775eb872a59f8f9b2179aa7e37f1212bd1e21dd1
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half  = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124     vdwgridparam     = fr->ljpme_c6grid;
125     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
126     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
127     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,
227                                          vdwparam+vdwioffset0+vdwjidx0C,
228                                          vdwparam+vdwioffset0+vdwjidx0D,
229                                          &c6_00,&c12_00);
230
231             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
232                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
233                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
234                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
235
236             /* EWALD ELECTROSTATICS */
237
238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
239             ewrt             = _mm_mul_ps(r00,ewtabscale);
240             ewitab           = _mm_cvttps_epi32(ewrt);
241             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
242             ewitab           = _mm_slli_epi32(ewitab,2);
243             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
244             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
245             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
246             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
247             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
248             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
249             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
250             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
251             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
252
253             /* Analytical LJ-PME */
254             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
255             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
256             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
257             exponent         = gmx_simd_exp_r(ewcljrsq);
258             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
259             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
260             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
261             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
262             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
263             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
264             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
265             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velecsum         = _mm_add_ps(velecsum,velec);
269             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
270
271             fscal            = _mm_add_ps(felec,fvdw);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_ps(fscal,dx00);
275             ty               = _mm_mul_ps(fscal,dy00);
276             tz               = _mm_mul_ps(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm_add_ps(fix0,tx);
280             fiy0             = _mm_add_ps(fiy0,ty);
281             fiz0             = _mm_add_ps(fiz0,tz);
282
283             fjptrA             = f+j_coord_offsetA;
284             fjptrB             = f+j_coord_offsetB;
285             fjptrC             = f+j_coord_offsetC;
286             fjptrD             = f+j_coord_offsetD;
287             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289             /* Inner loop uses 69 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
303              */
304             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
306             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
307             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
308             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313
314             /* load j atom coordinates */
315             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
316                                               x+j_coord_offsetC,x+j_coord_offsetD,
317                                               &jx0,&jy0,&jz0);
318
319             /* Calculate displacement vector */
320             dx00             = _mm_sub_ps(ix0,jx0);
321             dy00             = _mm_sub_ps(iy0,jy0);
322             dz00             = _mm_sub_ps(iz0,jz0);
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
326
327             rinv00           = gmx_mm_invsqrt_ps(rsq00);
328
329             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
330
331             /* Load parameters for j particles */
332             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
333                                                               charge+jnrC+0,charge+jnrD+0);
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm_mul_ps(rsq00,rinv00);
344             r00              = _mm_andnot_ps(dummy_mask,r00);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq00             = _mm_mul_ps(iq0,jq0);
348             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
349                                          vdwparam+vdwioffset0+vdwjidx0B,
350                                          vdwparam+vdwioffset0+vdwjidx0C,
351                                          vdwparam+vdwioffset0+vdwjidx0D,
352                                          &c6_00,&c12_00);
353
354             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
355                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
356                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
357                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _mm_mul_ps(r00,ewtabscale);
363             ewitab           = _mm_cvttps_epi32(ewrt);
364             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
365             ewitab           = _mm_slli_epi32(ewitab,2);
366             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
367             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
368             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
369             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
370             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
371             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
372             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
373             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
374             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
375
376             /* Analytical LJ-PME */
377             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
378             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
379             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
380             exponent         = gmx_simd_exp_r(ewcljrsq);
381             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
382             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
383             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
384             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
385             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
386             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
387             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
388             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_andnot_ps(dummy_mask,velec);
392             velecsum         = _mm_add_ps(velecsum,velec);
393             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
394             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
395
396             fscal            = _mm_add_ps(felec,fvdw);
397
398             fscal            = _mm_andnot_ps(dummy_mask,fscal);
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm_mul_ps(fscal,dx00);
402             ty               = _mm_mul_ps(fscal,dy00);
403             tz               = _mm_mul_ps(fscal,dz00);
404
405             /* Update vectorial force */
406             fix0             = _mm_add_ps(fix0,tx);
407             fiy0             = _mm_add_ps(fiy0,ty);
408             fiz0             = _mm_add_ps(fiz0,tz);
409
410             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
411             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
412             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
413             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
415
416             /* Inner loop uses 70 flops */
417         }
418
419         /* End of innermost loop */
420
421         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
422                                               f+i_coord_offset,fshift+i_shift_offset);
423
424         ggid                        = gid[iidx];
425         /* Update potential energies */
426         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
427         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
428
429         /* Increment number of inner iterations */
430         inneriter                  += j_index_end - j_index_start;
431
432         /* Outer loop uses 9 flops */
433     }
434
435     /* Increment number of outer iterations */
436     outeriter        += nri;
437
438     /* Update outer/inner flops */
439
440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
441 }
442 /*
443  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
444  * Electrostatics interaction: Ewald
445  * VdW interaction:            LJEwald
446  * Geometry:                   Particle-Particle
447  * Calculate force/pot:        Force
448  */
449 void
450 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_single
451                     (t_nblist                    * gmx_restrict       nlist,
452                      rvec                        * gmx_restrict          xx,
453                      rvec                        * gmx_restrict          ff,
454                      t_forcerec                  * gmx_restrict          fr,
455                      t_mdatoms                   * gmx_restrict     mdatoms,
456                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
457                      t_nrnb                      * gmx_restrict        nrnb)
458 {
459     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
460      * just 0 for non-waters.
461      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
462      * jnr indices corresponding to data put in the four positions in the SIMD register.
463      */
464     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
465     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
466     int              jnrA,jnrB,jnrC,jnrD;
467     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
468     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
469     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
470     real             rcutoff_scalar;
471     real             *shiftvec,*fshift,*x,*f;
472     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
473     real             scratch[4*DIM];
474     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
475     int              vdwioffset0;
476     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
477     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
478     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
479     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
480     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
481     real             *charge;
482     int              nvdwtype;
483     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
484     int              *vdwtype;
485     real             *vdwparam;
486     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
487     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
488     __m128           c6grid_00;
489     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
490     real             *vdwgridparam;
491     __m128           one_half  = _mm_set1_ps(0.5);
492     __m128           minus_one = _mm_set1_ps(-1.0);
493     __m128i          ewitab;
494     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
495     real             *ewtab;
496     __m128           dummy_mask,cutoff_mask;
497     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
498     __m128           one     = _mm_set1_ps(1.0);
499     __m128           two     = _mm_set1_ps(2.0);
500     x                = xx[0];
501     f                = ff[0];
502
503     nri              = nlist->nri;
504     iinr             = nlist->iinr;
505     jindex           = nlist->jindex;
506     jjnr             = nlist->jjnr;
507     shiftidx         = nlist->shift;
508     gid              = nlist->gid;
509     shiftvec         = fr->shift_vec[0];
510     fshift           = fr->fshift[0];
511     facel            = _mm_set1_ps(fr->epsfac);
512     charge           = mdatoms->chargeA;
513     nvdwtype         = fr->ntype;
514     vdwparam         = fr->nbfp;
515     vdwtype          = mdatoms->typeA;
516     vdwgridparam     = fr->ljpme_c6grid;
517     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
518     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
519     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
520
521     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
522     ewtab            = fr->ic->tabq_coul_F;
523     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
524     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
525
526     /* Avoid stupid compiler warnings */
527     jnrA = jnrB = jnrC = jnrD = 0;
528     j_coord_offsetA = 0;
529     j_coord_offsetB = 0;
530     j_coord_offsetC = 0;
531     j_coord_offsetD = 0;
532
533     outeriter        = 0;
534     inneriter        = 0;
535
536     for(iidx=0;iidx<4*DIM;iidx++)
537     {
538         scratch[iidx] = 0.0;
539     }
540
541     /* Start outer loop over neighborlists */
542     for(iidx=0; iidx<nri; iidx++)
543     {
544         /* Load shift vector for this list */
545         i_shift_offset   = DIM*shiftidx[iidx];
546
547         /* Load limits for loop over neighbors */
548         j_index_start    = jindex[iidx];
549         j_index_end      = jindex[iidx+1];
550
551         /* Get outer coordinate index */
552         inr              = iinr[iidx];
553         i_coord_offset   = DIM*inr;
554
555         /* Load i particle coords and add shift vector */
556         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
557
558         fix0             = _mm_setzero_ps();
559         fiy0             = _mm_setzero_ps();
560         fiz0             = _mm_setzero_ps();
561
562         /* Load parameters for i particles */
563         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
564         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
565
566         /* Start inner kernel loop */
567         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrA             = jjnr[jidx];
572             jnrB             = jjnr[jidx+1];
573             jnrC             = jjnr[jidx+2];
574             jnrD             = jjnr[jidx+3];
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
582                                               x+j_coord_offsetC,x+j_coord_offsetD,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_ps(ix0,jx0);
587             dy00             = _mm_sub_ps(iy0,jy0);
588             dz00             = _mm_sub_ps(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm_invsqrt_ps(rsq00);
594
595             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599                                                               charge+jnrC+0,charge+jnrD+0);
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601             vdwjidx0B        = 2*vdwtype[jnrB+0];
602             vdwjidx0C        = 2*vdwtype[jnrC+0];
603             vdwjidx0D        = 2*vdwtype[jnrD+0];
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             r00              = _mm_mul_ps(rsq00,rinv00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm_mul_ps(iq0,jq0);
613             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
614                                          vdwparam+vdwioffset0+vdwjidx0B,
615                                          vdwparam+vdwioffset0+vdwjidx0C,
616                                          vdwparam+vdwioffset0+vdwjidx0D,
617                                          &c6_00,&c12_00);
618
619             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
620                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
621                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
622                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = _mm_mul_ps(r00,ewtabscale);
628             ewitab           = _mm_cvttps_epi32(ewrt);
629             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
630             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
631                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
632                                          &ewtabF,&ewtabFn);
633             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
634             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
635
636             /* Analytical LJ-PME */
637             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
638             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
639             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
640             exponent         = gmx_simd_exp_r(ewcljrsq);
641             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
642             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
643             /* f6A = 6 * C6grid * (1 - poly) */
644             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
645             /* f6B = C6grid * exponent * beta^6 */
646             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
647             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
648             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
649
650             fscal            = _mm_add_ps(felec,fvdw);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm_mul_ps(fscal,dx00);
654             ty               = _mm_mul_ps(fscal,dy00);
655             tz               = _mm_mul_ps(fscal,dz00);
656
657             /* Update vectorial force */
658             fix0             = _mm_add_ps(fix0,tx);
659             fiy0             = _mm_add_ps(fiy0,ty);
660             fiz0             = _mm_add_ps(fiz0,tz);
661
662             fjptrA             = f+j_coord_offsetA;
663             fjptrB             = f+j_coord_offsetB;
664             fjptrC             = f+j_coord_offsetC;
665             fjptrD             = f+j_coord_offsetD;
666             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
667
668             /* Inner loop uses 59 flops */
669         }
670
671         if(jidx<j_index_end)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrlistA         = jjnr[jidx];
676             jnrlistB         = jjnr[jidx+1];
677             jnrlistC         = jjnr[jidx+2];
678             jnrlistD         = jjnr[jidx+3];
679             /* Sign of each element will be negative for non-real atoms.
680              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
681              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
682              */
683             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
684             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
685             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
686             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
687             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
688             j_coord_offsetA  = DIM*jnrA;
689             j_coord_offsetB  = DIM*jnrB;
690             j_coord_offsetC  = DIM*jnrC;
691             j_coord_offsetD  = DIM*jnrD;
692
693             /* load j atom coordinates */
694             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
695                                               x+j_coord_offsetC,x+j_coord_offsetD,
696                                               &jx0,&jy0,&jz0);
697
698             /* Calculate displacement vector */
699             dx00             = _mm_sub_ps(ix0,jx0);
700             dy00             = _mm_sub_ps(iy0,jy0);
701             dz00             = _mm_sub_ps(iz0,jz0);
702
703             /* Calculate squared distance and things based on it */
704             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
705
706             rinv00           = gmx_mm_invsqrt_ps(rsq00);
707
708             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
709
710             /* Load parameters for j particles */
711             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
712                                                               charge+jnrC+0,charge+jnrD+0);
713             vdwjidx0A        = 2*vdwtype[jnrA+0];
714             vdwjidx0B        = 2*vdwtype[jnrB+0];
715             vdwjidx0C        = 2*vdwtype[jnrC+0];
716             vdwjidx0D        = 2*vdwtype[jnrD+0];
717
718             /**************************
719              * CALCULATE INTERACTIONS *
720              **************************/
721
722             r00              = _mm_mul_ps(rsq00,rinv00);
723             r00              = _mm_andnot_ps(dummy_mask,r00);
724
725             /* Compute parameters for interactions between i and j atoms */
726             qq00             = _mm_mul_ps(iq0,jq0);
727             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
728                                          vdwparam+vdwioffset0+vdwjidx0B,
729                                          vdwparam+vdwioffset0+vdwjidx0C,
730                                          vdwparam+vdwioffset0+vdwjidx0D,
731                                          &c6_00,&c12_00);
732
733             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
734                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
735                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
736                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
737
738             /* EWALD ELECTROSTATICS */
739
740             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
741             ewrt             = _mm_mul_ps(r00,ewtabscale);
742             ewitab           = _mm_cvttps_epi32(ewrt);
743             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
744             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
745                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
746                                          &ewtabF,&ewtabFn);
747             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
748             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
749
750             /* Analytical LJ-PME */
751             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
752             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
753             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
754             exponent         = gmx_simd_exp_r(ewcljrsq);
755             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
756             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
757             /* f6A = 6 * C6grid * (1 - poly) */
758             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
759             /* f6B = C6grid * exponent * beta^6 */
760             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
761             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
762             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
763
764             fscal            = _mm_add_ps(felec,fvdw);
765
766             fscal            = _mm_andnot_ps(dummy_mask,fscal);
767
768             /* Calculate temporary vectorial force */
769             tx               = _mm_mul_ps(fscal,dx00);
770             ty               = _mm_mul_ps(fscal,dy00);
771             tz               = _mm_mul_ps(fscal,dz00);
772
773             /* Update vectorial force */
774             fix0             = _mm_add_ps(fix0,tx);
775             fiy0             = _mm_add_ps(fiy0,ty);
776             fiz0             = _mm_add_ps(fiz0,tz);
777
778             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
779             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
780             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
781             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
782             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
783
784             /* Inner loop uses 60 flops */
785         }
786
787         /* End of innermost loop */
788
789         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
790                                               f+i_coord_offset,fshift+i_shift_offset);
791
792         /* Increment number of inner iterations */
793         inneriter                  += j_index_end - j_index_start;
794
795         /* Outer loop uses 7 flops */
796     }
797
798     /* Increment number of outer iterations */
799     outeriter        += nri;
800
801     /* Update outer/inner flops */
802
803     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
804 }