /* Load i particle coords and add shift vector */
558         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
559
560         fix0             = _mm_setzero_ps();
561         fiy0             = _mm_setzero_ps();
562         fiz0             = _mm_setzero_ps();
563
564         /* Load parameters for i particles */
565         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
566         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
567
568         /* Start inner kernel loop */
569         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrA             = jjnr[jidx];
574             jnrB             = jjnr[jidx+1];
575             jnrC             = jjnr[jidx+2];
576             jnrD             = jjnr[jidx+3];
577             j_coord_offsetA  = DIM*jnrA;
578             j_coord_offsetB  = DIM*jnrB;
579             j_coord_offsetC  = DIM*jnrC;
580             j_coord_offsetD  = DIM*jnrD;
581
582             /* load j atom coordinates */
583             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
584                                               x+j_coord_offsetC,x+j_coord_offsetD,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm_sub_ps(ix0,jx0);
589             dy00             = _mm_sub_ps(iy0,jy0);
590             dz00             = _mm_sub_ps(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm_invsqrt_ps(rsq00);
596
597             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
601                                                               charge+jnrC+0,charge+jnrD+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603             vdwjidx0B        = 2*vdwtype[jnrB+0];
604             vdwjidx0C        = 2*vdwtype[jnrC+0];
605             vdwjidx0D        = 2*vdwtype[jnrD+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r00              = _mm_mul_ps(rsq00,rinv00);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq00             = _mm_mul_ps(iq0,jq0);
615             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
616                                          vdwparam+vdwioffset0+vdwjidx0B,
617                                          vdwparam+vdwioffset0+vdwjidx0C,
618                                          vdwparam+vdwioffset0+vdwjidx0D,
619                                          &c6_00,&c12_00);
620
621             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
622                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
623                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
624                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_ps(r00,ewtabscale);
630             ewitab           = _mm_cvttps_epi32(ewrt);
631             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
632             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
633                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
634                                          &ewtabF,&ewtabFn);
635             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
636             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
637
638             /* Analytical LJ-PME */
639             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
640             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
641             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
642             exponent         = gmx_simd_exp_r(ewcljrsq);
643             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
644             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
645             /* f6A = 6 * C6grid * (1 - poly) */
646             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
647             /* f6B = C6grid * exponent * beta^6 */
648             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
649             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
650             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
651
652             fscal            = _mm_add_ps(felec,fvdw);
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_ps(fscal,dx00);
656             ty               = _mm_mul_ps(fscal,dy00);
657             tz               = _mm_mul_ps(fscal,dz00);
658
659             /* Update vectorial force */
660             fix0             = _mm_add_ps(fix0,tx);
661             fiy0             = _mm_add_ps(fiy0,ty);
662             fiz0             = _mm_add_ps(fiz0,tz);
663
664             fjptrA             = f+j_coord_offsetA;
665             fjptrB             = f+j_coord_offsetB;
666             fjptrC             = f+j_coord_offsetC;
667             fjptrD             = f+j_coord_offsetD;
668             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
669
670             /* Inner loop uses 59 flops */
671         }
672
673         if(jidx<j_index_end)
674         {
675
676             /* Get j neighbor index, and coordinate index */
677             jnrlistA         = jjnr[jidx];
678             jnrlistB         = jjnr[jidx+1];
679             jnrlistC         = jjnr[jidx+2];
680             jnrlistD         = jjnr[jidx+3];
681             /* Sign of each element will be negative for non-real atoms.
682              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
683              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
684              */
685             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
686             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
687             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
688             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
689             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
690             j_coord_offsetA  = DIM*jnrA;
691             j_coord_offsetB  = DIM*jnrB;
692             j_coord_offsetC  = DIM*jnrC;
693             j_coord_offsetD  = DIM*jnrD;
694
695             /* load j atom coordinates */
696             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
697                                               x+j_coord_offsetC,x+j_coord_offsetD,
698                                               &jx0,&jy0,&jz0);
699
700             /* Calculate displacement vector */
701             dx00             = _mm_sub_ps(ix0,jx0);
702             dy00             = _mm_sub_ps(iy0,jy0);
703             dz00             = _mm_sub_ps(iz0,jz0);
704
705             /* Calculate squared distance and things based on it */
706             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
707
708             rinv00           = gmx_mm_invsqrt_ps(rsq00);
709
710             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
711
712             /* Load parameters for j particles */
713             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
714                                                               charge+jnrC+0,charge+jnrD+0);
715             vdwjidx0A        = 2*vdwtype[jnrA+0];
716             vdwjidx0B        = 2*vdwtype[jnrB+0];
717             vdwjidx0C        = 2*vdwtype[jnrC+0];
718             vdwjidx0D        = 2*vdwtype[jnrD+0];
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             r00              = _mm_mul_ps(rsq00,rinv00);
725             r00              = _mm_andnot_ps(dummy_mask,r00);
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq00             = _mm_mul_ps(iq0,jq0);
729             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
730                                          vdwparam+vdwioffset0+vdwjidx0B,
731                                          vdwparam+vdwioffset0+vdwjidx0C,
732                                          vdwparam+vdwioffset0+vdwjidx0D,
733                                          &c6_00,&c12_00);
734
735             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
736                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
737                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
738                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
739
740             /* EWALD ELECTROSTATICS */
741
742             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
743             ewrt             = _mm_mul_ps(r00,ewtabscale);
744             ewitab           = _mm_cvttps_epi32(ewrt);
745             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
746             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
747                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
748                                          &ewtabF,&ewtabFn);
749             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
750             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
751
752             /* Analytical LJ-PME */
753             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
754             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
755             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
756             exponent         = gmx_simd_exp_r(ewcljrsq);
757             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
758             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
759             /* f6A = 6 * C6grid * (1 - poly) */
760             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
761             /* f6B = C6grid * exponent * beta^6 */
762             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
763             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
764             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
765
766             fscal            = _mm_add_ps(felec,fvdw);
767
768             fscal            = _mm_andnot_ps(dummy_mask,fscal);
769
770             /* Calculate temporary vectorial force */
771             tx               = _mm_mul_ps(fscal,dx00);
772             ty               = _mm_mul_ps(fscal,dy00);
773             tz               = _mm_mul_ps(fscal,dz00);
774
775             /* Update vectorial force */
776             fix0             = _mm_add_ps(fix0,tx);
777             fiy0             = _mm_add_ps(fiy0,ty);
778             fiz0             = _mm_add_ps(fiz0,tz);
779
780             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
781             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
782             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
783             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
784             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
785
786             /* Inner loop uses 60 flops */
787         }
788
789         /* End of innermost loop */
790
791         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
792                                               f+i_coord_offset,fshift+i_shift_offset);
793
794         /* Increment number of inner iterations */
795         inneriter                  += j_index_end - j_index_start;
796
797         /* Outer loop uses 7 flops */
798     }
799
800     /* Increment number of outer iterations */
801     outeriter        += nri;
802
803     /* Update outer/inner flops */
804
805     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
806 }