Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176
177         fix0             = _mm_setzero_ps();
178         fiy0             = _mm_setzero_ps();
179         fiz0             = _mm_setzero_ps();
180         fix1             = _mm_setzero_ps();
181         fiy1             = _mm_setzero_ps();
182         fiz1             = _mm_setzero_ps();
183         fix2             = _mm_setzero_ps();
184         fiy2             = _mm_setzero_ps();
185         fiz2             = _mm_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_ps();
189         vvdwsum          = _mm_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               x+j_coord_offsetC,x+j_coord_offsetD,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_ps(ix0,jx0);
212             dy00             = _mm_sub_ps(iy0,jy0);
213             dz00             = _mm_sub_ps(iz0,jz0);
214             dx10             = _mm_sub_ps(ix1,jx0);
215             dy10             = _mm_sub_ps(iy1,jy0);
216             dz10             = _mm_sub_ps(iz1,jz0);
217             dx20             = _mm_sub_ps(ix2,jx0);
218             dy20             = _mm_sub_ps(iy2,jy0);
219             dz20             = _mm_sub_ps(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
225
226             rinv00           = sse41_invsqrt_f(rsq00);
227             rinv10           = sse41_invsqrt_f(rsq10);
228             rinv20           = sse41_invsqrt_f(rsq20);
229
230             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
231             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
232             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                               charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm_setzero_ps();
243             fjy0             = _mm_setzero_ps();
244             fjz0             = _mm_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_ps(iq0,jq0);
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* Calculate table index by multiplying r with table scale and truncate to integer */
261             rt               = _mm_mul_ps(r00,vftabscale);
262             vfitab           = _mm_cvttps_epi32(rt);
263             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
264             vfitab           = _mm_slli_epi32(vfitab,3);
265
266             /* EWALD ELECTROSTATICS */
267
268             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
269             ewrt             = _mm_mul_ps(r00,ewtabscale);
270             ewitab           = _mm_cvttps_epi32(ewrt);
271             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
272             ewitab           = _mm_slli_epi32(ewitab,2);
273             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
274             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
275             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
276             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
277             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
278             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
279             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
280             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
281             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
282
283             /* CUBIC SPLINE TABLE DISPERSION */
284             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Heps             = _mm_mul_ps(vfeps,H);
290             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
291             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
292             vvdw6            = _mm_mul_ps(c6_00,VV);
293             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
294             fvdw6            = _mm_mul_ps(c6_00,FF);
295
296             /* CUBIC SPLINE TABLE REPULSION */
297             vfitab           = _mm_add_epi32(vfitab,ifour);
298             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
299             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
300             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
301             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
302             _MM_TRANSPOSE4_PS(Y,F,G,H);
303             Heps             = _mm_mul_ps(vfeps,H);
304             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
305             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
306             vvdw12           = _mm_mul_ps(c12_00,VV);
307             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
308             fvdw12           = _mm_mul_ps(c12_00,FF);
309             vvdw             = _mm_add_ps(vvdw12,vvdw6);
310             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
315
316             fscal            = _mm_add_ps(felec,fvdw);
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm_mul_ps(fscal,dx00);
320             ty               = _mm_mul_ps(fscal,dy00);
321             tz               = _mm_mul_ps(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm_add_ps(fix0,tx);
325             fiy0             = _mm_add_ps(fiy0,ty);
326             fiz0             = _mm_add_ps(fiz0,tz);
327
328             fjx0             = _mm_add_ps(fjx0,tx);
329             fjy0             = _mm_add_ps(fjy0,ty);
330             fjz0             = _mm_add_ps(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r10              = _mm_mul_ps(rsq10,rinv10);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm_mul_ps(iq1,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm_mul_ps(r10,ewtabscale);
345             ewitab           = _mm_cvttps_epi32(ewrt);
346             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
350             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
351             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
352             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
353             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
354             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
355             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
356             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm_mul_ps(fscal,dx10);
365             ty               = _mm_mul_ps(fscal,dy10);
366             tz               = _mm_mul_ps(fscal,dz10);
367
368             /* Update vectorial force */
369             fix1             = _mm_add_ps(fix1,tx);
370             fiy1             = _mm_add_ps(fiy1,ty);
371             fiz1             = _mm_add_ps(fiz1,tz);
372
373             fjx0             = _mm_add_ps(fjx0,tx);
374             fjy0             = _mm_add_ps(fjy0,ty);
375             fjz0             = _mm_add_ps(fjz0,tz);
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r20              = _mm_mul_ps(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm_mul_ps(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm_mul_ps(r20,ewtabscale);
390             ewitab           = _mm_cvttps_epi32(ewrt);
391             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
395             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
396             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
397             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
398             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
399             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
400             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
401             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velecsum         = _mm_add_ps(velecsum,velec);
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm_mul_ps(fscal,dx20);
410             ty               = _mm_mul_ps(fscal,dy20);
411             tz               = _mm_mul_ps(fscal,dz20);
412
413             /* Update vectorial force */
414             fix2             = _mm_add_ps(fix2,tx);
415             fiy2             = _mm_add_ps(fiy2,ty);
416             fiz2             = _mm_add_ps(fiz2,tz);
417
418             fjx0             = _mm_add_ps(fjx0,tx);
419             fjy0             = _mm_add_ps(fjy0,ty);
420             fjz0             = _mm_add_ps(fjz0,tz);
421
422             fjptrA             = f+j_coord_offsetA;
423             fjptrB             = f+j_coord_offsetB;
424             fjptrC             = f+j_coord_offsetC;
425             fjptrD             = f+j_coord_offsetD;
426
427             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
428
429             /* Inner loop uses 157 flops */
430         }
431
432         if(jidx<j_index_end)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrlistA         = jjnr[jidx];
437             jnrlistB         = jjnr[jidx+1];
438             jnrlistC         = jjnr[jidx+2];
439             jnrlistD         = jjnr[jidx+3];
440             /* Sign of each element will be negative for non-real atoms.
441              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
442              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
443              */
444             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
445             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
446             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
447             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
448             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453
454             /* load j atom coordinates */
455             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
456                                               x+j_coord_offsetC,x+j_coord_offsetD,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm_sub_ps(ix0,jx0);
461             dy00             = _mm_sub_ps(iy0,jy0);
462             dz00             = _mm_sub_ps(iz0,jz0);
463             dx10             = _mm_sub_ps(ix1,jx0);
464             dy10             = _mm_sub_ps(iy1,jy0);
465             dz10             = _mm_sub_ps(iz1,jz0);
466             dx20             = _mm_sub_ps(ix2,jx0);
467             dy20             = _mm_sub_ps(iy2,jy0);
468             dz20             = _mm_sub_ps(iz2,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
472             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
473             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
474
475             rinv00           = sse41_invsqrt_f(rsq00);
476             rinv10           = sse41_invsqrt_f(rsq10);
477             rinv20           = sse41_invsqrt_f(rsq20);
478
479             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
480             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
481             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
482
483             /* Load parameters for j particles */
484             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
485                                                               charge+jnrC+0,charge+jnrD+0);
486             vdwjidx0A        = 2*vdwtype[jnrA+0];
487             vdwjidx0B        = 2*vdwtype[jnrB+0];
488             vdwjidx0C        = 2*vdwtype[jnrC+0];
489             vdwjidx0D        = 2*vdwtype[jnrD+0];
490
491             fjx0             = _mm_setzero_ps();
492             fjy0             = _mm_setzero_ps();
493             fjz0             = _mm_setzero_ps();
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r00              = _mm_mul_ps(rsq00,rinv00);
500             r00              = _mm_andnot_ps(dummy_mask,r00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm_mul_ps(iq0,jq0);
504             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,
506                                          vdwparam+vdwioffset0+vdwjidx0C,
507                                          vdwparam+vdwioffset0+vdwjidx0D,
508                                          &c6_00,&c12_00);
509
510             /* Calculate table index by multiplying r with table scale and truncate to integer */
511             rt               = _mm_mul_ps(r00,vftabscale);
512             vfitab           = _mm_cvttps_epi32(rt);
513             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
514             vfitab           = _mm_slli_epi32(vfitab,3);
515
516             /* EWALD ELECTROSTATICS */
517
518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519             ewrt             = _mm_mul_ps(r00,ewtabscale);
520             ewitab           = _mm_cvttps_epi32(ewrt);
521             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
522             ewitab           = _mm_slli_epi32(ewitab,2);
523             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
524             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
525             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
526             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
527             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
528             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
529             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
530             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
531             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
532
533             /* CUBIC SPLINE TABLE DISPERSION */
534             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
535             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
536             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
537             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
538             _MM_TRANSPOSE4_PS(Y,F,G,H);
539             Heps             = _mm_mul_ps(vfeps,H);
540             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
541             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
542             vvdw6            = _mm_mul_ps(c6_00,VV);
543             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
544             fvdw6            = _mm_mul_ps(c6_00,FF);
545
546             /* CUBIC SPLINE TABLE REPULSION */
547             vfitab           = _mm_add_epi32(vfitab,ifour);
548             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
549             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
550             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
551             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
552             _MM_TRANSPOSE4_PS(Y,F,G,H);
553             Heps             = _mm_mul_ps(vfeps,H);
554             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
555             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
556             vvdw12           = _mm_mul_ps(c12_00,VV);
557             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
558             fvdw12           = _mm_mul_ps(c12_00,FF);
559             vvdw             = _mm_add_ps(vvdw12,vvdw6);
560             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm_andnot_ps(dummy_mask,velec);
564             velecsum         = _mm_add_ps(velecsum,velec);
565             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
566             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
567
568             fscal            = _mm_add_ps(felec,fvdw);
569
570             fscal            = _mm_andnot_ps(dummy_mask,fscal);
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_ps(fscal,dx00);
574             ty               = _mm_mul_ps(fscal,dy00);
575             tz               = _mm_mul_ps(fscal,dz00);
576
577             /* Update vectorial force */
578             fix0             = _mm_add_ps(fix0,tx);
579             fiy0             = _mm_add_ps(fiy0,ty);
580             fiz0             = _mm_add_ps(fiz0,tz);
581
582             fjx0             = _mm_add_ps(fjx0,tx);
583             fjy0             = _mm_add_ps(fjy0,ty);
584             fjz0             = _mm_add_ps(fjz0,tz);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r10              = _mm_mul_ps(rsq10,rinv10);
591             r10              = _mm_andnot_ps(dummy_mask,r10);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq10             = _mm_mul_ps(iq1,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_ps(r10,ewtabscale);
600             ewitab           = _mm_cvttps_epi32(ewrt);
601             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
606             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
607             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
608             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
611             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx10);
623             ty               = _mm_mul_ps(fscal,dy10);
624             tz               = _mm_mul_ps(fscal,dz10);
625
626             /* Update vectorial force */
627             fix1             = _mm_add_ps(fix1,tx);
628             fiy1             = _mm_add_ps(fiy1,ty);
629             fiz1             = _mm_add_ps(fiz1,tz);
630
631             fjx0             = _mm_add_ps(fjx0,tx);
632             fjy0             = _mm_add_ps(fjy0,ty);
633             fjz0             = _mm_add_ps(fjz0,tz);
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r20              = _mm_mul_ps(rsq20,rinv20);
640             r20              = _mm_andnot_ps(dummy_mask,r20);
641
642             /* Compute parameters for interactions between i and j atoms */
643             qq20             = _mm_mul_ps(iq2,jq0);
644
645             /* EWALD ELECTROSTATICS */
646
647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648             ewrt             = _mm_mul_ps(r20,ewtabscale);
649             ewitab           = _mm_cvttps_epi32(ewrt);
650             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
651             ewitab           = _mm_slli_epi32(ewitab,2);
652             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
653             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
654             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
655             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
656             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
657             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
658             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
659             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
660             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm_andnot_ps(dummy_mask,velec);
664             velecsum         = _mm_add_ps(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm_andnot_ps(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm_mul_ps(fscal,dx20);
672             ty               = _mm_mul_ps(fscal,dy20);
673             tz               = _mm_mul_ps(fscal,dz20);
674
675             /* Update vectorial force */
676             fix2             = _mm_add_ps(fix2,tx);
677             fiy2             = _mm_add_ps(fiy2,ty);
678             fiz2             = _mm_add_ps(fiz2,tz);
679
680             fjx0             = _mm_add_ps(fjx0,tx);
681             fjy0             = _mm_add_ps(fjy0,ty);
682             fjz0             = _mm_add_ps(fjz0,tz);
683
684             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
685             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
686             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
687             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
688
689             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
690
691             /* Inner loop uses 160 flops */
692         }
693
694         /* End of innermost loop */
695
696         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
697                                               f+i_coord_offset,fshift+i_shift_offset);
698
699         ggid                        = gid[iidx];
700         /* Update potential energies */
701         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
702         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
703
704         /* Increment number of inner iterations */
705         inneriter                  += j_index_end - j_index_start;
706
707         /* Outer loop uses 20 flops */
708     }
709
710     /* Increment number of outer iterations */
711     outeriter        += nri;
712
713     /* Update outer/inner flops */
714
715     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
716 }
717 /*
718  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
719  * Electrostatics interaction: Ewald
720  * VdW interaction:            CubicSplineTable
721  * Geometry:                   Water3-Particle
722  * Calculate force/pot:        Force
723  */
724 void
725 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
726                     (t_nblist                    * gmx_restrict       nlist,
727                      rvec                        * gmx_restrict          xx,
728                      rvec                        * gmx_restrict          ff,
729                      struct t_forcerec           * gmx_restrict          fr,
730                      t_mdatoms                   * gmx_restrict     mdatoms,
731                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
732                      t_nrnb                      * gmx_restrict        nrnb)
733 {
734     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
735      * just 0 for non-waters.
736      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
737      * jnr indices corresponding to data put in the four positions in the SIMD register.
738      */
739     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
740     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
741     int              jnrA,jnrB,jnrC,jnrD;
742     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
743     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
744     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
745     real             rcutoff_scalar;
746     real             *shiftvec,*fshift,*x,*f;
747     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
748     real             scratch[4*DIM];
749     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
750     int              vdwioffset0;
751     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
752     int              vdwioffset1;
753     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
754     int              vdwioffset2;
755     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
756     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
757     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
758     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
759     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
760     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
761     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
762     real             *charge;
763     int              nvdwtype;
764     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
765     int              *vdwtype;
766     real             *vdwparam;
767     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
768     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
769     __m128i          vfitab;
770     __m128i          ifour       = _mm_set1_epi32(4);
771     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
772     real             *vftab;
773     __m128i          ewitab;
774     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
775     real             *ewtab;
776     __m128           dummy_mask,cutoff_mask;
777     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
778     __m128           one     = _mm_set1_ps(1.0);
779     __m128           two     = _mm_set1_ps(2.0);
780     x                = xx[0];
781     f                = ff[0];
782
783     nri              = nlist->nri;
784     iinr             = nlist->iinr;
785     jindex           = nlist->jindex;
786     jjnr             = nlist->jjnr;
787     shiftidx         = nlist->shift;
788     gid              = nlist->gid;
789     shiftvec         = fr->shift_vec[0];
790     fshift           = fr->fshift[0];
791     facel            = _mm_set1_ps(fr->ic->epsfac);
792     charge           = mdatoms->chargeA;
793     nvdwtype         = fr->ntype;
794     vdwparam         = fr->nbfp;
795     vdwtype          = mdatoms->typeA;
796
797     vftab            = kernel_data->table_vdw->data;
798     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
799
800     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
801     ewtab            = fr->ic->tabq_coul_F;
802     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
803     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
804
805     /* Setup water-specific parameters */
806     inr              = nlist->iinr[0];
807     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
808     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
809     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
810     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
811
812     /* Avoid stupid compiler warnings */
813     jnrA = jnrB = jnrC = jnrD = 0;
814     j_coord_offsetA = 0;
815     j_coord_offsetB = 0;
816     j_coord_offsetC = 0;
817     j_coord_offsetD = 0;
818
819     outeriter        = 0;
820     inneriter        = 0;
821
822     for(iidx=0;iidx<4*DIM;iidx++)
823     {
824         scratch[iidx] = 0.0;
825     }
826
827     /* Start outer loop over neighborlists */
828     for(iidx=0; iidx<nri; iidx++)
829     {
830         /* Load shift vector for this list */
831         i_shift_offset   = DIM*shiftidx[iidx];
832
833         /* Load limits for loop over neighbors */
834         j_index_start    = jindex[iidx];
835         j_index_end      = jindex[iidx+1];
836
837         /* Get outer coordinate index */
838         inr              = iinr[iidx];
839         i_coord_offset   = DIM*inr;
840
841         /* Load i particle coords and add shift vector */
842         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
843                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
844
845         fix0             = _mm_setzero_ps();
846         fiy0             = _mm_setzero_ps();
847         fiz0             = _mm_setzero_ps();
848         fix1             = _mm_setzero_ps();
849         fiy1             = _mm_setzero_ps();
850         fiz1             = _mm_setzero_ps();
851         fix2             = _mm_setzero_ps();
852         fiy2             = _mm_setzero_ps();
853         fiz2             = _mm_setzero_ps();
854
855         /* Start inner kernel loop */
856         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
857         {
858
859             /* Get j neighbor index, and coordinate index */
860             jnrA             = jjnr[jidx];
861             jnrB             = jjnr[jidx+1];
862             jnrC             = jjnr[jidx+2];
863             jnrD             = jjnr[jidx+3];
864             j_coord_offsetA  = DIM*jnrA;
865             j_coord_offsetB  = DIM*jnrB;
866             j_coord_offsetC  = DIM*jnrC;
867             j_coord_offsetD  = DIM*jnrD;
868
869             /* load j atom coordinates */
870             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
871                                               x+j_coord_offsetC,x+j_coord_offsetD,
872                                               &jx0,&jy0,&jz0);
873
874             /* Calculate displacement vector */
875             dx00             = _mm_sub_ps(ix0,jx0);
876             dy00             = _mm_sub_ps(iy0,jy0);
877             dz00             = _mm_sub_ps(iz0,jz0);
878             dx10             = _mm_sub_ps(ix1,jx0);
879             dy10             = _mm_sub_ps(iy1,jy0);
880             dz10             = _mm_sub_ps(iz1,jz0);
881             dx20             = _mm_sub_ps(ix2,jx0);
882             dy20             = _mm_sub_ps(iy2,jy0);
883             dz20             = _mm_sub_ps(iz2,jz0);
884
885             /* Calculate squared distance and things based on it */
886             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
887             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
888             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
889
890             rinv00           = sse41_invsqrt_f(rsq00);
891             rinv10           = sse41_invsqrt_f(rsq10);
892             rinv20           = sse41_invsqrt_f(rsq20);
893
894             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
895             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
896             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
897
898             /* Load parameters for j particles */
899             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
900                                                               charge+jnrC+0,charge+jnrD+0);
901             vdwjidx0A        = 2*vdwtype[jnrA+0];
902             vdwjidx0B        = 2*vdwtype[jnrB+0];
903             vdwjidx0C        = 2*vdwtype[jnrC+0];
904             vdwjidx0D        = 2*vdwtype[jnrD+0];
905
906             fjx0             = _mm_setzero_ps();
907             fjy0             = _mm_setzero_ps();
908             fjz0             = _mm_setzero_ps();
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             r00              = _mm_mul_ps(rsq00,rinv00);
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq00             = _mm_mul_ps(iq0,jq0);
918             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
919                                          vdwparam+vdwioffset0+vdwjidx0B,
920                                          vdwparam+vdwioffset0+vdwjidx0C,
921                                          vdwparam+vdwioffset0+vdwjidx0D,
922                                          &c6_00,&c12_00);
923
924             /* Calculate table index by multiplying r with table scale and truncate to integer */
925             rt               = _mm_mul_ps(r00,vftabscale);
926             vfitab           = _mm_cvttps_epi32(rt);
927             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
928             vfitab           = _mm_slli_epi32(vfitab,3);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _mm_mul_ps(r00,ewtabscale);
934             ewitab           = _mm_cvttps_epi32(ewrt);
935             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
936             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
937                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
938                                          &ewtabF,&ewtabFn);
939             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
940             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
941
942             /* CUBIC SPLINE TABLE DISPERSION */
943             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
944             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
945             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
946             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
947             _MM_TRANSPOSE4_PS(Y,F,G,H);
948             Heps             = _mm_mul_ps(vfeps,H);
949             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
950             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
951             fvdw6            = _mm_mul_ps(c6_00,FF);
952
953             /* CUBIC SPLINE TABLE REPULSION */
954             vfitab           = _mm_add_epi32(vfitab,ifour);
955             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
956             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
957             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
958             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
959             _MM_TRANSPOSE4_PS(Y,F,G,H);
960             Heps             = _mm_mul_ps(vfeps,H);
961             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
962             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
963             fvdw12           = _mm_mul_ps(c12_00,FF);
964             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
965
966             fscal            = _mm_add_ps(felec,fvdw);
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_ps(fscal,dx00);
970             ty               = _mm_mul_ps(fscal,dy00);
971             tz               = _mm_mul_ps(fscal,dz00);
972
973             /* Update vectorial force */
974             fix0             = _mm_add_ps(fix0,tx);
975             fiy0             = _mm_add_ps(fiy0,ty);
976             fiz0             = _mm_add_ps(fiz0,tz);
977
978             fjx0             = _mm_add_ps(fjx0,tx);
979             fjy0             = _mm_add_ps(fjy0,ty);
980             fjz0             = _mm_add_ps(fjz0,tz);
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             r10              = _mm_mul_ps(rsq10,rinv10);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq10             = _mm_mul_ps(iq1,jq0);
990
991             /* EWALD ELECTROSTATICS */
992
993             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994             ewrt             = _mm_mul_ps(r10,ewtabscale);
995             ewitab           = _mm_cvttps_epi32(ewrt);
996             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
997             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
998                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
999                                          &ewtabF,&ewtabFn);
1000             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1001             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1002
1003             fscal            = felec;
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx10);
1007             ty               = _mm_mul_ps(fscal,dy10);
1008             tz               = _mm_mul_ps(fscal,dz10);
1009
1010             /* Update vectorial force */
1011             fix1             = _mm_add_ps(fix1,tx);
1012             fiy1             = _mm_add_ps(fiy1,ty);
1013             fiz1             = _mm_add_ps(fiz1,tz);
1014
1015             fjx0             = _mm_add_ps(fjx0,tx);
1016             fjy0             = _mm_add_ps(fjy0,ty);
1017             fjz0             = _mm_add_ps(fjz0,tz);
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r20              = _mm_mul_ps(rsq20,rinv20);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq20             = _mm_mul_ps(iq2,jq0);
1027
1028             /* EWALD ELECTROSTATICS */
1029
1030             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1031             ewrt             = _mm_mul_ps(r20,ewtabscale);
1032             ewitab           = _mm_cvttps_epi32(ewrt);
1033             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1034             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1035                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1036                                          &ewtabF,&ewtabFn);
1037             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1038             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1039
1040             fscal            = felec;
1041
1042             /* Calculate temporary vectorial force */
1043             tx               = _mm_mul_ps(fscal,dx20);
1044             ty               = _mm_mul_ps(fscal,dy20);
1045             tz               = _mm_mul_ps(fscal,dz20);
1046
1047             /* Update vectorial force */
1048             fix2             = _mm_add_ps(fix2,tx);
1049             fiy2             = _mm_add_ps(fiy2,ty);
1050             fiz2             = _mm_add_ps(fiz2,tz);
1051
1052             fjx0             = _mm_add_ps(fjx0,tx);
1053             fjy0             = _mm_add_ps(fjy0,ty);
1054             fjz0             = _mm_add_ps(fjz0,tz);
1055
1056             fjptrA             = f+j_coord_offsetA;
1057             fjptrB             = f+j_coord_offsetB;
1058             fjptrC             = f+j_coord_offsetC;
1059             fjptrD             = f+j_coord_offsetD;
1060
1061             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1062
1063             /* Inner loop uses 134 flops */
1064         }
1065
1066         if(jidx<j_index_end)
1067         {
1068
1069             /* Get j neighbor index, and coordinate index */
1070             jnrlistA         = jjnr[jidx];
1071             jnrlistB         = jjnr[jidx+1];
1072             jnrlistC         = jjnr[jidx+2];
1073             jnrlistD         = jjnr[jidx+3];
1074             /* Sign of each element will be negative for non-real atoms.
1075              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1076              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1077              */
1078             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1079             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1080             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1081             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1082             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1083             j_coord_offsetA  = DIM*jnrA;
1084             j_coord_offsetB  = DIM*jnrB;
1085             j_coord_offsetC  = DIM*jnrC;
1086             j_coord_offsetD  = DIM*jnrD;
1087
1088             /* load j atom coordinates */
1089             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1090                                               x+j_coord_offsetC,x+j_coord_offsetD,
1091                                               &jx0,&jy0,&jz0);
1092
1093             /* Calculate displacement vector */
1094             dx00             = _mm_sub_ps(ix0,jx0);
1095             dy00             = _mm_sub_ps(iy0,jy0);
1096             dz00             = _mm_sub_ps(iz0,jz0);
1097             dx10             = _mm_sub_ps(ix1,jx0);
1098             dy10             = _mm_sub_ps(iy1,jy0);
1099             dz10             = _mm_sub_ps(iz1,jz0);
1100             dx20             = _mm_sub_ps(ix2,jx0);
1101             dy20             = _mm_sub_ps(iy2,jy0);
1102             dz20             = _mm_sub_ps(iz2,jz0);
1103
1104             /* Calculate squared distance and things based on it */
1105             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1106             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1107             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1108
1109             rinv00           = sse41_invsqrt_f(rsq00);
1110             rinv10           = sse41_invsqrt_f(rsq10);
1111             rinv20           = sse41_invsqrt_f(rsq20);
1112
1113             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1114             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1115             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1116
1117             /* Load parameters for j particles */
1118             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1119                                                               charge+jnrC+0,charge+jnrD+0);
1120             vdwjidx0A        = 2*vdwtype[jnrA+0];
1121             vdwjidx0B        = 2*vdwtype[jnrB+0];
1122             vdwjidx0C        = 2*vdwtype[jnrC+0];
1123             vdwjidx0D        = 2*vdwtype[jnrD+0];
1124
1125             fjx0             = _mm_setzero_ps();
1126             fjy0             = _mm_setzero_ps();
1127             fjz0             = _mm_setzero_ps();
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r00              = _mm_mul_ps(rsq00,rinv00);
1134             r00              = _mm_andnot_ps(dummy_mask,r00);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq00             = _mm_mul_ps(iq0,jq0);
1138             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1139                                          vdwparam+vdwioffset0+vdwjidx0B,
1140                                          vdwparam+vdwioffset0+vdwjidx0C,
1141                                          vdwparam+vdwioffset0+vdwjidx0D,
1142                                          &c6_00,&c12_00);
1143
1144             /* Calculate table index by multiplying r with table scale and truncate to integer */
1145             rt               = _mm_mul_ps(r00,vftabscale);
1146             vfitab           = _mm_cvttps_epi32(rt);
1147             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1148             vfitab           = _mm_slli_epi32(vfitab,3);
1149
1150             /* EWALD ELECTROSTATICS */
1151
1152             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1153             ewrt             = _mm_mul_ps(r00,ewtabscale);
1154             ewitab           = _mm_cvttps_epi32(ewrt);
1155             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1156             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1157                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1158                                          &ewtabF,&ewtabFn);
1159             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1160             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1161
1162             /* CUBIC SPLINE TABLE DISPERSION */
1163             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1164             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1165             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1166             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1167             _MM_TRANSPOSE4_PS(Y,F,G,H);
1168             Heps             = _mm_mul_ps(vfeps,H);
1169             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1170             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1171             fvdw6            = _mm_mul_ps(c6_00,FF);
1172
1173             /* CUBIC SPLINE TABLE REPULSION */
1174             vfitab           = _mm_add_epi32(vfitab,ifour);
1175             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1176             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1177             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1178             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1179             _MM_TRANSPOSE4_PS(Y,F,G,H);
1180             Heps             = _mm_mul_ps(vfeps,H);
1181             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1182             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1183             fvdw12           = _mm_mul_ps(c12_00,FF);
1184             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1185
1186             fscal            = _mm_add_ps(felec,fvdw);
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm_mul_ps(fscal,dx00);
1192             ty               = _mm_mul_ps(fscal,dy00);
1193             tz               = _mm_mul_ps(fscal,dz00);
1194
1195             /* Update vectorial force */
1196             fix0             = _mm_add_ps(fix0,tx);
1197             fiy0             = _mm_add_ps(fiy0,ty);
1198             fiz0             = _mm_add_ps(fiz0,tz);
1199
1200             fjx0             = _mm_add_ps(fjx0,tx);
1201             fjy0             = _mm_add_ps(fjy0,ty);
1202             fjz0             = _mm_add_ps(fjz0,tz);
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r10              = _mm_mul_ps(rsq10,rinv10);
1209             r10              = _mm_andnot_ps(dummy_mask,r10);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq10             = _mm_mul_ps(iq1,jq0);
1213
1214             /* EWALD ELECTROSTATICS */
1215
1216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1217             ewrt             = _mm_mul_ps(r10,ewtabscale);
1218             ewitab           = _mm_cvttps_epi32(ewrt);
1219             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1220             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1221                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1222                                          &ewtabF,&ewtabFn);
1223             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1224             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1225
1226             fscal            = felec;
1227
1228             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_ps(fscal,dx10);
1232             ty               = _mm_mul_ps(fscal,dy10);
1233             tz               = _mm_mul_ps(fscal,dz10);
1234
1235             /* Update vectorial force */
1236             fix1             = _mm_add_ps(fix1,tx);
1237             fiy1             = _mm_add_ps(fiy1,ty);
1238             fiz1             = _mm_add_ps(fiz1,tz);
1239
1240             fjx0             = _mm_add_ps(fjx0,tx);
1241             fjy0             = _mm_add_ps(fjy0,ty);
1242             fjz0             = _mm_add_ps(fjz0,tz);
1243
1244             /**************************
1245              * CALCULATE INTERACTIONS *
1246              **************************/
1247
1248             r20              = _mm_mul_ps(rsq20,rinv20);
1249             r20              = _mm_andnot_ps(dummy_mask,r20);
1250
1251             /* Compute parameters for interactions between i and j atoms */
1252             qq20             = _mm_mul_ps(iq2,jq0);
1253
1254             /* EWALD ELECTROSTATICS */
1255
1256             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1257             ewrt             = _mm_mul_ps(r20,ewtabscale);
1258             ewitab           = _mm_cvttps_epi32(ewrt);
1259             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1260             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1261                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1262                                          &ewtabF,&ewtabFn);
1263             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1264             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1265
1266             fscal            = felec;
1267
1268             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1269
1270             /* Calculate temporary vectorial force */
1271             tx               = _mm_mul_ps(fscal,dx20);
1272             ty               = _mm_mul_ps(fscal,dy20);
1273             tz               = _mm_mul_ps(fscal,dz20);
1274
1275             /* Update vectorial force */
1276             fix2             = _mm_add_ps(fix2,tx);
1277             fiy2             = _mm_add_ps(fiy2,ty);
1278             fiz2             = _mm_add_ps(fiz2,tz);
1279
1280             fjx0             = _mm_add_ps(fjx0,tx);
1281             fjy0             = _mm_add_ps(fjy0,ty);
1282             fjz0             = _mm_add_ps(fjz0,tz);
1283
1284             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1285             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1286             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1287             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1288
1289             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1290
1291             /* Inner loop uses 137 flops */
1292         }
1293
1294         /* End of innermost loop */
1295
1296         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1297                                               f+i_coord_offset,fshift+i_shift_offset);
1298
1299         /* Increment number of inner iterations */
1300         inneriter                  += j_index_end - j_index_start;
1301
1302         /* Outer loop uses 18 flops */
1303     }
1304
1305     /* Increment number of outer iterations */
1306     outeriter        += nri;
1307
1308     /* Update outer/inner flops */
1309
1310     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1311 }