Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
127     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
128     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167         fix1             = _mm_setzero_ps();
168         fiy1             = _mm_setzero_ps();
169         fiz1             = _mm_setzero_ps();
170         fix2             = _mm_setzero_ps();
171         fiy2             = _mm_setzero_ps();
172         fiz2             = _mm_setzero_ps();
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201             dx10             = _mm_sub_ps(ix1,jx0);
202             dy10             = _mm_sub_ps(iy1,jy0);
203             dz10             = _mm_sub_ps(iz1,jz0);
204             dx20             = _mm_sub_ps(ix2,jx0);
205             dy20             = _mm_sub_ps(iy2,jy0);
206             dz20             = _mm_sub_ps(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm_invsqrt_ps(rsq00);
214             rinv10           = gmx_mm_invsqrt_ps(rsq10);
215             rinv20           = gmx_mm_invsqrt_ps(rsq20);
216
217             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
218             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
219             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             fjx0             = _mm_setzero_ps();
230             fjy0             = _mm_setzero_ps();
231             fjz0             = _mm_setzero_ps();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_ps(iq0,jq0);
241             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,
243                                          vdwparam+vdwioffset0+vdwjidx0C,
244                                          vdwparam+vdwioffset0+vdwjidx0D,
245                                          &c6_00,&c12_00);
246
247             /* Calculate table index by multiplying r with table scale and truncate to integer */
248             rt               = _mm_mul_ps(r00,vftabscale);
249             vfitab           = _mm_cvttps_epi32(rt);
250             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
251             vfitab           = _mm_slli_epi32(vfitab,3);
252
253             /* EWALD ELECTROSTATICS */
254
255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
256             ewrt             = _mm_mul_ps(r00,ewtabscale);
257             ewitab           = _mm_cvttps_epi32(ewrt);
258             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
259             ewitab           = _mm_slli_epi32(ewitab,2);
260             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
261             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
262             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
263             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
264             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
265             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
266             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
267             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
268             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Heps             = _mm_mul_ps(vfeps,H);
277             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
278             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
279             vvdw6            = _mm_mul_ps(c6_00,VV);
280             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
281             fvdw6            = _mm_mul_ps(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
286             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
287             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
288             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
289             _MM_TRANSPOSE4_PS(Y,F,G,H);
290             Heps             = _mm_mul_ps(vfeps,H);
291             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
292             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
293             vvdw12           = _mm_mul_ps(c12_00,VV);
294             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
295             fvdw12           = _mm_mul_ps(c12_00,FF);
296             vvdw             = _mm_add_ps(vvdw12,vvdw6);
297             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = _mm_add_ps(felec,fvdw);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjx0             = _mm_add_ps(fjx0,tx);
316             fjy0             = _mm_add_ps(fjy0,ty);
317             fjz0             = _mm_add_ps(fjz0,tz);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r10              = _mm_mul_ps(rsq10,rinv10);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq10             = _mm_mul_ps(iq1,jq0);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _mm_mul_ps(r10,ewtabscale);
332             ewitab           = _mm_cvttps_epi32(ewrt);
333             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
334             ewitab           = _mm_slli_epi32(ewitab,2);
335             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
336             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
337             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
338             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
339             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
340             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
341             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
342             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
343             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _mm_add_ps(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_ps(fscal,dx10);
352             ty               = _mm_mul_ps(fscal,dy10);
353             tz               = _mm_mul_ps(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm_add_ps(fix1,tx);
357             fiy1             = _mm_add_ps(fiy1,ty);
358             fiz1             = _mm_add_ps(fiz1,tz);
359
360             fjx0             = _mm_add_ps(fjx0,tx);
361             fjy0             = _mm_add_ps(fjy0,ty);
362             fjz0             = _mm_add_ps(fjz0,tz);
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_ps(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_ps(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_ps(r20,ewtabscale);
377             ewitab           = _mm_cvttps_epi32(ewrt);
378             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
384             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
386             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
387             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
388             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx20);
397             ty               = _mm_mul_ps(fscal,dy20);
398             tz               = _mm_mul_ps(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm_add_ps(fix2,tx);
402             fiy2             = _mm_add_ps(fiy2,ty);
403             fiz2             = _mm_add_ps(fiz2,tz);
404
405             fjx0             = _mm_add_ps(fjx0,tx);
406             fjy0             = _mm_add_ps(fjy0,ty);
407             fjz0             = _mm_add_ps(fjz0,tz);
408
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 157 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             /* Sign of each element will be negative for non-real atoms.
428              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
429              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
430              */
431             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
432             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
433             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
434             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
435             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                               x+j_coord_offsetC,x+j_coord_offsetD,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_ps(ix0,jx0);
448             dy00             = _mm_sub_ps(iy0,jy0);
449             dz00             = _mm_sub_ps(iz0,jz0);
450             dx10             = _mm_sub_ps(ix1,jx0);
451             dy10             = _mm_sub_ps(iy1,jy0);
452             dz10             = _mm_sub_ps(iz1,jz0);
453             dx20             = _mm_sub_ps(ix2,jx0);
454             dy20             = _mm_sub_ps(iy2,jy0);
455             dz20             = _mm_sub_ps(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm_invsqrt_ps(rsq00);
463             rinv10           = gmx_mm_invsqrt_ps(rsq10);
464             rinv20           = gmx_mm_invsqrt_ps(rsq20);
465
466             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
467             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
468             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
472                                                               charge+jnrC+0,charge+jnrD+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474             vdwjidx0B        = 2*vdwtype[jnrB+0];
475             vdwjidx0C        = 2*vdwtype[jnrC+0];
476             vdwjidx0D        = 2*vdwtype[jnrD+0];
477
478             fjx0             = _mm_setzero_ps();
479             fjy0             = _mm_setzero_ps();
480             fjz0             = _mm_setzero_ps();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_ps(rsq00,rinv00);
487             r00              = _mm_andnot_ps(dummy_mask,r00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq00             = _mm_mul_ps(iq0,jq0);
491             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
492                                          vdwparam+vdwioffset0+vdwjidx0B,
493                                          vdwparam+vdwioffset0+vdwjidx0C,
494                                          vdwparam+vdwioffset0+vdwjidx0D,
495                                          &c6_00,&c12_00);
496
497             /* Calculate table index by multiplying r with table scale and truncate to integer */
498             rt               = _mm_mul_ps(r00,vftabscale);
499             vfitab           = _mm_cvttps_epi32(rt);
500             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
501             vfitab           = _mm_slli_epi32(vfitab,3);
502
503             /* EWALD ELECTROSTATICS */
504
505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
506             ewrt             = _mm_mul_ps(r00,ewtabscale);
507             ewitab           = _mm_cvttps_epi32(ewrt);
508             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
509             ewitab           = _mm_slli_epi32(ewitab,2);
510             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
511             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
512             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
513             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
514             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
515             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
516             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
517             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
518             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
519
520             /* CUBIC SPLINE TABLE DISPERSION */
521             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
522             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
523             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
524             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
525             _MM_TRANSPOSE4_PS(Y,F,G,H);
526             Heps             = _mm_mul_ps(vfeps,H);
527             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
528             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
529             vvdw6            = _mm_mul_ps(c6_00,VV);
530             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
531             fvdw6            = _mm_mul_ps(c6_00,FF);
532
533             /* CUBIC SPLINE TABLE REPULSION */
534             vfitab           = _mm_add_epi32(vfitab,ifour);
535             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
536             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
537             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
538             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
539             _MM_TRANSPOSE4_PS(Y,F,G,H);
540             Heps             = _mm_mul_ps(vfeps,H);
541             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
542             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
543             vvdw12           = _mm_mul_ps(c12_00,VV);
544             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
545             fvdw12           = _mm_mul_ps(c12_00,FF);
546             vvdw             = _mm_add_ps(vvdw12,vvdw6);
547             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_andnot_ps(dummy_mask,velec);
551             velecsum         = _mm_add_ps(velecsum,velec);
552             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
553             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
554
555             fscal            = _mm_add_ps(felec,fvdw);
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx00);
561             ty               = _mm_mul_ps(fscal,dy00);
562             tz               = _mm_mul_ps(fscal,dz00);
563
564             /* Update vectorial force */
565             fix0             = _mm_add_ps(fix0,tx);
566             fiy0             = _mm_add_ps(fiy0,ty);
567             fiz0             = _mm_add_ps(fiz0,tz);
568
569             fjx0             = _mm_add_ps(fjx0,tx);
570             fjy0             = _mm_add_ps(fjy0,ty);
571             fjz0             = _mm_add_ps(fjz0,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r10              = _mm_mul_ps(rsq10,rinv10);
578             r10              = _mm_andnot_ps(dummy_mask,r10);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq10             = _mm_mul_ps(iq1,jq0);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_ps(r10,ewtabscale);
587             ewitab           = _mm_cvttps_epi32(ewrt);
588             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
589             ewitab           = _mm_slli_epi32(ewitab,2);
590             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
591             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
592             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
593             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
594             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
595             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
596             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
597             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
598             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_andnot_ps(dummy_mask,velec);
602             velecsum         = _mm_add_ps(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm_andnot_ps(dummy_mask,fscal);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm_mul_ps(fscal,dx10);
610             ty               = _mm_mul_ps(fscal,dy10);
611             tz               = _mm_mul_ps(fscal,dz10);
612
613             /* Update vectorial force */
614             fix1             = _mm_add_ps(fix1,tx);
615             fiy1             = _mm_add_ps(fiy1,ty);
616             fiz1             = _mm_add_ps(fiz1,tz);
617
618             fjx0             = _mm_add_ps(fjx0,tx);
619             fjy0             = _mm_add_ps(fjy0,ty);
620             fjz0             = _mm_add_ps(fjz0,tz);
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             r20              = _mm_mul_ps(rsq20,rinv20);
627             r20              = _mm_andnot_ps(dummy_mask,r20);
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq20             = _mm_mul_ps(iq2,jq0);
631
632             /* EWALD ELECTROSTATICS */
633
634             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
635             ewrt             = _mm_mul_ps(r20,ewtabscale);
636             ewitab           = _mm_cvttps_epi32(ewrt);
637             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
638             ewitab           = _mm_slli_epi32(ewitab,2);
639             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
640             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
641             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
642             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
643             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
644             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
645             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
646             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
647             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
648
649             /* Update potential sum for this i atom from the interaction with this j atom. */
650             velec            = _mm_andnot_ps(dummy_mask,velec);
651             velecsum         = _mm_add_ps(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm_andnot_ps(dummy_mask,fscal);
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm_mul_ps(fscal,dx20);
659             ty               = _mm_mul_ps(fscal,dy20);
660             tz               = _mm_mul_ps(fscal,dz20);
661
662             /* Update vectorial force */
663             fix2             = _mm_add_ps(fix2,tx);
664             fiy2             = _mm_add_ps(fiy2,ty);
665             fiz2             = _mm_add_ps(fiz2,tz);
666
667             fjx0             = _mm_add_ps(fjx0,tx);
668             fjy0             = _mm_add_ps(fjy0,ty);
669             fjz0             = _mm_add_ps(fjz0,tz);
670
671             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
672             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
673             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
674             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
675
676             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
677
678             /* Inner loop uses 160 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         ggid                        = gid[iidx];
687         /* Update potential energies */
688         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
689         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
690
691         /* Increment number of inner iterations */
692         inneriter                  += j_index_end - j_index_start;
693
694         /* Outer loop uses 20 flops */
695     }
696
697     /* Increment number of outer iterations */
698     outeriter        += nri;
699
700     /* Update outer/inner flops */
701
702     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
703 }
704 /*
705  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
706  * Electrostatics interaction: Ewald
707  * VdW interaction:            CubicSplineTable
708  * Geometry:                   Water3-Particle
709  * Calculate force/pot:        Force
710  */
711 void
712 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
713                     (t_nblist * gmx_restrict                nlist,
714                      rvec * gmx_restrict                    xx,
715                      rvec * gmx_restrict                    ff,
716                      t_forcerec * gmx_restrict              fr,
717                      t_mdatoms * gmx_restrict               mdatoms,
718                      nb_kernel_data_t * gmx_restrict        kernel_data,
719                      t_nrnb * gmx_restrict                  nrnb)
720 {
721     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
722      * just 0 for non-waters.
723      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
724      * jnr indices corresponding to data put in the four positions in the SIMD register.
725      */
726     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
727     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
728     int              jnrA,jnrB,jnrC,jnrD;
729     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
730     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
731     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
732     real             rcutoff_scalar;
733     real             *shiftvec,*fshift,*x,*f;
734     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
735     real             scratch[4*DIM];
736     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
737     int              vdwioffset0;
738     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
739     int              vdwioffset1;
740     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
741     int              vdwioffset2;
742     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
743     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
744     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
745     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
746     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
747     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
748     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
749     real             *charge;
750     int              nvdwtype;
751     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
752     int              *vdwtype;
753     real             *vdwparam;
754     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
755     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
756     __m128i          vfitab;
757     __m128i          ifour       = _mm_set1_epi32(4);
758     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
759     real             *vftab;
760     __m128i          ewitab;
761     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
762     real             *ewtab;
763     __m128           dummy_mask,cutoff_mask;
764     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
765     __m128           one     = _mm_set1_ps(1.0);
766     __m128           two     = _mm_set1_ps(2.0);
767     x                = xx[0];
768     f                = ff[0];
769
770     nri              = nlist->nri;
771     iinr             = nlist->iinr;
772     jindex           = nlist->jindex;
773     jjnr             = nlist->jjnr;
774     shiftidx         = nlist->shift;
775     gid              = nlist->gid;
776     shiftvec         = fr->shift_vec[0];
777     fshift           = fr->fshift[0];
778     facel            = _mm_set1_ps(fr->epsfac);
779     charge           = mdatoms->chargeA;
780     nvdwtype         = fr->ntype;
781     vdwparam         = fr->nbfp;
782     vdwtype          = mdatoms->typeA;
783
784     vftab            = kernel_data->table_vdw->data;
785     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
786
787     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
788     ewtab            = fr->ic->tabq_coul_F;
789     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
790     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
791
792     /* Setup water-specific parameters */
793     inr              = nlist->iinr[0];
794     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
795     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
796     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
797     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
798
799     /* Avoid stupid compiler warnings */
800     jnrA = jnrB = jnrC = jnrD = 0;
801     j_coord_offsetA = 0;
802     j_coord_offsetB = 0;
803     j_coord_offsetC = 0;
804     j_coord_offsetD = 0;
805
806     outeriter        = 0;
807     inneriter        = 0;
808
809     for(iidx=0;iidx<4*DIM;iidx++)
810     {
811         scratch[iidx] = 0.0;
812     }
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
830                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
831
832         fix0             = _mm_setzero_ps();
833         fiy0             = _mm_setzero_ps();
834         fiz0             = _mm_setzero_ps();
835         fix1             = _mm_setzero_ps();
836         fiy1             = _mm_setzero_ps();
837         fiz1             = _mm_setzero_ps();
838         fix2             = _mm_setzero_ps();
839         fiy2             = _mm_setzero_ps();
840         fiz2             = _mm_setzero_ps();
841
842         /* Start inner kernel loop */
843         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrA             = jjnr[jidx];
848             jnrB             = jjnr[jidx+1];
849             jnrC             = jjnr[jidx+2];
850             jnrD             = jjnr[jidx+3];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853             j_coord_offsetC  = DIM*jnrC;
854             j_coord_offsetD  = DIM*jnrD;
855
856             /* load j atom coordinates */
857             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
858                                               x+j_coord_offsetC,x+j_coord_offsetD,
859                                               &jx0,&jy0,&jz0);
860
861             /* Calculate displacement vector */
862             dx00             = _mm_sub_ps(ix0,jx0);
863             dy00             = _mm_sub_ps(iy0,jy0);
864             dz00             = _mm_sub_ps(iz0,jz0);
865             dx10             = _mm_sub_ps(ix1,jx0);
866             dy10             = _mm_sub_ps(iy1,jy0);
867             dz10             = _mm_sub_ps(iz1,jz0);
868             dx20             = _mm_sub_ps(ix2,jx0);
869             dy20             = _mm_sub_ps(iy2,jy0);
870             dz20             = _mm_sub_ps(iz2,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
874             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
875             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
876
877             rinv00           = gmx_mm_invsqrt_ps(rsq00);
878             rinv10           = gmx_mm_invsqrt_ps(rsq10);
879             rinv20           = gmx_mm_invsqrt_ps(rsq20);
880
881             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
882             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
883             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
884
885             /* Load parameters for j particles */
886             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
887                                                               charge+jnrC+0,charge+jnrD+0);
888             vdwjidx0A        = 2*vdwtype[jnrA+0];
889             vdwjidx0B        = 2*vdwtype[jnrB+0];
890             vdwjidx0C        = 2*vdwtype[jnrC+0];
891             vdwjidx0D        = 2*vdwtype[jnrD+0];
892
893             fjx0             = _mm_setzero_ps();
894             fjy0             = _mm_setzero_ps();
895             fjz0             = _mm_setzero_ps();
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             r00              = _mm_mul_ps(rsq00,rinv00);
902
903             /* Compute parameters for interactions between i and j atoms */
904             qq00             = _mm_mul_ps(iq0,jq0);
905             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
906                                          vdwparam+vdwioffset0+vdwjidx0B,
907                                          vdwparam+vdwioffset0+vdwjidx0C,
908                                          vdwparam+vdwioffset0+vdwjidx0D,
909                                          &c6_00,&c12_00);
910
911             /* Calculate table index by multiplying r with table scale and truncate to integer */
912             rt               = _mm_mul_ps(r00,vftabscale);
913             vfitab           = _mm_cvttps_epi32(rt);
914             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
915             vfitab           = _mm_slli_epi32(vfitab,3);
916
917             /* EWALD ELECTROSTATICS */
918
919             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
920             ewrt             = _mm_mul_ps(r00,ewtabscale);
921             ewitab           = _mm_cvttps_epi32(ewrt);
922             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
923             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
924                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
925                                          &ewtabF,&ewtabFn);
926             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
927             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
928
929             /* CUBIC SPLINE TABLE DISPERSION */
930             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
931             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
932             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
933             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
934             _MM_TRANSPOSE4_PS(Y,F,G,H);
935             Heps             = _mm_mul_ps(vfeps,H);
936             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
937             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
938             fvdw6            = _mm_mul_ps(c6_00,FF);
939
940             /* CUBIC SPLINE TABLE REPULSION */
941             vfitab           = _mm_add_epi32(vfitab,ifour);
942             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
943             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
944             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
945             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
946             _MM_TRANSPOSE4_PS(Y,F,G,H);
947             Heps             = _mm_mul_ps(vfeps,H);
948             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
949             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
950             fvdw12           = _mm_mul_ps(c12_00,FF);
951             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
952
953             fscal            = _mm_add_ps(felec,fvdw);
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_ps(fscal,dx00);
957             ty               = _mm_mul_ps(fscal,dy00);
958             tz               = _mm_mul_ps(fscal,dz00);
959
960             /* Update vectorial force */
961             fix0             = _mm_add_ps(fix0,tx);
962             fiy0             = _mm_add_ps(fiy0,ty);
963             fiz0             = _mm_add_ps(fiz0,tz);
964
965             fjx0             = _mm_add_ps(fjx0,tx);
966             fjy0             = _mm_add_ps(fjy0,ty);
967             fjz0             = _mm_add_ps(fjz0,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r10              = _mm_mul_ps(rsq10,rinv10);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq10             = _mm_mul_ps(iq1,jq0);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
981             ewrt             = _mm_mul_ps(r10,ewtabscale);
982             ewitab           = _mm_cvttps_epi32(ewrt);
983             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
984             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
985                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
986                                          &ewtabF,&ewtabFn);
987             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
988             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm_mul_ps(fscal,dx10);
994             ty               = _mm_mul_ps(fscal,dy10);
995             tz               = _mm_mul_ps(fscal,dz10);
996
997             /* Update vectorial force */
998             fix1             = _mm_add_ps(fix1,tx);
999             fiy1             = _mm_add_ps(fiy1,ty);
1000             fiz1             = _mm_add_ps(fiz1,tz);
1001
1002             fjx0             = _mm_add_ps(fjx0,tx);
1003             fjy0             = _mm_add_ps(fjy0,ty);
1004             fjz0             = _mm_add_ps(fjz0,tz);
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             r20              = _mm_mul_ps(rsq20,rinv20);
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq20             = _mm_mul_ps(iq2,jq0);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = _mm_mul_ps(r20,ewtabscale);
1019             ewitab           = _mm_cvttps_epi32(ewrt);
1020             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1021             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1022                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1023                                          &ewtabF,&ewtabFn);
1024             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1025             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1026
1027             fscal            = felec;
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm_mul_ps(fscal,dx20);
1031             ty               = _mm_mul_ps(fscal,dy20);
1032             tz               = _mm_mul_ps(fscal,dz20);
1033
1034             /* Update vectorial force */
1035             fix2             = _mm_add_ps(fix2,tx);
1036             fiy2             = _mm_add_ps(fiy2,ty);
1037             fiz2             = _mm_add_ps(fiz2,tz);
1038
1039             fjx0             = _mm_add_ps(fjx0,tx);
1040             fjy0             = _mm_add_ps(fjy0,ty);
1041             fjz0             = _mm_add_ps(fjz0,tz);
1042
1043             fjptrA             = f+j_coord_offsetA;
1044             fjptrB             = f+j_coord_offsetB;
1045             fjptrC             = f+j_coord_offsetC;
1046             fjptrD             = f+j_coord_offsetD;
1047
1048             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1049
1050             /* Inner loop uses 134 flops */
1051         }
1052
1053         if(jidx<j_index_end)
1054         {
1055
1056             /* Get j neighbor index, and coordinate index */
1057             jnrlistA         = jjnr[jidx];
1058             jnrlistB         = jjnr[jidx+1];
1059             jnrlistC         = jjnr[jidx+2];
1060             jnrlistD         = jjnr[jidx+3];
1061             /* Sign of each element will be negative for non-real atoms.
1062              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1063              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1064              */
1065             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1066             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1067             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1068             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1069             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1070             j_coord_offsetA  = DIM*jnrA;
1071             j_coord_offsetB  = DIM*jnrB;
1072             j_coord_offsetC  = DIM*jnrC;
1073             j_coord_offsetD  = DIM*jnrD;
1074
1075             /* load j atom coordinates */
1076             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1077                                               x+j_coord_offsetC,x+j_coord_offsetD,
1078                                               &jx0,&jy0,&jz0);
1079
1080             /* Calculate displacement vector */
1081             dx00             = _mm_sub_ps(ix0,jx0);
1082             dy00             = _mm_sub_ps(iy0,jy0);
1083             dz00             = _mm_sub_ps(iz0,jz0);
1084             dx10             = _mm_sub_ps(ix1,jx0);
1085             dy10             = _mm_sub_ps(iy1,jy0);
1086             dz10             = _mm_sub_ps(iz1,jz0);
1087             dx20             = _mm_sub_ps(ix2,jx0);
1088             dy20             = _mm_sub_ps(iy2,jy0);
1089             dz20             = _mm_sub_ps(iz2,jz0);
1090
1091             /* Calculate squared distance and things based on it */
1092             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1093             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1094             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1095
1096             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1097             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1098             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1099
1100             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1101             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1102             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1103
1104             /* Load parameters for j particles */
1105             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1106                                                               charge+jnrC+0,charge+jnrD+0);
1107             vdwjidx0A        = 2*vdwtype[jnrA+0];
1108             vdwjidx0B        = 2*vdwtype[jnrB+0];
1109             vdwjidx0C        = 2*vdwtype[jnrC+0];
1110             vdwjidx0D        = 2*vdwtype[jnrD+0];
1111
1112             fjx0             = _mm_setzero_ps();
1113             fjy0             = _mm_setzero_ps();
1114             fjz0             = _mm_setzero_ps();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             r00              = _mm_mul_ps(rsq00,rinv00);
1121             r00              = _mm_andnot_ps(dummy_mask,r00);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq00             = _mm_mul_ps(iq0,jq0);
1125             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1126                                          vdwparam+vdwioffset0+vdwjidx0B,
1127                                          vdwparam+vdwioffset0+vdwjidx0C,
1128                                          vdwparam+vdwioffset0+vdwjidx0D,
1129                                          &c6_00,&c12_00);
1130
1131             /* Calculate table index by multiplying r with table scale and truncate to integer */
1132             rt               = _mm_mul_ps(r00,vftabscale);
1133             vfitab           = _mm_cvttps_epi32(rt);
1134             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1135             vfitab           = _mm_slli_epi32(vfitab,3);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_ps(r00,ewtabscale);
1141             ewitab           = _mm_cvttps_epi32(ewrt);
1142             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1143             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1144                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1145                                          &ewtabF,&ewtabFn);
1146             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1147             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1148
1149             /* CUBIC SPLINE TABLE DISPERSION */
1150             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1151             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1152             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1153             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1154             _MM_TRANSPOSE4_PS(Y,F,G,H);
1155             Heps             = _mm_mul_ps(vfeps,H);
1156             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1157             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1158             fvdw6            = _mm_mul_ps(c6_00,FF);
1159
1160             /* CUBIC SPLINE TABLE REPULSION */
1161             vfitab           = _mm_add_epi32(vfitab,ifour);
1162             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1163             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1164             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1165             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1166             _MM_TRANSPOSE4_PS(Y,F,G,H);
1167             Heps             = _mm_mul_ps(vfeps,H);
1168             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1169             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1170             fvdw12           = _mm_mul_ps(c12_00,FF);
1171             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1172
1173             fscal            = _mm_add_ps(felec,fvdw);
1174
1175             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1176
1177             /* Calculate temporary vectorial force */
1178             tx               = _mm_mul_ps(fscal,dx00);
1179             ty               = _mm_mul_ps(fscal,dy00);
1180             tz               = _mm_mul_ps(fscal,dz00);
1181
1182             /* Update vectorial force */
1183             fix0             = _mm_add_ps(fix0,tx);
1184             fiy0             = _mm_add_ps(fiy0,ty);
1185             fiz0             = _mm_add_ps(fiz0,tz);
1186
1187             fjx0             = _mm_add_ps(fjx0,tx);
1188             fjy0             = _mm_add_ps(fjy0,ty);
1189             fjz0             = _mm_add_ps(fjz0,tz);
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             r10              = _mm_mul_ps(rsq10,rinv10);
1196             r10              = _mm_andnot_ps(dummy_mask,r10);
1197
1198             /* Compute parameters for interactions between i and j atoms */
1199             qq10             = _mm_mul_ps(iq1,jq0);
1200
1201             /* EWALD ELECTROSTATICS */
1202
1203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204             ewrt             = _mm_mul_ps(r10,ewtabscale);
1205             ewitab           = _mm_cvttps_epi32(ewrt);
1206             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1207             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1208                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1209                                          &ewtabF,&ewtabFn);
1210             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1211             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1212
1213             fscal            = felec;
1214
1215             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm_mul_ps(fscal,dx10);
1219             ty               = _mm_mul_ps(fscal,dy10);
1220             tz               = _mm_mul_ps(fscal,dz10);
1221
1222             /* Update vectorial force */
1223             fix1             = _mm_add_ps(fix1,tx);
1224             fiy1             = _mm_add_ps(fiy1,ty);
1225             fiz1             = _mm_add_ps(fiz1,tz);
1226
1227             fjx0             = _mm_add_ps(fjx0,tx);
1228             fjy0             = _mm_add_ps(fjy0,ty);
1229             fjz0             = _mm_add_ps(fjz0,tz);
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r20              = _mm_mul_ps(rsq20,rinv20);
1236             r20              = _mm_andnot_ps(dummy_mask,r20);
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             qq20             = _mm_mul_ps(iq2,jq0);
1240
1241             /* EWALD ELECTROSTATICS */
1242
1243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1244             ewrt             = _mm_mul_ps(r20,ewtabscale);
1245             ewitab           = _mm_cvttps_epi32(ewrt);
1246             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1247             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1248                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1249                                          &ewtabF,&ewtabFn);
1250             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1251             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1252
1253             fscal            = felec;
1254
1255             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm_mul_ps(fscal,dx20);
1259             ty               = _mm_mul_ps(fscal,dy20);
1260             tz               = _mm_mul_ps(fscal,dz20);
1261
1262             /* Update vectorial force */
1263             fix2             = _mm_add_ps(fix2,tx);
1264             fiy2             = _mm_add_ps(fiy2,ty);
1265             fiz2             = _mm_add_ps(fiz2,tz);
1266
1267             fjx0             = _mm_add_ps(fjx0,tx);
1268             fjy0             = _mm_add_ps(fjy0,ty);
1269             fjz0             = _mm_add_ps(fjz0,tz);
1270
1271             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1272             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1273             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1274             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1275
1276             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1277
1278             /* Inner loop uses 137 flops */
1279         }
1280
1281         /* End of innermost loop */
1282
1283         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1284                                               f+i_coord_offset,fshift+i_shift_offset);
1285
1286         /* Increment number of inner iterations */
1287         inneriter                  += j_index_end - j_index_start;
1288
1289         /* Outer loop uses 18 flops */
1290     }
1291
1292     /* Increment number of outer iterations */
1293     outeriter        += nri;
1294
1295     /* Update outer/inner flops */
1296
1297     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1298 }