Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
85     real             *vftab;
86     __m128i          ewitab;
87     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     real             *ewtab;
89     __m128           dummy_mask,cutoff_mask;
90     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91     __m128           one     = _mm_set1_ps(1.0);
92     __m128           two     = _mm_set1_ps(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_ps(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
112
113     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_ps();
151         fiy0             = _mm_setzero_ps();
152         fiz0             = _mm_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
190
191             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
195                                                               charge+jnrC+0,charge+jnrD+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_ps(iq0,jq0);
209             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,
211                                          vdwparam+vdwioffset0+vdwjidx0C,
212                                          vdwparam+vdwioffset0+vdwjidx0D,
213                                          &c6_00,&c12_00);
214
215             /* Calculate table index by multiplying r with table scale and truncate to integer */
216             rt               = _mm_mul_ps(r00,vftabscale);
217             vfitab           = _mm_cvttps_epi32(rt);
218             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
219             vfitab           = _mm_slli_epi32(vfitab,3);
220
221             /* EWALD ELECTROSTATICS */
222
223             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
224             ewrt             = _mm_mul_ps(r00,ewtabscale);
225             ewitab           = _mm_cvttps_epi32(ewrt);
226             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
227             ewitab           = _mm_slli_epi32(ewitab,2);
228             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
229             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
230             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
231             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
232             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
233             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
234             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
235             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
236             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
237
238             /* CUBIC SPLINE TABLE DISPERSION */
239             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
240             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
241             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
242             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
243             _MM_TRANSPOSE4_PS(Y,F,G,H);
244             Heps             = _mm_mul_ps(vfeps,H);
245             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
246             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
247             vvdw6            = _mm_mul_ps(c6_00,VV);
248             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
249             fvdw6            = _mm_mul_ps(c6_00,FF);
250
251             /* CUBIC SPLINE TABLE REPULSION */
252             vfitab           = _mm_add_epi32(vfitab,ifour);
253             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
255             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
256             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
257             _MM_TRANSPOSE4_PS(Y,F,G,H);
258             Heps             = _mm_mul_ps(vfeps,H);
259             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
260             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
261             vvdw12           = _mm_mul_ps(c12_00,VV);
262             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263             fvdw12           = _mm_mul_ps(c12_00,FF);
264             vvdw             = _mm_add_ps(vvdw12,vvdw6);
265             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velecsum         = _mm_add_ps(velecsum,velec);
269             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
270
271             fscal            = _mm_add_ps(felec,fvdw);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_ps(fscal,dx00);
275             ty               = _mm_mul_ps(fscal,dy00);
276             tz               = _mm_mul_ps(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm_add_ps(fix0,tx);
280             fiy0             = _mm_add_ps(fiy0,ty);
281             fiz0             = _mm_add_ps(fiz0,tz);
282
283             fjptrA             = f+j_coord_offsetA;
284             fjptrB             = f+j_coord_offsetB;
285             fjptrC             = f+j_coord_offsetC;
286             fjptrD             = f+j_coord_offsetD;
287             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289             /* Inner loop uses 75 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
303              */
304             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
306             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
307             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
308             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313
314             /* load j atom coordinates */
315             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
316                                               x+j_coord_offsetC,x+j_coord_offsetD,
317                                               &jx0,&jy0,&jz0);
318
319             /* Calculate displacement vector */
320             dx00             = _mm_sub_ps(ix0,jx0);
321             dy00             = _mm_sub_ps(iy0,jy0);
322             dz00             = _mm_sub_ps(iz0,jz0);
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
326
327             rinv00           = gmx_mm_invsqrt_ps(rsq00);
328
329             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
330
331             /* Load parameters for j particles */
332             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
333                                                               charge+jnrC+0,charge+jnrD+0);
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm_mul_ps(rsq00,rinv00);
344             r00              = _mm_andnot_ps(dummy_mask,r00);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq00             = _mm_mul_ps(iq0,jq0);
348             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
349                                          vdwparam+vdwioffset0+vdwjidx0B,
350                                          vdwparam+vdwioffset0+vdwjidx0C,
351                                          vdwparam+vdwioffset0+vdwjidx0D,
352                                          &c6_00,&c12_00);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm_mul_ps(r00,vftabscale);
356             vfitab           = _mm_cvttps_epi32(rt);
357             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
358             vfitab           = _mm_slli_epi32(vfitab,3);
359
360             /* EWALD ELECTROSTATICS */
361
362             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
363             ewrt             = _mm_mul_ps(r00,ewtabscale);
364             ewitab           = _mm_cvttps_epi32(ewrt);
365             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
366             ewitab           = _mm_slli_epi32(ewitab,2);
367             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
368             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
369             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
370             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
371             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
372             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
373             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
374             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
375             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
376
377             /* CUBIC SPLINE TABLE DISPERSION */
378             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
379             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
380             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
381             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
382             _MM_TRANSPOSE4_PS(Y,F,G,H);
383             Heps             = _mm_mul_ps(vfeps,H);
384             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
385             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
386             vvdw6            = _mm_mul_ps(c6_00,VV);
387             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
388             fvdw6            = _mm_mul_ps(c6_00,FF);
389
390             /* CUBIC SPLINE TABLE REPULSION */
391             vfitab           = _mm_add_epi32(vfitab,ifour);
392             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
393             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
394             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
395             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
396             _MM_TRANSPOSE4_PS(Y,F,G,H);
397             Heps             = _mm_mul_ps(vfeps,H);
398             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
399             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
400             vvdw12           = _mm_mul_ps(c12_00,VV);
401             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
402             fvdw12           = _mm_mul_ps(c12_00,FF);
403             vvdw             = _mm_add_ps(vvdw12,vvdw6);
404             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_andnot_ps(dummy_mask,velec);
408             velecsum         = _mm_add_ps(velecsum,velec);
409             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
410             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
411
412             fscal            = _mm_add_ps(felec,fvdw);
413
414             fscal            = _mm_andnot_ps(dummy_mask,fscal);
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm_mul_ps(fscal,dx00);
418             ty               = _mm_mul_ps(fscal,dy00);
419             tz               = _mm_mul_ps(fscal,dz00);
420
421             /* Update vectorial force */
422             fix0             = _mm_add_ps(fix0,tx);
423             fiy0             = _mm_add_ps(fiy0,ty);
424             fiz0             = _mm_add_ps(fiz0,tz);
425
426             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
427             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
428             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
429             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
430             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
431
432             /* Inner loop uses 76 flops */
433         }
434
435         /* End of innermost loop */
436
437         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
438                                               f+i_coord_offset,fshift+i_shift_offset);
439
440         ggid                        = gid[iidx];
441         /* Update potential energies */
442         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
443         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
444
445         /* Increment number of inner iterations */
446         inneriter                  += j_index_end - j_index_start;
447
448         /* Outer loop uses 9 flops */
449     }
450
451     /* Increment number of outer iterations */
452     outeriter        += nri;
453
454     /* Update outer/inner flops */
455
456     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
457 }
458 /*
459  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_single
460  * Electrostatics interaction: Ewald
461  * VdW interaction:            CubicSplineTable
462  * Geometry:                   Particle-Particle
463  * Calculate force/pot:        Force
464  */
465 void
466 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_single
467                     (t_nblist * gmx_restrict                nlist,
468                      rvec * gmx_restrict                    xx,
469                      rvec * gmx_restrict                    ff,
470                      t_forcerec * gmx_restrict              fr,
471                      t_mdatoms * gmx_restrict               mdatoms,
472                      nb_kernel_data_t * gmx_restrict        kernel_data,
473                      t_nrnb * gmx_restrict                  nrnb)
474 {
475     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
476      * just 0 for non-waters.
477      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
478      * jnr indices corresponding to data put in the four positions in the SIMD register.
479      */
480     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
481     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
482     int              jnrA,jnrB,jnrC,jnrD;
483     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
484     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
485     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
486     real             rcutoff_scalar;
487     real             *shiftvec,*fshift,*x,*f;
488     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
489     real             scratch[4*DIM];
490     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
491     int              vdwioffset0;
492     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
493     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
494     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
495     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
496     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     int              nvdwtype;
499     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
500     int              *vdwtype;
501     real             *vdwparam;
502     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
503     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
504     __m128i          vfitab;
505     __m128i          ifour       = _mm_set1_epi32(4);
506     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
507     real             *vftab;
508     __m128i          ewitab;
509     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
510     real             *ewtab;
511     __m128           dummy_mask,cutoff_mask;
512     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
513     __m128           one     = _mm_set1_ps(1.0);
514     __m128           two     = _mm_set1_ps(2.0);
515     x                = xx[0];
516     f                = ff[0];
517
518     nri              = nlist->nri;
519     iinr             = nlist->iinr;
520     jindex           = nlist->jindex;
521     jjnr             = nlist->jjnr;
522     shiftidx         = nlist->shift;
523     gid              = nlist->gid;
524     shiftvec         = fr->shift_vec[0];
525     fshift           = fr->fshift[0];
526     facel            = _mm_set1_ps(fr->epsfac);
527     charge           = mdatoms->chargeA;
528     nvdwtype         = fr->ntype;
529     vdwparam         = fr->nbfp;
530     vdwtype          = mdatoms->typeA;
531
532     vftab            = kernel_data->table_vdw->data;
533     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
534
535     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
536     ewtab            = fr->ic->tabq_coul_F;
537     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
538     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
539
540     /* Avoid stupid compiler warnings */
541     jnrA = jnrB = jnrC = jnrD = 0;
542     j_coord_offsetA = 0;
543     j_coord_offsetB = 0;
544     j_coord_offsetC = 0;
545     j_coord_offsetD = 0;
546
547     outeriter        = 0;
548     inneriter        = 0;
549
550     for(iidx=0;iidx<4*DIM;iidx++)
551     {
552         scratch[iidx] = 0.0;
553     }
554
555     /* Start outer loop over neighborlists */
556     for(iidx=0; iidx<nri; iidx++)
557     {
558         /* Load shift vector for this list */
559         i_shift_offset   = DIM*shiftidx[iidx];
560
561         /* Load limits for loop over neighbors */
562         j_index_start    = jindex[iidx];
563         j_index_end      = jindex[iidx+1];
564
565         /* Get outer coordinate index */
566         inr              = iinr[iidx];
567         i_coord_offset   = DIM*inr;
568
569         /* Load i particle coords and add shift vector */
570         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
571
572         fix0             = _mm_setzero_ps();
573         fiy0             = _mm_setzero_ps();
574         fiz0             = _mm_setzero_ps();
575
576         /* Load parameters for i particles */
577         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
578         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
579
580         /* Start inner kernel loop */
581         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
582         {
583
584             /* Get j neighbor index, and coordinate index */
585             jnrA             = jjnr[jidx];
586             jnrB             = jjnr[jidx+1];
587             jnrC             = jjnr[jidx+2];
588             jnrD             = jjnr[jidx+3];
589             j_coord_offsetA  = DIM*jnrA;
590             j_coord_offsetB  = DIM*jnrB;
591             j_coord_offsetC  = DIM*jnrC;
592             j_coord_offsetD  = DIM*jnrD;
593
594             /* load j atom coordinates */
595             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
596                                               x+j_coord_offsetC,x+j_coord_offsetD,
597                                               &jx0,&jy0,&jz0);
598
599             /* Calculate displacement vector */
600             dx00             = _mm_sub_ps(ix0,jx0);
601             dy00             = _mm_sub_ps(iy0,jy0);
602             dz00             = _mm_sub_ps(iz0,jz0);
603
604             /* Calculate squared distance and things based on it */
605             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
606
607             rinv00           = gmx_mm_invsqrt_ps(rsq00);
608
609             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
610
611             /* Load parameters for j particles */
612             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
613                                                               charge+jnrC+0,charge+jnrD+0);
614             vdwjidx0A        = 2*vdwtype[jnrA+0];
615             vdwjidx0B        = 2*vdwtype[jnrB+0];
616             vdwjidx0C        = 2*vdwtype[jnrC+0];
617             vdwjidx0D        = 2*vdwtype[jnrD+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r00              = _mm_mul_ps(rsq00,rinv00);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm_mul_ps(iq0,jq0);
627             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
628                                          vdwparam+vdwioffset0+vdwjidx0B,
629                                          vdwparam+vdwioffset0+vdwjidx0C,
630                                          vdwparam+vdwioffset0+vdwjidx0D,
631                                          &c6_00,&c12_00);
632
633             /* Calculate table index by multiplying r with table scale and truncate to integer */
634             rt               = _mm_mul_ps(r00,vftabscale);
635             vfitab           = _mm_cvttps_epi32(rt);
636             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
637             vfitab           = _mm_slli_epi32(vfitab,3);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _mm_mul_ps(r00,ewtabscale);
643             ewitab           = _mm_cvttps_epi32(ewrt);
644             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
645             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
646                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
647                                          &ewtabF,&ewtabFn);
648             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
649             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
650
651             /* CUBIC SPLINE TABLE DISPERSION */
652             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
653             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
654             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
655             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
656             _MM_TRANSPOSE4_PS(Y,F,G,H);
657             Heps             = _mm_mul_ps(vfeps,H);
658             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
659             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
660             fvdw6            = _mm_mul_ps(c6_00,FF);
661
662             /* CUBIC SPLINE TABLE REPULSION */
663             vfitab           = _mm_add_epi32(vfitab,ifour);
664             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
665             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
666             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
667             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
668             _MM_TRANSPOSE4_PS(Y,F,G,H);
669             Heps             = _mm_mul_ps(vfeps,H);
670             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
671             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
672             fvdw12           = _mm_mul_ps(c12_00,FF);
673             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
674
675             fscal            = _mm_add_ps(felec,fvdw);
676
677             /* Calculate temporary vectorial force */
678             tx               = _mm_mul_ps(fscal,dx00);
679             ty               = _mm_mul_ps(fscal,dy00);
680             tz               = _mm_mul_ps(fscal,dz00);
681
682             /* Update vectorial force */
683             fix0             = _mm_add_ps(fix0,tx);
684             fiy0             = _mm_add_ps(fiy0,ty);
685             fiz0             = _mm_add_ps(fiz0,tz);
686
687             fjptrA             = f+j_coord_offsetA;
688             fjptrB             = f+j_coord_offsetB;
689             fjptrC             = f+j_coord_offsetC;
690             fjptrD             = f+j_coord_offsetD;
691             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
692
693             /* Inner loop uses 62 flops */
694         }
695
696         if(jidx<j_index_end)
697         {
698
699             /* Get j neighbor index, and coordinate index */
700             jnrlistA         = jjnr[jidx];
701             jnrlistB         = jjnr[jidx+1];
702             jnrlistC         = jjnr[jidx+2];
703             jnrlistD         = jjnr[jidx+3];
704             /* Sign of each element will be negative for non-real atoms.
705              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
706              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
707              */
708             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
709             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
710             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
711             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
712             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
713             j_coord_offsetA  = DIM*jnrA;
714             j_coord_offsetB  = DIM*jnrB;
715             j_coord_offsetC  = DIM*jnrC;
716             j_coord_offsetD  = DIM*jnrD;
717
718             /* load j atom coordinates */
719             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
720                                               x+j_coord_offsetC,x+j_coord_offsetD,
721                                               &jx0,&jy0,&jz0);
722
723             /* Calculate displacement vector */
724             dx00             = _mm_sub_ps(ix0,jx0);
725             dy00             = _mm_sub_ps(iy0,jy0);
726             dz00             = _mm_sub_ps(iz0,jz0);
727
728             /* Calculate squared distance and things based on it */
729             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
730
731             rinv00           = gmx_mm_invsqrt_ps(rsq00);
732
733             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
734
735             /* Load parameters for j particles */
736             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
737                                                               charge+jnrC+0,charge+jnrD+0);
738             vdwjidx0A        = 2*vdwtype[jnrA+0];
739             vdwjidx0B        = 2*vdwtype[jnrB+0];
740             vdwjidx0C        = 2*vdwtype[jnrC+0];
741             vdwjidx0D        = 2*vdwtype[jnrD+0];
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             r00              = _mm_mul_ps(rsq00,rinv00);
748             r00              = _mm_andnot_ps(dummy_mask,r00);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq00             = _mm_mul_ps(iq0,jq0);
752             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
753                                          vdwparam+vdwioffset0+vdwjidx0B,
754                                          vdwparam+vdwioffset0+vdwjidx0C,
755                                          vdwparam+vdwioffset0+vdwjidx0D,
756                                          &c6_00,&c12_00);
757
758             /* Calculate table index by multiplying r with table scale and truncate to integer */
759             rt               = _mm_mul_ps(r00,vftabscale);
760             vfitab           = _mm_cvttps_epi32(rt);
761             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
762             vfitab           = _mm_slli_epi32(vfitab,3);
763
764             /* EWALD ELECTROSTATICS */
765
766             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
767             ewrt             = _mm_mul_ps(r00,ewtabscale);
768             ewitab           = _mm_cvttps_epi32(ewrt);
769             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
770             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
771                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
772                                          &ewtabF,&ewtabFn);
773             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
774             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
775
776             /* CUBIC SPLINE TABLE DISPERSION */
777             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
778             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
779             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
780             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
781             _MM_TRANSPOSE4_PS(Y,F,G,H);
782             Heps             = _mm_mul_ps(vfeps,H);
783             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
784             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
785             fvdw6            = _mm_mul_ps(c6_00,FF);
786
787             /* CUBIC SPLINE TABLE REPULSION */
788             vfitab           = _mm_add_epi32(vfitab,ifour);
789             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
790             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
791             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
792             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
793             _MM_TRANSPOSE4_PS(Y,F,G,H);
794             Heps             = _mm_mul_ps(vfeps,H);
795             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
796             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
797             fvdw12           = _mm_mul_ps(c12_00,FF);
798             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
799
800             fscal            = _mm_add_ps(felec,fvdw);
801
802             fscal            = _mm_andnot_ps(dummy_mask,fscal);
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm_mul_ps(fscal,dx00);
806             ty               = _mm_mul_ps(fscal,dy00);
807             tz               = _mm_mul_ps(fscal,dz00);
808
809             /* Update vectorial force */
810             fix0             = _mm_add_ps(fix0,tx);
811             fiy0             = _mm_add_ps(fiy0,ty);
812             fiz0             = _mm_add_ps(fiz0,tz);
813
814             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
815             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
816             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
817             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
818             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
819
820             /* Inner loop uses 63 flops */
821         }
822
823         /* End of innermost loop */
824
825         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
826                                               f+i_coord_offset,fshift+i_shift_offset);
827
828         /* Increment number of inner iterations */
829         inneriter                  += j_index_end - j_index_start;
830
831         /* Outer loop uses 7 flops */
832     }
833
834     /* Increment number of outer iterations */
835     outeriter        += nri;
836
837     /* Update outer/inner flops */
838
839     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
840 }