3cd662d6d4aacc766a44966b6fb12b4f1926bf7b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
143     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
144     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
145     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217             dx10             = _mm_sub_ps(ix1,jx0);
218             dy10             = _mm_sub_ps(iy1,jy0);
219             dz10             = _mm_sub_ps(iz1,jz0);
220             dx20             = _mm_sub_ps(ix2,jx0);
221             dy20             = _mm_sub_ps(iy2,jy0);
222             dz20             = _mm_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r00              = _mm_mul_ps(rsq00,rinv00);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq00             = _mm_mul_ps(iq0,jq0);
257             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
258                                          vdwparam+vdwioffset0+vdwjidx0B,
259                                          vdwparam+vdwioffset0+vdwjidx0C,
260                                          vdwparam+vdwioffset0+vdwjidx0D,
261                                          &c6_00,&c12_00);
262
263             /* Calculate table index by multiplying r with table scale and truncate to integer */
264             rt               = _mm_mul_ps(r00,vftabscale);
265             vfitab           = _mm_cvttps_epi32(rt);
266             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
267             vfitab           = _mm_slli_epi32(vfitab,3);
268
269             /* EWALD ELECTROSTATICS */
270
271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
272             ewrt             = _mm_mul_ps(r00,ewtabscale);
273             ewitab           = _mm_cvttps_epi32(ewrt);
274             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
275             ewitab           = _mm_slli_epi32(ewitab,2);
276             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
277             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
278             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
279             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
280             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
281             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
282             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
283             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
284             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
285
286             /* CUBIC SPLINE TABLE DISPERSION */
287             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Heps             = _mm_mul_ps(vfeps,H);
293             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
294             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
295             vvdw6            = _mm_mul_ps(c6_00,VV);
296             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
297             fvdw6            = _mm_mul_ps(c6_00,FF);
298
299             /* CUBIC SPLINE TABLE REPULSION */
300             vfitab           = _mm_add_epi32(vfitab,ifour);
301             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
302             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
303             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
304             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
305             _MM_TRANSPOSE4_PS(Y,F,G,H);
306             Heps             = _mm_mul_ps(vfeps,H);
307             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
308             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
309             vvdw12           = _mm_mul_ps(c12_00,VV);
310             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
311             fvdw12           = _mm_mul_ps(c12_00,FF);
312             vvdw             = _mm_add_ps(vvdw12,vvdw6);
313             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm_add_ps(velecsum,velec);
317             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
318
319             fscal            = _mm_add_ps(felec,fvdw);
320
321             /* Calculate temporary vectorial force */
322             tx               = _mm_mul_ps(fscal,dx00);
323             ty               = _mm_mul_ps(fscal,dy00);
324             tz               = _mm_mul_ps(fscal,dz00);
325
326             /* Update vectorial force */
327             fix0             = _mm_add_ps(fix0,tx);
328             fiy0             = _mm_add_ps(fiy0,ty);
329             fiz0             = _mm_add_ps(fiz0,tz);
330
331             fjx0             = _mm_add_ps(fjx0,tx);
332             fjy0             = _mm_add_ps(fjy0,ty);
333             fjz0             = _mm_add_ps(fjz0,tz);
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r10              = _mm_mul_ps(rsq10,rinv10);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq10             = _mm_mul_ps(iq1,jq0);
343
344             /* EWALD ELECTROSTATICS */
345
346             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
347             ewrt             = _mm_mul_ps(r10,ewtabscale);
348             ewitab           = _mm_cvttps_epi32(ewrt);
349             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
350             ewitab           = _mm_slli_epi32(ewitab,2);
351             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
352             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
353             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
354             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
355             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
356             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
357             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
358             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
359             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velecsum         = _mm_add_ps(velecsum,velec);
363
364             fscal            = felec;
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_ps(fscal,dx10);
368             ty               = _mm_mul_ps(fscal,dy10);
369             tz               = _mm_mul_ps(fscal,dz10);
370
371             /* Update vectorial force */
372             fix1             = _mm_add_ps(fix1,tx);
373             fiy1             = _mm_add_ps(fiy1,ty);
374             fiz1             = _mm_add_ps(fiz1,tz);
375
376             fjx0             = _mm_add_ps(fjx0,tx);
377             fjy0             = _mm_add_ps(fjy0,ty);
378             fjz0             = _mm_add_ps(fjz0,tz);
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             r20              = _mm_mul_ps(rsq20,rinv20);
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq20             = _mm_mul_ps(iq2,jq0);
388
389             /* EWALD ELECTROSTATICS */
390
391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
392             ewrt             = _mm_mul_ps(r20,ewtabscale);
393             ewitab           = _mm_cvttps_epi32(ewrt);
394             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
395             ewitab           = _mm_slli_epi32(ewitab,2);
396             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
397             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
398             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
399             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
400             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
401             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
402             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
403             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
404             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velecsum         = _mm_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm_mul_ps(fscal,dx20);
413             ty               = _mm_mul_ps(fscal,dy20);
414             tz               = _mm_mul_ps(fscal,dz20);
415
416             /* Update vectorial force */
417             fix2             = _mm_add_ps(fix2,tx);
418             fiy2             = _mm_add_ps(fiy2,ty);
419             fiz2             = _mm_add_ps(fiz2,tz);
420
421             fjx0             = _mm_add_ps(fjx0,tx);
422             fjy0             = _mm_add_ps(fjy0,ty);
423             fjz0             = _mm_add_ps(fjz0,tz);
424
425             fjptrA             = f+j_coord_offsetA;
426             fjptrB             = f+j_coord_offsetB;
427             fjptrC             = f+j_coord_offsetC;
428             fjptrD             = f+j_coord_offsetD;
429
430             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 157 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             /* Get j neighbor index, and coordinate index */
439             jnrlistA         = jjnr[jidx];
440             jnrlistB         = jjnr[jidx+1];
441             jnrlistC         = jjnr[jidx+2];
442             jnrlistD         = jjnr[jidx+3];
443             /* Sign of each element will be negative for non-real atoms.
444              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
445              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
446              */
447             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
448             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
449             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
450             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
451             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
452             j_coord_offsetA  = DIM*jnrA;
453             j_coord_offsetB  = DIM*jnrB;
454             j_coord_offsetC  = DIM*jnrC;
455             j_coord_offsetD  = DIM*jnrD;
456
457             /* load j atom coordinates */
458             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
459                                               x+j_coord_offsetC,x+j_coord_offsetD,
460                                               &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx00             = _mm_sub_ps(ix0,jx0);
464             dy00             = _mm_sub_ps(iy0,jy0);
465             dz00             = _mm_sub_ps(iz0,jz0);
466             dx10             = _mm_sub_ps(ix1,jx0);
467             dy10             = _mm_sub_ps(iy1,jy0);
468             dz10             = _mm_sub_ps(iz1,jz0);
469             dx20             = _mm_sub_ps(ix2,jx0);
470             dy20             = _mm_sub_ps(iy2,jy0);
471             dz20             = _mm_sub_ps(iz2,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
475             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
476             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
477
478             rinv00           = gmx_mm_invsqrt_ps(rsq00);
479             rinv10           = gmx_mm_invsqrt_ps(rsq10);
480             rinv20           = gmx_mm_invsqrt_ps(rsq20);
481
482             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
483             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
484             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                               charge+jnrC+0,charge+jnrD+0);
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491             vdwjidx0C        = 2*vdwtype[jnrC+0];
492             vdwjidx0D        = 2*vdwtype[jnrD+0];
493
494             fjx0             = _mm_setzero_ps();
495             fjy0             = _mm_setzero_ps();
496             fjz0             = _mm_setzero_ps();
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             r00              = _mm_mul_ps(rsq00,rinv00);
503             r00              = _mm_andnot_ps(dummy_mask,r00);
504
505             /* Compute parameters for interactions between i and j atoms */
506             qq00             = _mm_mul_ps(iq0,jq0);
507             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
508                                          vdwparam+vdwioffset0+vdwjidx0B,
509                                          vdwparam+vdwioffset0+vdwjidx0C,
510                                          vdwparam+vdwioffset0+vdwjidx0D,
511                                          &c6_00,&c12_00);
512
513             /* Calculate table index by multiplying r with table scale and truncate to integer */
514             rt               = _mm_mul_ps(r00,vftabscale);
515             vfitab           = _mm_cvttps_epi32(rt);
516             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
517             vfitab           = _mm_slli_epi32(vfitab,3);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
522             ewrt             = _mm_mul_ps(r00,ewtabscale);
523             ewitab           = _mm_cvttps_epi32(ewrt);
524             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
525             ewitab           = _mm_slli_epi32(ewitab,2);
526             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
527             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
528             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
529             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
530             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
531             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
532             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
533             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
534             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
535
536             /* CUBIC SPLINE TABLE DISPERSION */
537             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
538             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
539             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
540             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
541             _MM_TRANSPOSE4_PS(Y,F,G,H);
542             Heps             = _mm_mul_ps(vfeps,H);
543             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
544             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
545             vvdw6            = _mm_mul_ps(c6_00,VV);
546             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
547             fvdw6            = _mm_mul_ps(c6_00,FF);
548
549             /* CUBIC SPLINE TABLE REPULSION */
550             vfitab           = _mm_add_epi32(vfitab,ifour);
551             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
552             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
553             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
554             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
555             _MM_TRANSPOSE4_PS(Y,F,G,H);
556             Heps             = _mm_mul_ps(vfeps,H);
557             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
558             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
559             vvdw12           = _mm_mul_ps(c12_00,VV);
560             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
561             fvdw12           = _mm_mul_ps(c12_00,FF);
562             vvdw             = _mm_add_ps(vvdw12,vvdw6);
563             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm_andnot_ps(dummy_mask,velec);
567             velecsum         = _mm_add_ps(velecsum,velec);
568             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
569             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
570
571             fscal            = _mm_add_ps(felec,fvdw);
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_ps(fscal,dx00);
577             ty               = _mm_mul_ps(fscal,dy00);
578             tz               = _mm_mul_ps(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm_add_ps(fix0,tx);
582             fiy0             = _mm_add_ps(fiy0,ty);
583             fiz0             = _mm_add_ps(fiz0,tz);
584
585             fjx0             = _mm_add_ps(fjx0,tx);
586             fjy0             = _mm_add_ps(fjy0,ty);
587             fjz0             = _mm_add_ps(fjz0,tz);
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             r10              = _mm_mul_ps(rsq10,rinv10);
594             r10              = _mm_andnot_ps(dummy_mask,r10);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq10             = _mm_mul_ps(iq1,jq0);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _mm_mul_ps(r10,ewtabscale);
603             ewitab           = _mm_cvttps_epi32(ewrt);
604             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
605             ewitab           = _mm_slli_epi32(ewitab,2);
606             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
607             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
608             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
609             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
610             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
611             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
612             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
613             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
614             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm_andnot_ps(dummy_mask,velec);
618             velecsum         = _mm_add_ps(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_andnot_ps(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm_mul_ps(fscal,dx10);
626             ty               = _mm_mul_ps(fscal,dy10);
627             tz               = _mm_mul_ps(fscal,dz10);
628
629             /* Update vectorial force */
630             fix1             = _mm_add_ps(fix1,tx);
631             fiy1             = _mm_add_ps(fiy1,ty);
632             fiz1             = _mm_add_ps(fiz1,tz);
633
634             fjx0             = _mm_add_ps(fjx0,tx);
635             fjy0             = _mm_add_ps(fjy0,ty);
636             fjz0             = _mm_add_ps(fjz0,tz);
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             r20              = _mm_mul_ps(rsq20,rinv20);
643             r20              = _mm_andnot_ps(dummy_mask,r20);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq20             = _mm_mul_ps(iq2,jq0);
647
648             /* EWALD ELECTROSTATICS */
649
650             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
651             ewrt             = _mm_mul_ps(r20,ewtabscale);
652             ewitab           = _mm_cvttps_epi32(ewrt);
653             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
654             ewitab           = _mm_slli_epi32(ewitab,2);
655             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
656             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
657             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
658             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
659             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
660             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
661             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
662             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
663             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
664
665             /* Update potential sum for this i atom from the interaction with this j atom. */
666             velec            = _mm_andnot_ps(dummy_mask,velec);
667             velecsum         = _mm_add_ps(velecsum,velec);
668
669             fscal            = felec;
670
671             fscal            = _mm_andnot_ps(dummy_mask,fscal);
672
673             /* Calculate temporary vectorial force */
674             tx               = _mm_mul_ps(fscal,dx20);
675             ty               = _mm_mul_ps(fscal,dy20);
676             tz               = _mm_mul_ps(fscal,dz20);
677
678             /* Update vectorial force */
679             fix2             = _mm_add_ps(fix2,tx);
680             fiy2             = _mm_add_ps(fiy2,ty);
681             fiz2             = _mm_add_ps(fiz2,tz);
682
683             fjx0             = _mm_add_ps(fjx0,tx);
684             fjy0             = _mm_add_ps(fjy0,ty);
685             fjz0             = _mm_add_ps(fjz0,tz);
686
687             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
688             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
689             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
690             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
691
692             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
693
694             /* Inner loop uses 160 flops */
695         }
696
697         /* End of innermost loop */
698
699         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
700                                               f+i_coord_offset,fshift+i_shift_offset);
701
702         ggid                        = gid[iidx];
703         /* Update potential energies */
704         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
705         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
706
707         /* Increment number of inner iterations */
708         inneriter                  += j_index_end - j_index_start;
709
710         /* Outer loop uses 20 flops */
711     }
712
713     /* Increment number of outer iterations */
714     outeriter        += nri;
715
716     /* Update outer/inner flops */
717
718     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
719 }
720 /*
721  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
722  * Electrostatics interaction: Ewald
723  * VdW interaction:            CubicSplineTable
724  * Geometry:                   Water3-Particle
725  * Calculate force/pot:        Force
726  */
727 void
728 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_single
729                     (t_nblist                    * gmx_restrict       nlist,
730                      rvec                        * gmx_restrict          xx,
731                      rvec                        * gmx_restrict          ff,
732                      t_forcerec                  * gmx_restrict          fr,
733                      t_mdatoms                   * gmx_restrict     mdatoms,
734                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
735                      t_nrnb                      * gmx_restrict        nrnb)
736 {
737     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
738      * just 0 for non-waters.
739      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
740      * jnr indices corresponding to data put in the four positions in the SIMD register.
741      */
742     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
743     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
744     int              jnrA,jnrB,jnrC,jnrD;
745     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
746     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
747     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
748     real             rcutoff_scalar;
749     real             *shiftvec,*fshift,*x,*f;
750     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
751     real             scratch[4*DIM];
752     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
753     int              vdwioffset0;
754     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
755     int              vdwioffset1;
756     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
757     int              vdwioffset2;
758     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
759     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
760     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
761     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
762     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
763     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
764     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
765     real             *charge;
766     int              nvdwtype;
767     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
768     int              *vdwtype;
769     real             *vdwparam;
770     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
771     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
772     __m128i          vfitab;
773     __m128i          ifour       = _mm_set1_epi32(4);
774     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
775     real             *vftab;
776     __m128i          ewitab;
777     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
778     real             *ewtab;
779     __m128           dummy_mask,cutoff_mask;
780     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
781     __m128           one     = _mm_set1_ps(1.0);
782     __m128           two     = _mm_set1_ps(2.0);
783     x                = xx[0];
784     f                = ff[0];
785
786     nri              = nlist->nri;
787     iinr             = nlist->iinr;
788     jindex           = nlist->jindex;
789     jjnr             = nlist->jjnr;
790     shiftidx         = nlist->shift;
791     gid              = nlist->gid;
792     shiftvec         = fr->shift_vec[0];
793     fshift           = fr->fshift[0];
794     facel            = _mm_set1_ps(fr->epsfac);
795     charge           = mdatoms->chargeA;
796     nvdwtype         = fr->ntype;
797     vdwparam         = fr->nbfp;
798     vdwtype          = mdatoms->typeA;
799
800     vftab            = kernel_data->table_vdw->data;
801     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
802
803     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
804     ewtab            = fr->ic->tabq_coul_F;
805     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
806     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
807
808     /* Setup water-specific parameters */
809     inr              = nlist->iinr[0];
810     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
811     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
812     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
813     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
814
815     /* Avoid stupid compiler warnings */
816     jnrA = jnrB = jnrC = jnrD = 0;
817     j_coord_offsetA = 0;
818     j_coord_offsetB = 0;
819     j_coord_offsetC = 0;
820     j_coord_offsetD = 0;
821
822     outeriter        = 0;
823     inneriter        = 0;
824
825     for(iidx=0;iidx<4*DIM;iidx++)
826     {
827         scratch[iidx] = 0.0;
828     }
829
830     /* Start outer loop over neighborlists */
831     for(iidx=0; iidx<nri; iidx++)
832     {
833         /* Load shift vector for this list */
834         i_shift_offset   = DIM*shiftidx[iidx];
835
836         /* Load limits for loop over neighbors */
837         j_index_start    = jindex[iidx];
838         j_index_end      = jindex[iidx+1];
839
840         /* Get outer coordinate index */
841         inr              = iinr[iidx];
842         i_coord_offset   = DIM*inr;
843
844         /* Load i particle coords and add shift vector */
845         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
846                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
847
848         fix0             = _mm_setzero_ps();
849         fiy0             = _mm_setzero_ps();
850         fiz0             = _mm_setzero_ps();
851         fix1             = _mm_setzero_ps();
852         fiy1             = _mm_setzero_ps();
853         fiz1             = _mm_setzero_ps();
854         fix2             = _mm_setzero_ps();
855         fiy2             = _mm_setzero_ps();
856         fiz2             = _mm_setzero_ps();
857
858         /* Start inner kernel loop */
859         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
860         {
861
862             /* Get j neighbor index, and coordinate index */
863             jnrA             = jjnr[jidx];
864             jnrB             = jjnr[jidx+1];
865             jnrC             = jjnr[jidx+2];
866             jnrD             = jjnr[jidx+3];
867             j_coord_offsetA  = DIM*jnrA;
868             j_coord_offsetB  = DIM*jnrB;
869             j_coord_offsetC  = DIM*jnrC;
870             j_coord_offsetD  = DIM*jnrD;
871
872             /* load j atom coordinates */
873             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
874                                               x+j_coord_offsetC,x+j_coord_offsetD,
875                                               &jx0,&jy0,&jz0);
876
877             /* Calculate displacement vector */
878             dx00             = _mm_sub_ps(ix0,jx0);
879             dy00             = _mm_sub_ps(iy0,jy0);
880             dz00             = _mm_sub_ps(iz0,jz0);
881             dx10             = _mm_sub_ps(ix1,jx0);
882             dy10             = _mm_sub_ps(iy1,jy0);
883             dz10             = _mm_sub_ps(iz1,jz0);
884             dx20             = _mm_sub_ps(ix2,jx0);
885             dy20             = _mm_sub_ps(iy2,jy0);
886             dz20             = _mm_sub_ps(iz2,jz0);
887
888             /* Calculate squared distance and things based on it */
889             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
890             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
891             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
892
893             rinv00           = gmx_mm_invsqrt_ps(rsq00);
894             rinv10           = gmx_mm_invsqrt_ps(rsq10);
895             rinv20           = gmx_mm_invsqrt_ps(rsq20);
896
897             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
898             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
899             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
900
901             /* Load parameters for j particles */
902             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
903                                                               charge+jnrC+0,charge+jnrD+0);
904             vdwjidx0A        = 2*vdwtype[jnrA+0];
905             vdwjidx0B        = 2*vdwtype[jnrB+0];
906             vdwjidx0C        = 2*vdwtype[jnrC+0];
907             vdwjidx0D        = 2*vdwtype[jnrD+0];
908
909             fjx0             = _mm_setzero_ps();
910             fjy0             = _mm_setzero_ps();
911             fjz0             = _mm_setzero_ps();
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r00              = _mm_mul_ps(rsq00,rinv00);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq00             = _mm_mul_ps(iq0,jq0);
921             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
922                                          vdwparam+vdwioffset0+vdwjidx0B,
923                                          vdwparam+vdwioffset0+vdwjidx0C,
924                                          vdwparam+vdwioffset0+vdwjidx0D,
925                                          &c6_00,&c12_00);
926
927             /* Calculate table index by multiplying r with table scale and truncate to integer */
928             rt               = _mm_mul_ps(r00,vftabscale);
929             vfitab           = _mm_cvttps_epi32(rt);
930             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
931             vfitab           = _mm_slli_epi32(vfitab,3);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _mm_mul_ps(r00,ewtabscale);
937             ewitab           = _mm_cvttps_epi32(ewrt);
938             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
939             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
940                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
941                                          &ewtabF,&ewtabFn);
942             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
943             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
944
945             /* CUBIC SPLINE TABLE DISPERSION */
946             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
947             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
948             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
949             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
950             _MM_TRANSPOSE4_PS(Y,F,G,H);
951             Heps             = _mm_mul_ps(vfeps,H);
952             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
953             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
954             fvdw6            = _mm_mul_ps(c6_00,FF);
955
956             /* CUBIC SPLINE TABLE REPULSION */
957             vfitab           = _mm_add_epi32(vfitab,ifour);
958             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
959             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
960             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
961             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
962             _MM_TRANSPOSE4_PS(Y,F,G,H);
963             Heps             = _mm_mul_ps(vfeps,H);
964             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
965             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
966             fvdw12           = _mm_mul_ps(c12_00,FF);
967             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
968
969             fscal            = _mm_add_ps(felec,fvdw);
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_ps(fscal,dx00);
973             ty               = _mm_mul_ps(fscal,dy00);
974             tz               = _mm_mul_ps(fscal,dz00);
975
976             /* Update vectorial force */
977             fix0             = _mm_add_ps(fix0,tx);
978             fiy0             = _mm_add_ps(fiy0,ty);
979             fiz0             = _mm_add_ps(fiz0,tz);
980
981             fjx0             = _mm_add_ps(fjx0,tx);
982             fjy0             = _mm_add_ps(fjy0,ty);
983             fjz0             = _mm_add_ps(fjz0,tz);
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r10              = _mm_mul_ps(rsq10,rinv10);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq10             = _mm_mul_ps(iq1,jq0);
993
994             /* EWALD ELECTROSTATICS */
995
996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
997             ewrt             = _mm_mul_ps(r10,ewtabscale);
998             ewitab           = _mm_cvttps_epi32(ewrt);
999             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1000             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1001                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1002                                          &ewtabF,&ewtabFn);
1003             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1004             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1005
1006             fscal            = felec;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_ps(fscal,dx10);
1010             ty               = _mm_mul_ps(fscal,dy10);
1011             tz               = _mm_mul_ps(fscal,dz10);
1012
1013             /* Update vectorial force */
1014             fix1             = _mm_add_ps(fix1,tx);
1015             fiy1             = _mm_add_ps(fiy1,ty);
1016             fiz1             = _mm_add_ps(fiz1,tz);
1017
1018             fjx0             = _mm_add_ps(fjx0,tx);
1019             fjy0             = _mm_add_ps(fjy0,ty);
1020             fjz0             = _mm_add_ps(fjz0,tz);
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             r20              = _mm_mul_ps(rsq20,rinv20);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq20             = _mm_mul_ps(iq2,jq0);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_ps(r20,ewtabscale);
1035             ewitab           = _mm_cvttps_epi32(ewrt);
1036             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1037             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1038                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1039                                          &ewtabF,&ewtabFn);
1040             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1041             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1042
1043             fscal            = felec;
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_ps(fscal,dx20);
1047             ty               = _mm_mul_ps(fscal,dy20);
1048             tz               = _mm_mul_ps(fscal,dz20);
1049
1050             /* Update vectorial force */
1051             fix2             = _mm_add_ps(fix2,tx);
1052             fiy2             = _mm_add_ps(fiy2,ty);
1053             fiz2             = _mm_add_ps(fiz2,tz);
1054
1055             fjx0             = _mm_add_ps(fjx0,tx);
1056             fjy0             = _mm_add_ps(fjy0,ty);
1057             fjz0             = _mm_add_ps(fjz0,tz);
1058
1059             fjptrA             = f+j_coord_offsetA;
1060             fjptrB             = f+j_coord_offsetB;
1061             fjptrC             = f+j_coord_offsetC;
1062             fjptrD             = f+j_coord_offsetD;
1063
1064             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1065
1066             /* Inner loop uses 134 flops */
1067         }
1068
1069         if(jidx<j_index_end)
1070         {
1071
1072             /* Get j neighbor index, and coordinate index */
1073             jnrlistA         = jjnr[jidx];
1074             jnrlistB         = jjnr[jidx+1];
1075             jnrlistC         = jjnr[jidx+2];
1076             jnrlistD         = jjnr[jidx+3];
1077             /* Sign of each element will be negative for non-real atoms.
1078              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1079              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1080              */
1081             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1082             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1083             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1084             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1085             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1086             j_coord_offsetA  = DIM*jnrA;
1087             j_coord_offsetB  = DIM*jnrB;
1088             j_coord_offsetC  = DIM*jnrC;
1089             j_coord_offsetD  = DIM*jnrD;
1090
1091             /* load j atom coordinates */
1092             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1093                                               x+j_coord_offsetC,x+j_coord_offsetD,
1094                                               &jx0,&jy0,&jz0);
1095
1096             /* Calculate displacement vector */
1097             dx00             = _mm_sub_ps(ix0,jx0);
1098             dy00             = _mm_sub_ps(iy0,jy0);
1099             dz00             = _mm_sub_ps(iz0,jz0);
1100             dx10             = _mm_sub_ps(ix1,jx0);
1101             dy10             = _mm_sub_ps(iy1,jy0);
1102             dz10             = _mm_sub_ps(iz1,jz0);
1103             dx20             = _mm_sub_ps(ix2,jx0);
1104             dy20             = _mm_sub_ps(iy2,jy0);
1105             dz20             = _mm_sub_ps(iz2,jz0);
1106
1107             /* Calculate squared distance and things based on it */
1108             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1109             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1110             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1111
1112             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1113             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1114             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1115
1116             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1117             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1118             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1119
1120             /* Load parameters for j particles */
1121             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1122                                                               charge+jnrC+0,charge+jnrD+0);
1123             vdwjidx0A        = 2*vdwtype[jnrA+0];
1124             vdwjidx0B        = 2*vdwtype[jnrB+0];
1125             vdwjidx0C        = 2*vdwtype[jnrC+0];
1126             vdwjidx0D        = 2*vdwtype[jnrD+0];
1127
1128             fjx0             = _mm_setzero_ps();
1129             fjy0             = _mm_setzero_ps();
1130             fjz0             = _mm_setzero_ps();
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r00              = _mm_mul_ps(rsq00,rinv00);
1137             r00              = _mm_andnot_ps(dummy_mask,r00);
1138
1139             /* Compute parameters for interactions between i and j atoms */
1140             qq00             = _mm_mul_ps(iq0,jq0);
1141             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1142                                          vdwparam+vdwioffset0+vdwjidx0B,
1143                                          vdwparam+vdwioffset0+vdwjidx0C,
1144                                          vdwparam+vdwioffset0+vdwjidx0D,
1145                                          &c6_00,&c12_00);
1146
1147             /* Calculate table index by multiplying r with table scale and truncate to integer */
1148             rt               = _mm_mul_ps(r00,vftabscale);
1149             vfitab           = _mm_cvttps_epi32(rt);
1150             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1151             vfitab           = _mm_slli_epi32(vfitab,3);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_ps(r00,ewtabscale);
1157             ewitab           = _mm_cvttps_epi32(ewrt);
1158             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1159             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1160                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1161                                          &ewtabF,&ewtabFn);
1162             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1163             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1164
1165             /* CUBIC SPLINE TABLE DISPERSION */
1166             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1167             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1168             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1169             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1170             _MM_TRANSPOSE4_PS(Y,F,G,H);
1171             Heps             = _mm_mul_ps(vfeps,H);
1172             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1173             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1174             fvdw6            = _mm_mul_ps(c6_00,FF);
1175
1176             /* CUBIC SPLINE TABLE REPULSION */
1177             vfitab           = _mm_add_epi32(vfitab,ifour);
1178             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1179             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1180             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1181             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1182             _MM_TRANSPOSE4_PS(Y,F,G,H);
1183             Heps             = _mm_mul_ps(vfeps,H);
1184             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1185             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1186             fvdw12           = _mm_mul_ps(c12_00,FF);
1187             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1188
1189             fscal            = _mm_add_ps(felec,fvdw);
1190
1191             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1192
1193             /* Calculate temporary vectorial force */
1194             tx               = _mm_mul_ps(fscal,dx00);
1195             ty               = _mm_mul_ps(fscal,dy00);
1196             tz               = _mm_mul_ps(fscal,dz00);
1197
1198             /* Update vectorial force */
1199             fix0             = _mm_add_ps(fix0,tx);
1200             fiy0             = _mm_add_ps(fiy0,ty);
1201             fiz0             = _mm_add_ps(fiz0,tz);
1202
1203             fjx0             = _mm_add_ps(fjx0,tx);
1204             fjy0             = _mm_add_ps(fjy0,ty);
1205             fjz0             = _mm_add_ps(fjz0,tz);
1206
1207             /**************************
1208              * CALCULATE INTERACTIONS *
1209              **************************/
1210
1211             r10              = _mm_mul_ps(rsq10,rinv10);
1212             r10              = _mm_andnot_ps(dummy_mask,r10);
1213
1214             /* Compute parameters for interactions between i and j atoms */
1215             qq10             = _mm_mul_ps(iq1,jq0);
1216
1217             /* EWALD ELECTROSTATICS */
1218
1219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1220             ewrt             = _mm_mul_ps(r10,ewtabscale);
1221             ewitab           = _mm_cvttps_epi32(ewrt);
1222             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1223             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1224                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1225                                          &ewtabF,&ewtabFn);
1226             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1227             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1228
1229             fscal            = felec;
1230
1231             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm_mul_ps(fscal,dx10);
1235             ty               = _mm_mul_ps(fscal,dy10);
1236             tz               = _mm_mul_ps(fscal,dz10);
1237
1238             /* Update vectorial force */
1239             fix1             = _mm_add_ps(fix1,tx);
1240             fiy1             = _mm_add_ps(fiy1,ty);
1241             fiz1             = _mm_add_ps(fiz1,tz);
1242
1243             fjx0             = _mm_add_ps(fjx0,tx);
1244             fjy0             = _mm_add_ps(fjy0,ty);
1245             fjz0             = _mm_add_ps(fjz0,tz);
1246
1247             /**************************
1248              * CALCULATE INTERACTIONS *
1249              **************************/
1250
1251             r20              = _mm_mul_ps(rsq20,rinv20);
1252             r20              = _mm_andnot_ps(dummy_mask,r20);
1253
1254             /* Compute parameters for interactions between i and j atoms */
1255             qq20             = _mm_mul_ps(iq2,jq0);
1256
1257             /* EWALD ELECTROSTATICS */
1258
1259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1260             ewrt             = _mm_mul_ps(r20,ewtabscale);
1261             ewitab           = _mm_cvttps_epi32(ewrt);
1262             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1263             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1264                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1265                                          &ewtabF,&ewtabFn);
1266             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1267             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1268
1269             fscal            = felec;
1270
1271             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1272
1273             /* Calculate temporary vectorial force */
1274             tx               = _mm_mul_ps(fscal,dx20);
1275             ty               = _mm_mul_ps(fscal,dy20);
1276             tz               = _mm_mul_ps(fscal,dz20);
1277
1278             /* Update vectorial force */
1279             fix2             = _mm_add_ps(fix2,tx);
1280             fiy2             = _mm_add_ps(fiy2,ty);
1281             fiz2             = _mm_add_ps(fiz2,tz);
1282
1283             fjx0             = _mm_add_ps(fjx0,tx);
1284             fjy0             = _mm_add_ps(fjy0,ty);
1285             fjz0             = _mm_add_ps(fjz0,tz);
1286
1287             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1288             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1289             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1290             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1291
1292             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1293
1294             /* Inner loop uses 137 flops */
1295         }
1296
1297         /* End of innermost loop */
1298
1299         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1300                                               f+i_coord_offset,fshift+i_shift_offset);
1301
1302         /* Increment number of inner iterations */
1303         inneriter                  += j_index_end - j_index_start;
1304
1305         /* Outer loop uses 18 flops */
1306     }
1307
1308     /* Increment number of outer iterations */
1309     outeriter        += nri;
1310
1311     /* Update outer/inner flops */
1312
1313     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1314 }