Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset1;
84     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwioffset3;
88     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100     real             rswitch_scalar,d_scalar;
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118
119     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->rcoulomb;
132     rcutoff          = _mm_set1_ps(rcutoff_scalar);
133     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
134
135     rswitch_scalar   = fr->rcoulomb_switch;
136     rswitch          = _mm_set1_ps(rswitch_scalar);
137     /* Setup switch parameters */
138     d_scalar         = rcutoff_scalar-rswitch_scalar;
139     d                = _mm_set1_ps(d_scalar);
140     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
141     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
144     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
178                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix1             = _mm_setzero_ps();
181         fiy1             = _mm_setzero_ps();
182         fiz1             = _mm_setzero_ps();
183         fix2             = _mm_setzero_ps();
184         fiy2             = _mm_setzero_ps();
185         fiz2             = _mm_setzero_ps();
186         fix3             = _mm_setzero_ps();
187         fiy3             = _mm_setzero_ps();
188         fiz3             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
209                                               x+j_coord_offsetC,x+j_coord_offsetD,
210                                               &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
227
228             rinv10           = gmx_mm_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm_invsqrt_ps(rsq20);
230             rinv30           = gmx_mm_invsqrt_ps(rsq30);
231
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                               charge+jnrC+0,charge+jnrD+0);
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             if (gmx_mm_any_lt(rsq10,rcutoff2))
249             {
250
251             r10              = _mm_mul_ps(rsq10,rinv10);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq10             = _mm_mul_ps(iq1,jq0);
255
256             /* EWALD ELECTROSTATICS */
257
258             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
259             ewrt             = _mm_mul_ps(r10,ewtabscale);
260             ewitab           = _mm_cvttps_epi32(ewrt);
261             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
262             ewitab           = _mm_slli_epi32(ewitab,2);
263             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
264             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
265             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
266             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
267             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
268             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
269             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
270             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
271             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
272
273             d                = _mm_sub_ps(r10,rswitch);
274             d                = _mm_max_ps(d,_mm_setzero_ps());
275             d2               = _mm_mul_ps(d,d);
276             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
277
278             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
279
280             /* Evaluate switch function */
281             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
282             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
283             velec            = _mm_mul_ps(velec,sw);
284             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm_and_ps(velec,cutoff_mask);
288             velecsum         = _mm_add_ps(velecsum,velec);
289
290             fscal            = felec;
291
292             fscal            = _mm_and_ps(fscal,cutoff_mask);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_ps(fscal,dx10);
296             ty               = _mm_mul_ps(fscal,dy10);
297             tz               = _mm_mul_ps(fscal,dz10);
298
299             /* Update vectorial force */
300             fix1             = _mm_add_ps(fix1,tx);
301             fiy1             = _mm_add_ps(fiy1,ty);
302             fiz1             = _mm_add_ps(fiz1,tz);
303
304             fjx0             = _mm_add_ps(fjx0,tx);
305             fjy0             = _mm_add_ps(fjy0,ty);
306             fjz0             = _mm_add_ps(fjz0,tz);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq20,rcutoff2))
315             {
316
317             r20              = _mm_mul_ps(rsq20,rinv20);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq20             = _mm_mul_ps(iq2,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_ps(r20,ewtabscale);
326             ewitab           = _mm_cvttps_epi32(ewrt);
327             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
332             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
333             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
334             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
335             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
336             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
337             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
338
339             d                = _mm_sub_ps(r20,rswitch);
340             d                = _mm_max_ps(d,_mm_setzero_ps());
341             d2               = _mm_mul_ps(d,d);
342             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
343
344             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
345
346             /* Evaluate switch function */
347             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
348             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
349             velec            = _mm_mul_ps(velec,sw);
350             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velec            = _mm_and_ps(velec,cutoff_mask);
354             velecsum         = _mm_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358             fscal            = _mm_and_ps(fscal,cutoff_mask);
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_ps(fscal,dx20);
362             ty               = _mm_mul_ps(fscal,dy20);
363             tz               = _mm_mul_ps(fscal,dz20);
364
365             /* Update vectorial force */
366             fix2             = _mm_add_ps(fix2,tx);
367             fiy2             = _mm_add_ps(fiy2,ty);
368             fiz2             = _mm_add_ps(fiz2,tz);
369
370             fjx0             = _mm_add_ps(fjx0,tx);
371             fjy0             = _mm_add_ps(fjy0,ty);
372             fjz0             = _mm_add_ps(fjz0,tz);
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (gmx_mm_any_lt(rsq30,rcutoff2))
381             {
382
383             r30              = _mm_mul_ps(rsq30,rinv30);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq30             = _mm_mul_ps(iq3,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_ps(r30,ewtabscale);
392             ewitab           = _mm_cvttps_epi32(ewrt);
393             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
399             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
401             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
402             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
403             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
404
405             d                = _mm_sub_ps(r30,rswitch);
406             d                = _mm_max_ps(d,_mm_setzero_ps());
407             d2               = _mm_mul_ps(d,d);
408             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
409
410             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
411
412             /* Evaluate switch function */
413             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
414             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
415             velec            = _mm_mul_ps(velec,sw);
416             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_and_ps(velec,cutoff_mask);
420             velecsum         = _mm_add_ps(velecsum,velec);
421
422             fscal            = felec;
423
424             fscal            = _mm_and_ps(fscal,cutoff_mask);
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm_mul_ps(fscal,dx30);
428             ty               = _mm_mul_ps(fscal,dy30);
429             tz               = _mm_mul_ps(fscal,dz30);
430
431             /* Update vectorial force */
432             fix3             = _mm_add_ps(fix3,tx);
433             fiy3             = _mm_add_ps(fiy3,ty);
434             fiz3             = _mm_add_ps(fiz3,tz);
435
436             fjx0             = _mm_add_ps(fjx0,tx);
437             fjy0             = _mm_add_ps(fjy0,ty);
438             fjz0             = _mm_add_ps(fjz0,tz);
439
440             }
441
442             fjptrA             = f+j_coord_offsetA;
443             fjptrB             = f+j_coord_offsetB;
444             fjptrC             = f+j_coord_offsetC;
445             fjptrD             = f+j_coord_offsetD;
446
447             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
448
449             /* Inner loop uses 195 flops */
450         }
451
452         if(jidx<j_index_end)
453         {
454
455             /* Get j neighbor index, and coordinate index */
456             jnrlistA         = jjnr[jidx];
457             jnrlistB         = jjnr[jidx+1];
458             jnrlistC         = jjnr[jidx+2];
459             jnrlistD         = jjnr[jidx+3];
460             /* Sign of each element will be negative for non-real atoms.
461              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
462              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
463              */
464             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
465             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
466             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
467             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
468             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471             j_coord_offsetC  = DIM*jnrC;
472             j_coord_offsetD  = DIM*jnrD;
473
474             /* load j atom coordinates */
475             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
476                                               x+j_coord_offsetC,x+j_coord_offsetD,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx10             = _mm_sub_ps(ix1,jx0);
481             dy10             = _mm_sub_ps(iy1,jy0);
482             dz10             = _mm_sub_ps(iz1,jz0);
483             dx20             = _mm_sub_ps(ix2,jx0);
484             dy20             = _mm_sub_ps(iy2,jy0);
485             dz20             = _mm_sub_ps(iz2,jz0);
486             dx30             = _mm_sub_ps(ix3,jx0);
487             dy30             = _mm_sub_ps(iy3,jy0);
488             dz30             = _mm_sub_ps(iz3,jz0);
489
490             /* Calculate squared distance and things based on it */
491             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
492             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
493             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
494
495             rinv10           = gmx_mm_invsqrt_ps(rsq10);
496             rinv20           = gmx_mm_invsqrt_ps(rsq20);
497             rinv30           = gmx_mm_invsqrt_ps(rsq30);
498
499             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
500             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
501             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
502
503             /* Load parameters for j particles */
504             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
505                                                               charge+jnrC+0,charge+jnrD+0);
506
507             fjx0             = _mm_setzero_ps();
508             fjy0             = _mm_setzero_ps();
509             fjz0             = _mm_setzero_ps();
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (gmx_mm_any_lt(rsq10,rcutoff2))
516             {
517
518             r10              = _mm_mul_ps(rsq10,rinv10);
519             r10              = _mm_andnot_ps(dummy_mask,r10);
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq10             = _mm_mul_ps(iq1,jq0);
523
524             /* EWALD ELECTROSTATICS */
525
526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
527             ewrt             = _mm_mul_ps(r10,ewtabscale);
528             ewitab           = _mm_cvttps_epi32(ewrt);
529             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
530             ewitab           = _mm_slli_epi32(ewitab,2);
531             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
532             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
533             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
534             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
535             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
536             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
537             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
538             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
539             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
540
541             d                = _mm_sub_ps(r10,rswitch);
542             d                = _mm_max_ps(d,_mm_setzero_ps());
543             d2               = _mm_mul_ps(d,d);
544             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
545
546             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
547
548             /* Evaluate switch function */
549             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
550             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
551             velec            = _mm_mul_ps(velec,sw);
552             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_and_ps(velec,cutoff_mask);
556             velec            = _mm_andnot_ps(dummy_mask,velec);
557             velecsum         = _mm_add_ps(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_and_ps(fscal,cutoff_mask);
562
563             fscal            = _mm_andnot_ps(dummy_mask,fscal);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_ps(fscal,dx10);
567             ty               = _mm_mul_ps(fscal,dy10);
568             tz               = _mm_mul_ps(fscal,dz10);
569
570             /* Update vectorial force */
571             fix1             = _mm_add_ps(fix1,tx);
572             fiy1             = _mm_add_ps(fiy1,ty);
573             fiz1             = _mm_add_ps(fiz1,tz);
574
575             fjx0             = _mm_add_ps(fjx0,tx);
576             fjy0             = _mm_add_ps(fjy0,ty);
577             fjz0             = _mm_add_ps(fjz0,tz);
578
579             }
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             if (gmx_mm_any_lt(rsq20,rcutoff2))
586             {
587
588             r20              = _mm_mul_ps(rsq20,rinv20);
589             r20              = _mm_andnot_ps(dummy_mask,r20);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq20             = _mm_mul_ps(iq2,jq0);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_ps(r20,ewtabscale);
598             ewitab           = _mm_cvttps_epi32(ewrt);
599             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
605             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
607             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
608             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
609             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
610
611             d                = _mm_sub_ps(r20,rswitch);
612             d                = _mm_max_ps(d,_mm_setzero_ps());
613             d2               = _mm_mul_ps(d,d);
614             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
615
616             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
617
618             /* Evaluate switch function */
619             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
620             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
621             velec            = _mm_mul_ps(velec,sw);
622             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm_and_ps(velec,cutoff_mask);
626             velec            = _mm_andnot_ps(dummy_mask,velec);
627             velecsum         = _mm_add_ps(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm_and_ps(fscal,cutoff_mask);
632
633             fscal            = _mm_andnot_ps(dummy_mask,fscal);
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_ps(fscal,dx20);
637             ty               = _mm_mul_ps(fscal,dy20);
638             tz               = _mm_mul_ps(fscal,dz20);
639
640             /* Update vectorial force */
641             fix2             = _mm_add_ps(fix2,tx);
642             fiy2             = _mm_add_ps(fiy2,ty);
643             fiz2             = _mm_add_ps(fiz2,tz);
644
645             fjx0             = _mm_add_ps(fjx0,tx);
646             fjy0             = _mm_add_ps(fjy0,ty);
647             fjz0             = _mm_add_ps(fjz0,tz);
648
649             }
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (gmx_mm_any_lt(rsq30,rcutoff2))
656             {
657
658             r30              = _mm_mul_ps(rsq30,rinv30);
659             r30              = _mm_andnot_ps(dummy_mask,r30);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq30             = _mm_mul_ps(iq3,jq0);
663
664             /* EWALD ELECTROSTATICS */
665
666             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
667             ewrt             = _mm_mul_ps(r30,ewtabscale);
668             ewitab           = _mm_cvttps_epi32(ewrt);
669             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
670             ewitab           = _mm_slli_epi32(ewitab,2);
671             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
672             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
673             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
674             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
675             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
676             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
677             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
678             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
679             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
680
681             d                = _mm_sub_ps(r30,rswitch);
682             d                = _mm_max_ps(d,_mm_setzero_ps());
683             d2               = _mm_mul_ps(d,d);
684             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
685
686             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
687
688             /* Evaluate switch function */
689             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
690             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
691             velec            = _mm_mul_ps(velec,sw);
692             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
693
694             /* Update potential sum for this i atom from the interaction with this j atom. */
695             velec            = _mm_and_ps(velec,cutoff_mask);
696             velec            = _mm_andnot_ps(dummy_mask,velec);
697             velecsum         = _mm_add_ps(velecsum,velec);
698
699             fscal            = felec;
700
701             fscal            = _mm_and_ps(fscal,cutoff_mask);
702
703             fscal            = _mm_andnot_ps(dummy_mask,fscal);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm_mul_ps(fscal,dx30);
707             ty               = _mm_mul_ps(fscal,dy30);
708             tz               = _mm_mul_ps(fscal,dz30);
709
710             /* Update vectorial force */
711             fix3             = _mm_add_ps(fix3,tx);
712             fiy3             = _mm_add_ps(fiy3,ty);
713             fiz3             = _mm_add_ps(fiz3,tz);
714
715             fjx0             = _mm_add_ps(fjx0,tx);
716             fjy0             = _mm_add_ps(fjy0,ty);
717             fjz0             = _mm_add_ps(fjz0,tz);
718
719             }
720
721             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
722             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
723             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
724             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
725
726             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
727
728             /* Inner loop uses 198 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
734                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
735
736         ggid                        = gid[iidx];
737         /* Update potential energies */
738         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
739
740         /* Increment number of inner iterations */
741         inneriter                  += j_index_end - j_index_start;
742
743         /* Outer loop uses 19 flops */
744     }
745
746     /* Increment number of outer iterations */
747     outeriter        += nri;
748
749     /* Update outer/inner flops */
750
751     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*198);
752 }
753 /*
754  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse4_1_single
755  * Electrostatics interaction: Ewald
756  * VdW interaction:            None
757  * Geometry:                   Water4-Particle
758  * Calculate force/pot:        Force
759  */
760 void
761 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse4_1_single
762                     (t_nblist                    * gmx_restrict       nlist,
763                      rvec                        * gmx_restrict          xx,
764                      rvec                        * gmx_restrict          ff,
765                      t_forcerec                  * gmx_restrict          fr,
766                      t_mdatoms                   * gmx_restrict     mdatoms,
767                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
768                      t_nrnb                      * gmx_restrict        nrnb)
769 {
770     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
771      * just 0 for non-waters.
772      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
773      * jnr indices corresponding to data put in the four positions in the SIMD register.
774      */
775     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
776     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
777     int              jnrA,jnrB,jnrC,jnrD;
778     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
779     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
780     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
781     real             rcutoff_scalar;
782     real             *shiftvec,*fshift,*x,*f;
783     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
784     real             scratch[4*DIM];
785     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
786     int              vdwioffset1;
787     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
788     int              vdwioffset2;
789     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
790     int              vdwioffset3;
791     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
792     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
793     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
794     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
795     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
796     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
797     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
798     real             *charge;
799     __m128i          ewitab;
800     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
801     real             *ewtab;
802     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
803     real             rswitch_scalar,d_scalar;
804     __m128           dummy_mask,cutoff_mask;
805     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
806     __m128           one     = _mm_set1_ps(1.0);
807     __m128           two     = _mm_set1_ps(2.0);
808     x                = xx[0];
809     f                = ff[0];
810
811     nri              = nlist->nri;
812     iinr             = nlist->iinr;
813     jindex           = nlist->jindex;
814     jjnr             = nlist->jjnr;
815     shiftidx         = nlist->shift;
816     gid              = nlist->gid;
817     shiftvec         = fr->shift_vec[0];
818     fshift           = fr->fshift[0];
819     facel            = _mm_set1_ps(fr->epsfac);
820     charge           = mdatoms->chargeA;
821
822     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
823     ewtab            = fr->ic->tabq_coul_FDV0;
824     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
825     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
826
827     /* Setup water-specific parameters */
828     inr              = nlist->iinr[0];
829     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
830     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
831     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
832
833     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
834     rcutoff_scalar   = fr->rcoulomb;
835     rcutoff          = _mm_set1_ps(rcutoff_scalar);
836     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
837
838     rswitch_scalar   = fr->rcoulomb_switch;
839     rswitch          = _mm_set1_ps(rswitch_scalar);
840     /* Setup switch parameters */
841     d_scalar         = rcutoff_scalar-rswitch_scalar;
842     d                = _mm_set1_ps(d_scalar);
843     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
844     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
845     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
846     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
847     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
848     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
849
850     /* Avoid stupid compiler warnings */
851     jnrA = jnrB = jnrC = jnrD = 0;
852     j_coord_offsetA = 0;
853     j_coord_offsetB = 0;
854     j_coord_offsetC = 0;
855     j_coord_offsetD = 0;
856
857     outeriter        = 0;
858     inneriter        = 0;
859
860     for(iidx=0;iidx<4*DIM;iidx++)
861     {
862         scratch[iidx] = 0.0;
863     }
864
865     /* Start outer loop over neighborlists */
866     for(iidx=0; iidx<nri; iidx++)
867     {
868         /* Load shift vector for this list */
869         i_shift_offset   = DIM*shiftidx[iidx];
870
871         /* Load limits for loop over neighbors */
872         j_index_start    = jindex[iidx];
873         j_index_end      = jindex[iidx+1];
874
875         /* Get outer coordinate index */
876         inr              = iinr[iidx];
877         i_coord_offset   = DIM*inr;
878
879         /* Load i particle coords and add shift vector */
880         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
881                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
882
883         fix1             = _mm_setzero_ps();
884         fiy1             = _mm_setzero_ps();
885         fiz1             = _mm_setzero_ps();
886         fix2             = _mm_setzero_ps();
887         fiy2             = _mm_setzero_ps();
888         fiz2             = _mm_setzero_ps();
889         fix3             = _mm_setzero_ps();
890         fiy3             = _mm_setzero_ps();
891         fiz3             = _mm_setzero_ps();
892
893         /* Start inner kernel loop */
894         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
895         {
896
897             /* Get j neighbor index, and coordinate index */
898             jnrA             = jjnr[jidx];
899             jnrB             = jjnr[jidx+1];
900             jnrC             = jjnr[jidx+2];
901             jnrD             = jjnr[jidx+3];
902             j_coord_offsetA  = DIM*jnrA;
903             j_coord_offsetB  = DIM*jnrB;
904             j_coord_offsetC  = DIM*jnrC;
905             j_coord_offsetD  = DIM*jnrD;
906
907             /* load j atom coordinates */
908             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
909                                               x+j_coord_offsetC,x+j_coord_offsetD,
910                                               &jx0,&jy0,&jz0);
911
912             /* Calculate displacement vector */
913             dx10             = _mm_sub_ps(ix1,jx0);
914             dy10             = _mm_sub_ps(iy1,jy0);
915             dz10             = _mm_sub_ps(iz1,jz0);
916             dx20             = _mm_sub_ps(ix2,jx0);
917             dy20             = _mm_sub_ps(iy2,jy0);
918             dz20             = _mm_sub_ps(iz2,jz0);
919             dx30             = _mm_sub_ps(ix3,jx0);
920             dy30             = _mm_sub_ps(iy3,jy0);
921             dz30             = _mm_sub_ps(iz3,jz0);
922
923             /* Calculate squared distance and things based on it */
924             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
925             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
926             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
927
928             rinv10           = gmx_mm_invsqrt_ps(rsq10);
929             rinv20           = gmx_mm_invsqrt_ps(rsq20);
930             rinv30           = gmx_mm_invsqrt_ps(rsq30);
931
932             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
933             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
934             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
935
936             /* Load parameters for j particles */
937             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
938                                                               charge+jnrC+0,charge+jnrD+0);
939
940             fjx0             = _mm_setzero_ps();
941             fjy0             = _mm_setzero_ps();
942             fjz0             = _mm_setzero_ps();
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             if (gmx_mm_any_lt(rsq10,rcutoff2))
949             {
950
951             r10              = _mm_mul_ps(rsq10,rinv10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm_mul_ps(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959             ewrt             = _mm_mul_ps(r10,ewtabscale);
960             ewitab           = _mm_cvttps_epi32(ewrt);
961             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
962             ewitab           = _mm_slli_epi32(ewitab,2);
963             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
964             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
965             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
966             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
967             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
968             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
969             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
970             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
971             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
972
973             d                = _mm_sub_ps(r10,rswitch);
974             d                = _mm_max_ps(d,_mm_setzero_ps());
975             d2               = _mm_mul_ps(d,d);
976             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
977
978             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
979
980             /* Evaluate switch function */
981             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
982             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
983             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
984
985             fscal            = felec;
986
987             fscal            = _mm_and_ps(fscal,cutoff_mask);
988
989             /* Calculate temporary vectorial force */
990             tx               = _mm_mul_ps(fscal,dx10);
991             ty               = _mm_mul_ps(fscal,dy10);
992             tz               = _mm_mul_ps(fscal,dz10);
993
994             /* Update vectorial force */
995             fix1             = _mm_add_ps(fix1,tx);
996             fiy1             = _mm_add_ps(fiy1,ty);
997             fiz1             = _mm_add_ps(fiz1,tz);
998
999             fjx0             = _mm_add_ps(fjx0,tx);
1000             fjy0             = _mm_add_ps(fjy0,ty);
1001             fjz0             = _mm_add_ps(fjz0,tz);
1002
1003             }
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             if (gmx_mm_any_lt(rsq20,rcutoff2))
1010             {
1011
1012             r20              = _mm_mul_ps(rsq20,rinv20);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq20             = _mm_mul_ps(iq2,jq0);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm_mul_ps(r20,ewtabscale);
1021             ewitab           = _mm_cvttps_epi32(ewrt);
1022             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1023             ewitab           = _mm_slli_epi32(ewitab,2);
1024             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1025             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1026             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1027             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1028             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1029             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1030             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1031             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1032             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1033
1034             d                = _mm_sub_ps(r20,rswitch);
1035             d                = _mm_max_ps(d,_mm_setzero_ps());
1036             d2               = _mm_mul_ps(d,d);
1037             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1038
1039             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1040
1041             /* Evaluate switch function */
1042             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1043             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1044             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1045
1046             fscal            = felec;
1047
1048             fscal            = _mm_and_ps(fscal,cutoff_mask);
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm_mul_ps(fscal,dx20);
1052             ty               = _mm_mul_ps(fscal,dy20);
1053             tz               = _mm_mul_ps(fscal,dz20);
1054
1055             /* Update vectorial force */
1056             fix2             = _mm_add_ps(fix2,tx);
1057             fiy2             = _mm_add_ps(fiy2,ty);
1058             fiz2             = _mm_add_ps(fiz2,tz);
1059
1060             fjx0             = _mm_add_ps(fjx0,tx);
1061             fjy0             = _mm_add_ps(fjy0,ty);
1062             fjz0             = _mm_add_ps(fjz0,tz);
1063
1064             }
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             if (gmx_mm_any_lt(rsq30,rcutoff2))
1071             {
1072
1073             r30              = _mm_mul_ps(rsq30,rinv30);
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq30             = _mm_mul_ps(iq3,jq0);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm_mul_ps(r30,ewtabscale);
1082             ewitab           = _mm_cvttps_epi32(ewrt);
1083             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1084             ewitab           = _mm_slli_epi32(ewitab,2);
1085             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1086             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1087             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1088             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1089             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1090             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1091             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1092             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1093             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1094
1095             d                = _mm_sub_ps(r30,rswitch);
1096             d                = _mm_max_ps(d,_mm_setzero_ps());
1097             d2               = _mm_mul_ps(d,d);
1098             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1099
1100             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1101
1102             /* Evaluate switch function */
1103             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1104             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1105             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_and_ps(fscal,cutoff_mask);
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm_mul_ps(fscal,dx30);
1113             ty               = _mm_mul_ps(fscal,dy30);
1114             tz               = _mm_mul_ps(fscal,dz30);
1115
1116             /* Update vectorial force */
1117             fix3             = _mm_add_ps(fix3,tx);
1118             fiy3             = _mm_add_ps(fiy3,ty);
1119             fiz3             = _mm_add_ps(fiz3,tz);
1120
1121             fjx0             = _mm_add_ps(fjx0,tx);
1122             fjy0             = _mm_add_ps(fjy0,ty);
1123             fjz0             = _mm_add_ps(fjz0,tz);
1124
1125             }
1126
1127             fjptrA             = f+j_coord_offsetA;
1128             fjptrB             = f+j_coord_offsetB;
1129             fjptrC             = f+j_coord_offsetC;
1130             fjptrD             = f+j_coord_offsetD;
1131
1132             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1133
1134             /* Inner loop uses 186 flops */
1135         }
1136
1137         if(jidx<j_index_end)
1138         {
1139
1140             /* Get j neighbor index, and coordinate index */
1141             jnrlistA         = jjnr[jidx];
1142             jnrlistB         = jjnr[jidx+1];
1143             jnrlistC         = jjnr[jidx+2];
1144             jnrlistD         = jjnr[jidx+3];
1145             /* Sign of each element will be negative for non-real atoms.
1146              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1147              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1148              */
1149             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1150             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1151             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1152             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1153             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1154             j_coord_offsetA  = DIM*jnrA;
1155             j_coord_offsetB  = DIM*jnrB;
1156             j_coord_offsetC  = DIM*jnrC;
1157             j_coord_offsetD  = DIM*jnrD;
1158
1159             /* load j atom coordinates */
1160             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1161                                               x+j_coord_offsetC,x+j_coord_offsetD,
1162                                               &jx0,&jy0,&jz0);
1163
1164             /* Calculate displacement vector */
1165             dx10             = _mm_sub_ps(ix1,jx0);
1166             dy10             = _mm_sub_ps(iy1,jy0);
1167             dz10             = _mm_sub_ps(iz1,jz0);
1168             dx20             = _mm_sub_ps(ix2,jx0);
1169             dy20             = _mm_sub_ps(iy2,jy0);
1170             dz20             = _mm_sub_ps(iz2,jz0);
1171             dx30             = _mm_sub_ps(ix3,jx0);
1172             dy30             = _mm_sub_ps(iy3,jy0);
1173             dz30             = _mm_sub_ps(iz3,jz0);
1174
1175             /* Calculate squared distance and things based on it */
1176             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1177             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1178             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1179
1180             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1181             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1182             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1183
1184             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1185             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1186             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1187
1188             /* Load parameters for j particles */
1189             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1190                                                               charge+jnrC+0,charge+jnrD+0);
1191
1192             fjx0             = _mm_setzero_ps();
1193             fjy0             = _mm_setzero_ps();
1194             fjz0             = _mm_setzero_ps();
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             if (gmx_mm_any_lt(rsq10,rcutoff2))
1201             {
1202
1203             r10              = _mm_mul_ps(rsq10,rinv10);
1204             r10              = _mm_andnot_ps(dummy_mask,r10);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq10             = _mm_mul_ps(iq1,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm_mul_ps(r10,ewtabscale);
1213             ewitab           = _mm_cvttps_epi32(ewrt);
1214             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1215             ewitab           = _mm_slli_epi32(ewitab,2);
1216             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1217             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1218             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1219             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1220             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1221             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1222             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1223             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1224             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1225
1226             d                = _mm_sub_ps(r10,rswitch);
1227             d                = _mm_max_ps(d,_mm_setzero_ps());
1228             d2               = _mm_mul_ps(d,d);
1229             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1230
1231             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1232
1233             /* Evaluate switch function */
1234             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1235             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1236             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1237
1238             fscal            = felec;
1239
1240             fscal            = _mm_and_ps(fscal,cutoff_mask);
1241
1242             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm_mul_ps(fscal,dx10);
1246             ty               = _mm_mul_ps(fscal,dy10);
1247             tz               = _mm_mul_ps(fscal,dz10);
1248
1249             /* Update vectorial force */
1250             fix1             = _mm_add_ps(fix1,tx);
1251             fiy1             = _mm_add_ps(fiy1,ty);
1252             fiz1             = _mm_add_ps(fiz1,tz);
1253
1254             fjx0             = _mm_add_ps(fjx0,tx);
1255             fjy0             = _mm_add_ps(fjy0,ty);
1256             fjz0             = _mm_add_ps(fjz0,tz);
1257
1258             }
1259
1260             /**************************
1261              * CALCULATE INTERACTIONS *
1262              **************************/
1263
1264             if (gmx_mm_any_lt(rsq20,rcutoff2))
1265             {
1266
1267             r20              = _mm_mul_ps(rsq20,rinv20);
1268             r20              = _mm_andnot_ps(dummy_mask,r20);
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq20             = _mm_mul_ps(iq2,jq0);
1272
1273             /* EWALD ELECTROSTATICS */
1274
1275             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1276             ewrt             = _mm_mul_ps(r20,ewtabscale);
1277             ewitab           = _mm_cvttps_epi32(ewrt);
1278             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1279             ewitab           = _mm_slli_epi32(ewitab,2);
1280             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1281             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1282             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1283             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1284             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1285             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1286             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1287             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1288             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1289
1290             d                = _mm_sub_ps(r20,rswitch);
1291             d                = _mm_max_ps(d,_mm_setzero_ps());
1292             d2               = _mm_mul_ps(d,d);
1293             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1294
1295             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1296
1297             /* Evaluate switch function */
1298             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1299             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1300             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm_and_ps(fscal,cutoff_mask);
1305
1306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm_mul_ps(fscal,dx20);
1310             ty               = _mm_mul_ps(fscal,dy20);
1311             tz               = _mm_mul_ps(fscal,dz20);
1312
1313             /* Update vectorial force */
1314             fix2             = _mm_add_ps(fix2,tx);
1315             fiy2             = _mm_add_ps(fiy2,ty);
1316             fiz2             = _mm_add_ps(fiz2,tz);
1317
1318             fjx0             = _mm_add_ps(fjx0,tx);
1319             fjy0             = _mm_add_ps(fjy0,ty);
1320             fjz0             = _mm_add_ps(fjz0,tz);
1321
1322             }
1323
1324             /**************************
1325              * CALCULATE INTERACTIONS *
1326              **************************/
1327
1328             if (gmx_mm_any_lt(rsq30,rcutoff2))
1329             {
1330
1331             r30              = _mm_mul_ps(rsq30,rinv30);
1332             r30              = _mm_andnot_ps(dummy_mask,r30);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             qq30             = _mm_mul_ps(iq3,jq0);
1336
1337             /* EWALD ELECTROSTATICS */
1338
1339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1340             ewrt             = _mm_mul_ps(r30,ewtabscale);
1341             ewitab           = _mm_cvttps_epi32(ewrt);
1342             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1343             ewitab           = _mm_slli_epi32(ewitab,2);
1344             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1345             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1346             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1347             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1348             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1349             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1350             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1351             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1352             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1353
1354             d                = _mm_sub_ps(r30,rswitch);
1355             d                = _mm_max_ps(d,_mm_setzero_ps());
1356             d2               = _mm_mul_ps(d,d);
1357             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1358
1359             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1360
1361             /* Evaluate switch function */
1362             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1363             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1364             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1365
1366             fscal            = felec;
1367
1368             fscal            = _mm_and_ps(fscal,cutoff_mask);
1369
1370             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1371
1372             /* Calculate temporary vectorial force */
1373             tx               = _mm_mul_ps(fscal,dx30);
1374             ty               = _mm_mul_ps(fscal,dy30);
1375             tz               = _mm_mul_ps(fscal,dz30);
1376
1377             /* Update vectorial force */
1378             fix3             = _mm_add_ps(fix3,tx);
1379             fiy3             = _mm_add_ps(fiy3,ty);
1380             fiz3             = _mm_add_ps(fiz3,tz);
1381
1382             fjx0             = _mm_add_ps(fjx0,tx);
1383             fjy0             = _mm_add_ps(fjy0,ty);
1384             fjz0             = _mm_add_ps(fjz0,tz);
1385
1386             }
1387
1388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1392
1393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1394
1395             /* Inner loop uses 189 flops */
1396         }
1397
1398         /* End of innermost loop */
1399
1400         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1401                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1402
1403         /* Increment number of inner iterations */
1404         inneriter                  += j_index_end - j_index_start;
1405
1406         /* Outer loop uses 18 flops */
1407     }
1408
1409     /* Increment number of outer iterations */
1410     outeriter        += nri;
1411
1412     /* Update outer/inner flops */
1413
1414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*189);
1415 }