Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,
227                                          vdwparam+vdwioffset0+vdwjidx0C,
228                                          vdwparam+vdwioffset0+vdwjidx0D,
229                                          &c6_00,&c12_00);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm_mul_ps(r00,vftabscale);
233             vfitab           = _mm_cvttps_epi32(rt);
234             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
235             vfitab           = _mm_slli_epi32(vfitab,3);
236
237             /* EWALD ELECTROSTATICS */
238
239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
240             ewrt             = _mm_mul_ps(r00,ewtabscale);
241             ewitab           = _mm_cvttps_epi32(ewrt);
242             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
243             ewitab           = _mm_slli_epi32(ewitab,2);
244             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
245             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
246             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
247             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
248             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
249             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
250             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
251             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
252             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
257             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
258             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
259             _MM_TRANSPOSE4_PS(Y,F,G,H);
260             Heps             = _mm_mul_ps(vfeps,H);
261             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
262             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
263             vvdw6            = _mm_mul_ps(c6_00,VV);
264             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
265             fvdw6            = _mm_mul_ps(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Heps             = _mm_mul_ps(vfeps,H);
275             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
276             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
277             vvdw12           = _mm_mul_ps(c12_00,VV);
278             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
279             fvdw12           = _mm_mul_ps(c12_00,FF);
280             vvdw             = _mm_add_ps(vvdw12,vvdw6);
281             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_ps(velecsum,velec);
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm_add_ps(felec,fvdw);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_ps(fscal,dx00);
291             ty               = _mm_mul_ps(fscal,dy00);
292             tz               = _mm_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_ps(fix0,tx);
296             fiy0             = _mm_add_ps(fiy0,ty);
297             fiz0             = _mm_add_ps(fiz0,tz);
298
299             fjptrA             = f+j_coord_offsetA;
300             fjptrB             = f+j_coord_offsetB;
301             fjptrC             = f+j_coord_offsetC;
302             fjptrD             = f+j_coord_offsetD;
303             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
304
305             /* Inner loop uses 75 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             /* Sign of each element will be negative for non-real atoms.
317              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
318              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
319              */
320             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             j_coord_offsetA  = DIM*jnrA;
326             j_coord_offsetB  = DIM*jnrB;
327             j_coord_offsetC  = DIM*jnrC;
328             j_coord_offsetD  = DIM*jnrD;
329
330             /* load j atom coordinates */
331             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
332                                               x+j_coord_offsetC,x+j_coord_offsetD,
333                                               &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm_sub_ps(ix0,jx0);
337             dy00             = _mm_sub_ps(iy0,jy0);
338             dz00             = _mm_sub_ps(iz0,jz0);
339
340             /* Calculate squared distance and things based on it */
341             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
342
343             rinv00           = gmx_mm_invsqrt_ps(rsq00);
344
345             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
346
347             /* Load parameters for j particles */
348             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
349                                                               charge+jnrC+0,charge+jnrD+0);
350             vdwjidx0A        = 2*vdwtype[jnrA+0];
351             vdwjidx0B        = 2*vdwtype[jnrB+0];
352             vdwjidx0C        = 2*vdwtype[jnrC+0];
353             vdwjidx0D        = 2*vdwtype[jnrD+0];
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r00              = _mm_mul_ps(rsq00,rinv00);
360             r00              = _mm_andnot_ps(dummy_mask,r00);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq00             = _mm_mul_ps(iq0,jq0);
364             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
365                                          vdwparam+vdwioffset0+vdwjidx0B,
366                                          vdwparam+vdwioffset0+vdwjidx0C,
367                                          vdwparam+vdwioffset0+vdwjidx0D,
368                                          &c6_00,&c12_00);
369
370             /* Calculate table index by multiplying r with table scale and truncate to integer */
371             rt               = _mm_mul_ps(r00,vftabscale);
372             vfitab           = _mm_cvttps_epi32(rt);
373             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
374             vfitab           = _mm_slli_epi32(vfitab,3);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_ps(r00,ewtabscale);
380             ewitab           = _mm_cvttps_epi32(ewrt);
381             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
390             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
391             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
392
393             /* CUBIC SPLINE TABLE DISPERSION */
394             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
395             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
396             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
397             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
398             _MM_TRANSPOSE4_PS(Y,F,G,H);
399             Heps             = _mm_mul_ps(vfeps,H);
400             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
401             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
402             vvdw6            = _mm_mul_ps(c6_00,VV);
403             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
404             fvdw6            = _mm_mul_ps(c6_00,FF);
405
406             /* CUBIC SPLINE TABLE REPULSION */
407             vfitab           = _mm_add_epi32(vfitab,ifour);
408             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
409             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
410             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
411             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
412             _MM_TRANSPOSE4_PS(Y,F,G,H);
413             Heps             = _mm_mul_ps(vfeps,H);
414             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
415             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
416             vvdw12           = _mm_mul_ps(c12_00,VV);
417             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
418             fvdw12           = _mm_mul_ps(c12_00,FF);
419             vvdw             = _mm_add_ps(vvdw12,vvdw6);
420             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm_andnot_ps(dummy_mask,velec);
424             velecsum         = _mm_add_ps(velecsum,velec);
425             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
426             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
427
428             fscal            = _mm_add_ps(felec,fvdw);
429
430             fscal            = _mm_andnot_ps(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm_mul_ps(fscal,dx00);
434             ty               = _mm_mul_ps(fscal,dy00);
435             tz               = _mm_mul_ps(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm_add_ps(fix0,tx);
439             fiy0             = _mm_add_ps(fiy0,ty);
440             fiz0             = _mm_add_ps(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
447
448             /* Inner loop uses 76 flops */
449         }
450
451         /* End of innermost loop */
452
453         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
454                                               f+i_coord_offset,fshift+i_shift_offset);
455
456         ggid                        = gid[iidx];
457         /* Update potential energies */
458         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
459         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 9 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
473 }
474 /*
475  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_single
476  * Electrostatics interaction: Ewald
477  * VdW interaction:            CubicSplineTable
478  * Geometry:                   Particle-Particle
479  * Calculate force/pot:        Force
480  */
481 void
482 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_single
483                     (t_nblist                    * gmx_restrict       nlist,
484                      rvec                        * gmx_restrict          xx,
485                      rvec                        * gmx_restrict          ff,
486                      t_forcerec                  * gmx_restrict          fr,
487                      t_mdatoms                   * gmx_restrict     mdatoms,
488                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
489                      t_nrnb                      * gmx_restrict        nrnb)
490 {
491     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
492      * just 0 for non-waters.
493      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
494      * jnr indices corresponding to data put in the four positions in the SIMD register.
495      */
496     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
497     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
498     int              jnrA,jnrB,jnrC,jnrD;
499     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
500     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
501     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
502     real             rcutoff_scalar;
503     real             *shiftvec,*fshift,*x,*f;
504     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
505     real             scratch[4*DIM];
506     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
507     int              vdwioffset0;
508     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
509     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
510     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
511     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
512     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
513     real             *charge;
514     int              nvdwtype;
515     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
516     int              *vdwtype;
517     real             *vdwparam;
518     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
519     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
520     __m128i          vfitab;
521     __m128i          ifour       = _mm_set1_epi32(4);
522     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
523     real             *vftab;
524     __m128i          ewitab;
525     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
526     real             *ewtab;
527     __m128           dummy_mask,cutoff_mask;
528     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
529     __m128           one     = _mm_set1_ps(1.0);
530     __m128           two     = _mm_set1_ps(2.0);
531     x                = xx[0];
532     f                = ff[0];
533
534     nri              = nlist->nri;
535     iinr             = nlist->iinr;
536     jindex           = nlist->jindex;
537     jjnr             = nlist->jjnr;
538     shiftidx         = nlist->shift;
539     gid              = nlist->gid;
540     shiftvec         = fr->shift_vec[0];
541     fshift           = fr->fshift[0];
542     facel            = _mm_set1_ps(fr->epsfac);
543     charge           = mdatoms->chargeA;
544     nvdwtype         = fr->ntype;
545     vdwparam         = fr->nbfp;
546     vdwtype          = mdatoms->typeA;
547
548     vftab            = kernel_data->table_vdw->data;
549     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
550
551     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
552     ewtab            = fr->ic->tabq_coul_F;
553     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
554     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
555
556     /* Avoid stupid compiler warnings */
557     jnrA = jnrB = jnrC = jnrD = 0;
558     j_coord_offsetA = 0;
559     j_coord_offsetB = 0;
560     j_coord_offsetC = 0;
561     j_coord_offsetD = 0;
562
563     outeriter        = 0;
564     inneriter        = 0;
565
566     for(iidx=0;iidx<4*DIM;iidx++)
567     {
568         scratch[iidx] = 0.0;
569     }
570
571     /* Start outer loop over neighborlists */
572     for(iidx=0; iidx<nri; iidx++)
573     {
574         /* Load shift vector for this list */
575         i_shift_offset   = DIM*shiftidx[iidx];
576
577         /* Load limits for loop over neighbors */
578         j_index_start    = jindex[iidx];
579         j_index_end      = jindex[iidx+1];
580
581         /* Get outer coordinate index */
582         inr              = iinr[iidx];
583         i_coord_offset   = DIM*inr;
584
585         /* Load i particle coords and add shift vector */
586         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
587
588         fix0             = _mm_setzero_ps();
589         fiy0             = _mm_setzero_ps();
590         fiz0             = _mm_setzero_ps();
591
592         /* Load parameters for i particles */
593         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
594         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
595
596         /* Start inner kernel loop */
597         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
598         {
599
600             /* Get j neighbor index, and coordinate index */
601             jnrA             = jjnr[jidx];
602             jnrB             = jjnr[jidx+1];
603             jnrC             = jjnr[jidx+2];
604             jnrD             = jjnr[jidx+3];
605             j_coord_offsetA  = DIM*jnrA;
606             j_coord_offsetB  = DIM*jnrB;
607             j_coord_offsetC  = DIM*jnrC;
608             j_coord_offsetD  = DIM*jnrD;
609
610             /* load j atom coordinates */
611             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
612                                               x+j_coord_offsetC,x+j_coord_offsetD,
613                                               &jx0,&jy0,&jz0);
614
615             /* Calculate displacement vector */
616             dx00             = _mm_sub_ps(ix0,jx0);
617             dy00             = _mm_sub_ps(iy0,jy0);
618             dz00             = _mm_sub_ps(iz0,jz0);
619
620             /* Calculate squared distance and things based on it */
621             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
622
623             rinv00           = gmx_mm_invsqrt_ps(rsq00);
624
625             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
626
627             /* Load parameters for j particles */
628             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
629                                                               charge+jnrC+0,charge+jnrD+0);
630             vdwjidx0A        = 2*vdwtype[jnrA+0];
631             vdwjidx0B        = 2*vdwtype[jnrB+0];
632             vdwjidx0C        = 2*vdwtype[jnrC+0];
633             vdwjidx0D        = 2*vdwtype[jnrD+0];
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r00              = _mm_mul_ps(rsq00,rinv00);
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq00             = _mm_mul_ps(iq0,jq0);
643             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
644                                          vdwparam+vdwioffset0+vdwjidx0B,
645                                          vdwparam+vdwioffset0+vdwjidx0C,
646                                          vdwparam+vdwioffset0+vdwjidx0D,
647                                          &c6_00,&c12_00);
648
649             /* Calculate table index by multiplying r with table scale and truncate to integer */
650             rt               = _mm_mul_ps(r00,vftabscale);
651             vfitab           = _mm_cvttps_epi32(rt);
652             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
653             vfitab           = _mm_slli_epi32(vfitab,3);
654
655             /* EWALD ELECTROSTATICS */
656
657             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
658             ewrt             = _mm_mul_ps(r00,ewtabscale);
659             ewitab           = _mm_cvttps_epi32(ewrt);
660             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
661             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
662                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
663                                          &ewtabF,&ewtabFn);
664             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
665             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
666
667             /* CUBIC SPLINE TABLE DISPERSION */
668             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Heps             = _mm_mul_ps(vfeps,H);
674             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
675             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
676             fvdw6            = _mm_mul_ps(c6_00,FF);
677
678             /* CUBIC SPLINE TABLE REPULSION */
679             vfitab           = _mm_add_epi32(vfitab,ifour);
680             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
681             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
682             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
683             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
684             _MM_TRANSPOSE4_PS(Y,F,G,H);
685             Heps             = _mm_mul_ps(vfeps,H);
686             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
687             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
688             fvdw12           = _mm_mul_ps(c12_00,FF);
689             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
690
691             fscal            = _mm_add_ps(felec,fvdw);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_ps(fscal,dx00);
695             ty               = _mm_mul_ps(fscal,dy00);
696             tz               = _mm_mul_ps(fscal,dz00);
697
698             /* Update vectorial force */
699             fix0             = _mm_add_ps(fix0,tx);
700             fiy0             = _mm_add_ps(fiy0,ty);
701             fiz0             = _mm_add_ps(fiz0,tz);
702
703             fjptrA             = f+j_coord_offsetA;
704             fjptrB             = f+j_coord_offsetB;
705             fjptrC             = f+j_coord_offsetC;
706             fjptrD             = f+j_coord_offsetD;
707             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
708
709             /* Inner loop uses 62 flops */
710         }
711
712         if(jidx<j_index_end)
713         {
714
715             /* Get j neighbor index, and coordinate index */
716             jnrlistA         = jjnr[jidx];
717             jnrlistB         = jjnr[jidx+1];
718             jnrlistC         = jjnr[jidx+2];
719             jnrlistD         = jjnr[jidx+3];
720             /* Sign of each element will be negative for non-real atoms.
721              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
722              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
723              */
724             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
725             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
726             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
727             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
728             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
729             j_coord_offsetA  = DIM*jnrA;
730             j_coord_offsetB  = DIM*jnrB;
731             j_coord_offsetC  = DIM*jnrC;
732             j_coord_offsetD  = DIM*jnrD;
733
734             /* load j atom coordinates */
735             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
736                                               x+j_coord_offsetC,x+j_coord_offsetD,
737                                               &jx0,&jy0,&jz0);
738
739             /* Calculate displacement vector */
740             dx00             = _mm_sub_ps(ix0,jx0);
741             dy00             = _mm_sub_ps(iy0,jy0);
742             dz00             = _mm_sub_ps(iz0,jz0);
743
744             /* Calculate squared distance and things based on it */
745             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
746
747             rinv00           = gmx_mm_invsqrt_ps(rsq00);
748
749             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
750
751             /* Load parameters for j particles */
752             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
753                                                               charge+jnrC+0,charge+jnrD+0);
754             vdwjidx0A        = 2*vdwtype[jnrA+0];
755             vdwjidx0B        = 2*vdwtype[jnrB+0];
756             vdwjidx0C        = 2*vdwtype[jnrC+0];
757             vdwjidx0D        = 2*vdwtype[jnrD+0];
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             r00              = _mm_mul_ps(rsq00,rinv00);
764             r00              = _mm_andnot_ps(dummy_mask,r00);
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq00             = _mm_mul_ps(iq0,jq0);
768             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
769                                          vdwparam+vdwioffset0+vdwjidx0B,
770                                          vdwparam+vdwioffset0+vdwjidx0C,
771                                          vdwparam+vdwioffset0+vdwjidx0D,
772                                          &c6_00,&c12_00);
773
774             /* Calculate table index by multiplying r with table scale and truncate to integer */
775             rt               = _mm_mul_ps(r00,vftabscale);
776             vfitab           = _mm_cvttps_epi32(rt);
777             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
778             vfitab           = _mm_slli_epi32(vfitab,3);
779
780             /* EWALD ELECTROSTATICS */
781
782             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
783             ewrt             = _mm_mul_ps(r00,ewtabscale);
784             ewitab           = _mm_cvttps_epi32(ewrt);
785             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
786             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
787                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
788                                          &ewtabF,&ewtabFn);
789             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
790             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
791
792             /* CUBIC SPLINE TABLE DISPERSION */
793             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
794             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
795             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
796             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
797             _MM_TRANSPOSE4_PS(Y,F,G,H);
798             Heps             = _mm_mul_ps(vfeps,H);
799             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
800             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
801             fvdw6            = _mm_mul_ps(c6_00,FF);
802
803             /* CUBIC SPLINE TABLE REPULSION */
804             vfitab           = _mm_add_epi32(vfitab,ifour);
805             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
806             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
807             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
808             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
809             _MM_TRANSPOSE4_PS(Y,F,G,H);
810             Heps             = _mm_mul_ps(vfeps,H);
811             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
812             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
813             fvdw12           = _mm_mul_ps(c12_00,FF);
814             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
815
816             fscal            = _mm_add_ps(felec,fvdw);
817
818             fscal            = _mm_andnot_ps(dummy_mask,fscal);
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm_mul_ps(fscal,dx00);
822             ty               = _mm_mul_ps(fscal,dy00);
823             tz               = _mm_mul_ps(fscal,dz00);
824
825             /* Update vectorial force */
826             fix0             = _mm_add_ps(fix0,tx);
827             fiy0             = _mm_add_ps(fiy0,ty);
828             fiz0             = _mm_add_ps(fiz0,tz);
829
830             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
831             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
832             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
833             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
834             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
835
836             /* Inner loop uses 63 flops */
837         }
838
839         /* End of innermost loop */
840
841         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
842                                               f+i_coord_offset,fshift+i_shift_offset);
843
844         /* Increment number of inner iterations */
845         inneriter                  += j_index_end - j_index_start;
846
847         /* Outer loop uses 7 flops */
848     }
849
850     /* Increment number of outer iterations */
851     outeriter        += nri;
852
853     /* Update outer/inner flops */
854
855     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
856 }