Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104
105     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
106     ewtab            = fr->ic->tabq_coul_FDV0;
107     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
108     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
109
110     /* Setup water-specific parameters */
111     inr              = nlist->iinr[0];
112     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
113     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
114     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->rcoulomb;
118     rcutoff          = _mm_set1_ps(rcutoff_scalar);
119     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
120
121     rswitch_scalar   = fr->rcoulomb_switch;
122     rswitch          = _mm_set1_ps(rswitch_scalar);
123     /* Setup switch parameters */
124     d_scalar         = rcutoff_scalar-rswitch_scalar;
125     d                = _mm_set1_ps(d_scalar);
126     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
127     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
130     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169         fix1             = _mm_setzero_ps();
170         fiy1             = _mm_setzero_ps();
171         fiz1             = _mm_setzero_ps();
172         fix2             = _mm_setzero_ps();
173         fiy2             = _mm_setzero_ps();
174         fiz2             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_ps(rsq00);
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217
218             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
219             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
220             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             if (gmx_mm_any_lt(rsq00,rcutoff2))
231             {
232
233             r00              = _mm_mul_ps(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_ps(iq0,jq0);
237
238             /* EWALD ELECTROSTATICS */
239
240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
241             ewrt             = _mm_mul_ps(r00,ewtabscale);
242             ewitab           = _mm_cvttps_epi32(ewrt);
243             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
244             ewitab           = _mm_slli_epi32(ewitab,2);
245             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
246             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
247             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
248             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
249             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
250             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
251             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
252             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
253             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
254
255             d                = _mm_sub_ps(r00,rswitch);
256             d                = _mm_max_ps(d,_mm_setzero_ps());
257             d2               = _mm_mul_ps(d,d);
258             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
259
260             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
261
262             /* Evaluate switch function */
263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
264             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
265             velec            = _mm_mul_ps(velec,sw);
266             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm_and_ps(velec,cutoff_mask);
270             velecsum         = _mm_add_ps(velecsum,velec);
271
272             fscal            = felec;
273
274             fscal            = _mm_and_ps(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_ps(fscal,dx00);
278             ty               = _mm_mul_ps(fscal,dy00);
279             tz               = _mm_mul_ps(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm_add_ps(fix0,tx);
283             fiy0             = _mm_add_ps(fiy0,ty);
284             fiz0             = _mm_add_ps(fiz0,tz);
285
286             fjptrA             = f+j_coord_offsetA;
287             fjptrB             = f+j_coord_offsetB;
288             fjptrC             = f+j_coord_offsetC;
289             fjptrD             = f+j_coord_offsetD;
290             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
291
292             }
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq10,rcutoff2))
299             {
300
301             r10              = _mm_mul_ps(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_ps(iq1,jq0);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_ps(r10,ewtabscale);
310             ewitab           = _mm_cvttps_epi32(ewrt);
311             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
315             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
316             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
317             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
318             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
319             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
320             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
321             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
322
323             d                = _mm_sub_ps(r10,rswitch);
324             d                = _mm_max_ps(d,_mm_setzero_ps());
325             d2               = _mm_mul_ps(d,d);
326             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
327
328             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
329
330             /* Evaluate switch function */
331             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
332             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
333             velec            = _mm_mul_ps(velec,sw);
334             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_ps(velec,cutoff_mask);
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342             fscal            = _mm_and_ps(fscal,cutoff_mask);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx10);
346             ty               = _mm_mul_ps(fscal,dy10);
347             tz               = _mm_mul_ps(fscal,dz10);
348
349             /* Update vectorial force */
350             fix1             = _mm_add_ps(fix1,tx);
351             fiy1             = _mm_add_ps(fiy1,ty);
352             fiz1             = _mm_add_ps(fiz1,tz);
353
354             fjptrA             = f+j_coord_offsetA;
355             fjptrB             = f+j_coord_offsetB;
356             fjptrC             = f+j_coord_offsetC;
357             fjptrD             = f+j_coord_offsetD;
358             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
359
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq20,rcutoff2))
367             {
368
369             r20              = _mm_mul_ps(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_ps(iq2,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r20,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
390
391             d                = _mm_sub_ps(r20,rswitch);
392             d                = _mm_max_ps(d,_mm_setzero_ps());
393             d2               = _mm_mul_ps(d,d);
394             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
395
396             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
397
398             /* Evaluate switch function */
399             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
400             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
401             velec            = _mm_mul_ps(velec,sw);
402             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_and_ps(velec,cutoff_mask);
406             velecsum         = _mm_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm_and_ps(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_ps(fscal,dx20);
414             ty               = _mm_mul_ps(fscal,dy20);
415             tz               = _mm_mul_ps(fscal,dz20);
416
417             /* Update vectorial force */
418             fix2             = _mm_add_ps(fix2,tx);
419             fiy2             = _mm_add_ps(fiy2,ty);
420             fiz2             = _mm_add_ps(fiz2,tz);
421
422             fjptrA             = f+j_coord_offsetA;
423             fjptrB             = f+j_coord_offsetB;
424             fjptrC             = f+j_coord_offsetC;
425             fjptrD             = f+j_coord_offsetD;
426             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
427
428             }
429
430             /* Inner loop uses 195 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             /* Get j neighbor index, and coordinate index */
437             jnrlistA         = jjnr[jidx];
438             jnrlistB         = jjnr[jidx+1];
439             jnrlistC         = jjnr[jidx+2];
440             jnrlistD         = jjnr[jidx+3];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
446             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
447             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
448             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
449             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452             j_coord_offsetC  = DIM*jnrC;
453             j_coord_offsetD  = DIM*jnrD;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                               x+j_coord_offsetC,x+j_coord_offsetD,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_ps(ix0,jx0);
462             dy00             = _mm_sub_ps(iy0,jy0);
463             dz00             = _mm_sub_ps(iz0,jz0);
464             dx10             = _mm_sub_ps(ix1,jx0);
465             dy10             = _mm_sub_ps(iy1,jy0);
466             dz10             = _mm_sub_ps(iz1,jz0);
467             dx20             = _mm_sub_ps(ix2,jx0);
468             dy20             = _mm_sub_ps(iy2,jy0);
469             dz20             = _mm_sub_ps(iz2,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
473             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
474             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
475
476             rinv00           = gmx_mm_invsqrt_ps(rsq00);
477             rinv10           = gmx_mm_invsqrt_ps(rsq10);
478             rinv20           = gmx_mm_invsqrt_ps(rsq20);
479
480             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
481             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
482             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                               charge+jnrC+0,charge+jnrD+0);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq00,rcutoff2))
493             {
494
495             r00              = _mm_mul_ps(rsq00,rinv00);
496             r00              = _mm_andnot_ps(dummy_mask,r00);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm_mul_ps(iq0,jq0);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = _mm_mul_ps(r00,ewtabscale);
505             ewitab           = _mm_cvttps_epi32(ewrt);
506             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
507             ewitab           = _mm_slli_epi32(ewitab,2);
508             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
509             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
510             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
511             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
512             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
513             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
514             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
515             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
516             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
517
518             d                = _mm_sub_ps(r00,rswitch);
519             d                = _mm_max_ps(d,_mm_setzero_ps());
520             d2               = _mm_mul_ps(d,d);
521             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
522
523             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
524
525             /* Evaluate switch function */
526             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
527             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
528             velec            = _mm_mul_ps(velec,sw);
529             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm_and_ps(velec,cutoff_mask);
533             velec            = _mm_andnot_ps(dummy_mask,velec);
534             velecsum         = _mm_add_ps(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm_and_ps(fscal,cutoff_mask);
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx00);
544             ty               = _mm_mul_ps(fscal,dy00);
545             tz               = _mm_mul_ps(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_ps(fix0,tx);
549             fiy0             = _mm_add_ps(fiy0,ty);
550             fiz0             = _mm_add_ps(fiz0,tz);
551
552             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
553             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
554             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
555             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
556             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
557
558             }
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm_any_lt(rsq10,rcutoff2))
565             {
566
567             r10              = _mm_mul_ps(rsq10,rinv10);
568             r10              = _mm_andnot_ps(dummy_mask,r10);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq10             = _mm_mul_ps(iq1,jq0);
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = _mm_mul_ps(r10,ewtabscale);
577             ewitab           = _mm_cvttps_epi32(ewrt);
578             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
579             ewitab           = _mm_slli_epi32(ewitab,2);
580             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
581             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
582             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
583             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
584             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
585             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
586             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
587             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
588             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
589
590             d                = _mm_sub_ps(r10,rswitch);
591             d                = _mm_max_ps(d,_mm_setzero_ps());
592             d2               = _mm_mul_ps(d,d);
593             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
594
595             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
596
597             /* Evaluate switch function */
598             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
599             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
600             velec            = _mm_mul_ps(velec,sw);
601             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm_and_ps(velec,cutoff_mask);
605             velec            = _mm_andnot_ps(dummy_mask,velec);
606             velecsum         = _mm_add_ps(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_and_ps(fscal,cutoff_mask);
611
612             fscal            = _mm_andnot_ps(dummy_mask,fscal);
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm_mul_ps(fscal,dx10);
616             ty               = _mm_mul_ps(fscal,dy10);
617             tz               = _mm_mul_ps(fscal,dz10);
618
619             /* Update vectorial force */
620             fix1             = _mm_add_ps(fix1,tx);
621             fiy1             = _mm_add_ps(fiy1,ty);
622             fiz1             = _mm_add_ps(fiz1,tz);
623
624             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
625             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
626             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
627             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
628             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
629
630             }
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             if (gmx_mm_any_lt(rsq20,rcutoff2))
637             {
638
639             r20              = _mm_mul_ps(rsq20,rinv20);
640             r20              = _mm_andnot_ps(dummy_mask,r20);
641
642             /* Compute parameters for interactions between i and j atoms */
643             qq20             = _mm_mul_ps(iq2,jq0);
644
645             /* EWALD ELECTROSTATICS */
646
647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648             ewrt             = _mm_mul_ps(r20,ewtabscale);
649             ewitab           = _mm_cvttps_epi32(ewrt);
650             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
651             ewitab           = _mm_slli_epi32(ewitab,2);
652             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
653             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
654             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
655             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
656             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
657             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
658             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
659             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
660             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
661
662             d                = _mm_sub_ps(r20,rswitch);
663             d                = _mm_max_ps(d,_mm_setzero_ps());
664             d2               = _mm_mul_ps(d,d);
665             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
666
667             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
668
669             /* Evaluate switch function */
670             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
671             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
672             velec            = _mm_mul_ps(velec,sw);
673             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
674
675             /* Update potential sum for this i atom from the interaction with this j atom. */
676             velec            = _mm_and_ps(velec,cutoff_mask);
677             velec            = _mm_andnot_ps(dummy_mask,velec);
678             velecsum         = _mm_add_ps(velecsum,velec);
679
680             fscal            = felec;
681
682             fscal            = _mm_and_ps(fscal,cutoff_mask);
683
684             fscal            = _mm_andnot_ps(dummy_mask,fscal);
685
686             /* Calculate temporary vectorial force */
687             tx               = _mm_mul_ps(fscal,dx20);
688             ty               = _mm_mul_ps(fscal,dy20);
689             tz               = _mm_mul_ps(fscal,dz20);
690
691             /* Update vectorial force */
692             fix2             = _mm_add_ps(fix2,tx);
693             fiy2             = _mm_add_ps(fiy2,ty);
694             fiz2             = _mm_add_ps(fiz2,tz);
695
696             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
697             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
698             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
699             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
701
702             }
703
704             /* Inner loop uses 198 flops */
705         }
706
707         /* End of innermost loop */
708
709         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
710                                               f+i_coord_offset,fshift+i_shift_offset);
711
712         ggid                        = gid[iidx];
713         /* Update potential energies */
714         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 19 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*198);
728 }
729 /*
730  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_single
731  * Electrostatics interaction: Ewald
732  * VdW interaction:            None
733  * Geometry:                   Water3-Particle
734  * Calculate force/pot:        Force
735  */
736 void
737 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_single
738                     (t_nblist * gmx_restrict                nlist,
739                      rvec * gmx_restrict                    xx,
740                      rvec * gmx_restrict                    ff,
741                      t_forcerec * gmx_restrict              fr,
742                      t_mdatoms * gmx_restrict               mdatoms,
743                      nb_kernel_data_t * gmx_restrict        kernel_data,
744                      t_nrnb * gmx_restrict                  nrnb)
745 {
746     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
747      * just 0 for non-waters.
748      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
749      * jnr indices corresponding to data put in the four positions in the SIMD register.
750      */
751     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
752     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
753     int              jnrA,jnrB,jnrC,jnrD;
754     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
755     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
756     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
757     real             rcutoff_scalar;
758     real             *shiftvec,*fshift,*x,*f;
759     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
760     real             scratch[4*DIM];
761     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
762     int              vdwioffset0;
763     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
764     int              vdwioffset1;
765     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
766     int              vdwioffset2;
767     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
768     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
769     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
770     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
771     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
772     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
773     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
774     real             *charge;
775     __m128i          ewitab;
776     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
777     real             *ewtab;
778     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
779     real             rswitch_scalar,d_scalar;
780     __m128           dummy_mask,cutoff_mask;
781     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
782     __m128           one     = _mm_set1_ps(1.0);
783     __m128           two     = _mm_set1_ps(2.0);
784     x                = xx[0];
785     f                = ff[0];
786
787     nri              = nlist->nri;
788     iinr             = nlist->iinr;
789     jindex           = nlist->jindex;
790     jjnr             = nlist->jjnr;
791     shiftidx         = nlist->shift;
792     gid              = nlist->gid;
793     shiftvec         = fr->shift_vec[0];
794     fshift           = fr->fshift[0];
795     facel            = _mm_set1_ps(fr->epsfac);
796     charge           = mdatoms->chargeA;
797
798     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
799     ewtab            = fr->ic->tabq_coul_FDV0;
800     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
801     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
802
803     /* Setup water-specific parameters */
804     inr              = nlist->iinr[0];
805     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
806     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
807     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
808
809     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
810     rcutoff_scalar   = fr->rcoulomb;
811     rcutoff          = _mm_set1_ps(rcutoff_scalar);
812     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
813
814     rswitch_scalar   = fr->rcoulomb_switch;
815     rswitch          = _mm_set1_ps(rswitch_scalar);
816     /* Setup switch parameters */
817     d_scalar         = rcutoff_scalar-rswitch_scalar;
818     d                = _mm_set1_ps(d_scalar);
819     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
820     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
821     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
822     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
823     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
824     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
825
826     /* Avoid stupid compiler warnings */
827     jnrA = jnrB = jnrC = jnrD = 0;
828     j_coord_offsetA = 0;
829     j_coord_offsetB = 0;
830     j_coord_offsetC = 0;
831     j_coord_offsetD = 0;
832
833     outeriter        = 0;
834     inneriter        = 0;
835
836     for(iidx=0;iidx<4*DIM;iidx++)
837     {
838         scratch[iidx] = 0.0;
839     }
840
841     /* Start outer loop over neighborlists */
842     for(iidx=0; iidx<nri; iidx++)
843     {
844         /* Load shift vector for this list */
845         i_shift_offset   = DIM*shiftidx[iidx];
846
847         /* Load limits for loop over neighbors */
848         j_index_start    = jindex[iidx];
849         j_index_end      = jindex[iidx+1];
850
851         /* Get outer coordinate index */
852         inr              = iinr[iidx];
853         i_coord_offset   = DIM*inr;
854
855         /* Load i particle coords and add shift vector */
856         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
857                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
858
859         fix0             = _mm_setzero_ps();
860         fiy0             = _mm_setzero_ps();
861         fiz0             = _mm_setzero_ps();
862         fix1             = _mm_setzero_ps();
863         fiy1             = _mm_setzero_ps();
864         fiz1             = _mm_setzero_ps();
865         fix2             = _mm_setzero_ps();
866         fiy2             = _mm_setzero_ps();
867         fiz2             = _mm_setzero_ps();
868
869         /* Start inner kernel loop */
870         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
871         {
872
873             /* Get j neighbor index, and coordinate index */
874             jnrA             = jjnr[jidx];
875             jnrB             = jjnr[jidx+1];
876             jnrC             = jjnr[jidx+2];
877             jnrD             = jjnr[jidx+3];
878             j_coord_offsetA  = DIM*jnrA;
879             j_coord_offsetB  = DIM*jnrB;
880             j_coord_offsetC  = DIM*jnrC;
881             j_coord_offsetD  = DIM*jnrD;
882
883             /* load j atom coordinates */
884             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
885                                               x+j_coord_offsetC,x+j_coord_offsetD,
886                                               &jx0,&jy0,&jz0);
887
888             /* Calculate displacement vector */
889             dx00             = _mm_sub_ps(ix0,jx0);
890             dy00             = _mm_sub_ps(iy0,jy0);
891             dz00             = _mm_sub_ps(iz0,jz0);
892             dx10             = _mm_sub_ps(ix1,jx0);
893             dy10             = _mm_sub_ps(iy1,jy0);
894             dz10             = _mm_sub_ps(iz1,jz0);
895             dx20             = _mm_sub_ps(ix2,jx0);
896             dy20             = _mm_sub_ps(iy2,jy0);
897             dz20             = _mm_sub_ps(iz2,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
903
904             rinv00           = gmx_mm_invsqrt_ps(rsq00);
905             rinv10           = gmx_mm_invsqrt_ps(rsq10);
906             rinv20           = gmx_mm_invsqrt_ps(rsq20);
907
908             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
909             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
910             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
911
912             /* Load parameters for j particles */
913             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
914                                                               charge+jnrC+0,charge+jnrD+0);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             if (gmx_mm_any_lt(rsq00,rcutoff2))
921             {
922
923             r00              = _mm_mul_ps(rsq00,rinv00);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq00             = _mm_mul_ps(iq0,jq0);
927
928             /* EWALD ELECTROSTATICS */
929
930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
931             ewrt             = _mm_mul_ps(r00,ewtabscale);
932             ewitab           = _mm_cvttps_epi32(ewrt);
933             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
934             ewitab           = _mm_slli_epi32(ewitab,2);
935             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
936             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
937             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
938             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
939             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
940             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
941             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
942             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
943             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
944
945             d                = _mm_sub_ps(r00,rswitch);
946             d                = _mm_max_ps(d,_mm_setzero_ps());
947             d2               = _mm_mul_ps(d,d);
948             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
949
950             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
951
952             /* Evaluate switch function */
953             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
954             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
955             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
956
957             fscal            = felec;
958
959             fscal            = _mm_and_ps(fscal,cutoff_mask);
960
961             /* Calculate temporary vectorial force */
962             tx               = _mm_mul_ps(fscal,dx00);
963             ty               = _mm_mul_ps(fscal,dy00);
964             tz               = _mm_mul_ps(fscal,dz00);
965
966             /* Update vectorial force */
967             fix0             = _mm_add_ps(fix0,tx);
968             fiy0             = _mm_add_ps(fiy0,ty);
969             fiz0             = _mm_add_ps(fiz0,tz);
970
971             fjptrA             = f+j_coord_offsetA;
972             fjptrB             = f+j_coord_offsetB;
973             fjptrC             = f+j_coord_offsetC;
974             fjptrD             = f+j_coord_offsetD;
975             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
976
977             }
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             if (gmx_mm_any_lt(rsq10,rcutoff2))
984             {
985
986             r10              = _mm_mul_ps(rsq10,rinv10);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq10             = _mm_mul_ps(iq1,jq0);
990
991             /* EWALD ELECTROSTATICS */
992
993             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994             ewrt             = _mm_mul_ps(r10,ewtabscale);
995             ewitab           = _mm_cvttps_epi32(ewrt);
996             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
997             ewitab           = _mm_slli_epi32(ewitab,2);
998             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
999             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1000             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1001             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1002             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1003             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1004             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1005             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1006             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1007
1008             d                = _mm_sub_ps(r10,rswitch);
1009             d                = _mm_max_ps(d,_mm_setzero_ps());
1010             d2               = _mm_mul_ps(d,d);
1011             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1012
1013             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1014
1015             /* Evaluate switch function */
1016             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1017             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1018             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1019
1020             fscal            = felec;
1021
1022             fscal            = _mm_and_ps(fscal,cutoff_mask);
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_ps(fscal,dx10);
1026             ty               = _mm_mul_ps(fscal,dy10);
1027             tz               = _mm_mul_ps(fscal,dz10);
1028
1029             /* Update vectorial force */
1030             fix1             = _mm_add_ps(fix1,tx);
1031             fiy1             = _mm_add_ps(fiy1,ty);
1032             fiz1             = _mm_add_ps(fiz1,tz);
1033
1034             fjptrA             = f+j_coord_offsetA;
1035             fjptrB             = f+j_coord_offsetB;
1036             fjptrC             = f+j_coord_offsetC;
1037             fjptrD             = f+j_coord_offsetD;
1038             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1039
1040             }
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             if (gmx_mm_any_lt(rsq20,rcutoff2))
1047             {
1048
1049             r20              = _mm_mul_ps(rsq20,rinv20);
1050
1051             /* Compute parameters for interactions between i and j atoms */
1052             qq20             = _mm_mul_ps(iq2,jq0);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm_mul_ps(r20,ewtabscale);
1058             ewitab           = _mm_cvttps_epi32(ewrt);
1059             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1060             ewitab           = _mm_slli_epi32(ewitab,2);
1061             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1062             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1063             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1064             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1065             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1066             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1067             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1068             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1069             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1070
1071             d                = _mm_sub_ps(r20,rswitch);
1072             d                = _mm_max_ps(d,_mm_setzero_ps());
1073             d2               = _mm_mul_ps(d,d);
1074             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1075
1076             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1077
1078             /* Evaluate switch function */
1079             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1080             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1081             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1082
1083             fscal            = felec;
1084
1085             fscal            = _mm_and_ps(fscal,cutoff_mask);
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = _mm_mul_ps(fscal,dx20);
1089             ty               = _mm_mul_ps(fscal,dy20);
1090             tz               = _mm_mul_ps(fscal,dz20);
1091
1092             /* Update vectorial force */
1093             fix2             = _mm_add_ps(fix2,tx);
1094             fiy2             = _mm_add_ps(fiy2,ty);
1095             fiz2             = _mm_add_ps(fiz2,tz);
1096
1097             fjptrA             = f+j_coord_offsetA;
1098             fjptrB             = f+j_coord_offsetB;
1099             fjptrC             = f+j_coord_offsetC;
1100             fjptrD             = f+j_coord_offsetD;
1101             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1102
1103             }
1104
1105             /* Inner loop uses 186 flops */
1106         }
1107
1108         if(jidx<j_index_end)
1109         {
1110
1111             /* Get j neighbor index, and coordinate index */
1112             jnrlistA         = jjnr[jidx];
1113             jnrlistB         = jjnr[jidx+1];
1114             jnrlistC         = jjnr[jidx+2];
1115             jnrlistD         = jjnr[jidx+3];
1116             /* Sign of each element will be negative for non-real atoms.
1117              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1118              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1119              */
1120             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1121             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1122             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1123             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1124             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1125             j_coord_offsetA  = DIM*jnrA;
1126             j_coord_offsetB  = DIM*jnrB;
1127             j_coord_offsetC  = DIM*jnrC;
1128             j_coord_offsetD  = DIM*jnrD;
1129
1130             /* load j atom coordinates */
1131             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1132                                               x+j_coord_offsetC,x+j_coord_offsetD,
1133                                               &jx0,&jy0,&jz0);
1134
1135             /* Calculate displacement vector */
1136             dx00             = _mm_sub_ps(ix0,jx0);
1137             dy00             = _mm_sub_ps(iy0,jy0);
1138             dz00             = _mm_sub_ps(iz0,jz0);
1139             dx10             = _mm_sub_ps(ix1,jx0);
1140             dy10             = _mm_sub_ps(iy1,jy0);
1141             dz10             = _mm_sub_ps(iz1,jz0);
1142             dx20             = _mm_sub_ps(ix2,jx0);
1143             dy20             = _mm_sub_ps(iy2,jy0);
1144             dz20             = _mm_sub_ps(iz2,jz0);
1145
1146             /* Calculate squared distance and things based on it */
1147             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1148             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1149             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1150
1151             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1152             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1153             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1154
1155             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1156             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1157             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1158
1159             /* Load parameters for j particles */
1160             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1161                                                               charge+jnrC+0,charge+jnrD+0);
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             if (gmx_mm_any_lt(rsq00,rcutoff2))
1168             {
1169
1170             r00              = _mm_mul_ps(rsq00,rinv00);
1171             r00              = _mm_andnot_ps(dummy_mask,r00);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq00             = _mm_mul_ps(iq0,jq0);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1179             ewrt             = _mm_mul_ps(r00,ewtabscale);
1180             ewitab           = _mm_cvttps_epi32(ewrt);
1181             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1182             ewitab           = _mm_slli_epi32(ewitab,2);
1183             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1184             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1185             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1186             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1187             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1188             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1189             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1190             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1191             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1192
1193             d                = _mm_sub_ps(r00,rswitch);
1194             d                = _mm_max_ps(d,_mm_setzero_ps());
1195             d2               = _mm_mul_ps(d,d);
1196             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1197
1198             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1203             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1204
1205             fscal            = felec;
1206
1207             fscal            = _mm_and_ps(fscal,cutoff_mask);
1208
1209             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1210
1211             /* Calculate temporary vectorial force */
1212             tx               = _mm_mul_ps(fscal,dx00);
1213             ty               = _mm_mul_ps(fscal,dy00);
1214             tz               = _mm_mul_ps(fscal,dz00);
1215
1216             /* Update vectorial force */
1217             fix0             = _mm_add_ps(fix0,tx);
1218             fiy0             = _mm_add_ps(fiy0,ty);
1219             fiz0             = _mm_add_ps(fiz0,tz);
1220
1221             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1222             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1223             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1224             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1225             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm_any_lt(rsq10,rcutoff2))
1234             {
1235
1236             r10              = _mm_mul_ps(rsq10,rinv10);
1237             r10              = _mm_andnot_ps(dummy_mask,r10);
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq10             = _mm_mul_ps(iq1,jq0);
1241
1242             /* EWALD ELECTROSTATICS */
1243
1244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1245             ewrt             = _mm_mul_ps(r10,ewtabscale);
1246             ewitab           = _mm_cvttps_epi32(ewrt);
1247             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1248             ewitab           = _mm_slli_epi32(ewitab,2);
1249             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1250             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1251             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1252             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1253             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1254             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1255             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1256             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1257             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1258
1259             d                = _mm_sub_ps(r10,rswitch);
1260             d                = _mm_max_ps(d,_mm_setzero_ps());
1261             d2               = _mm_mul_ps(d,d);
1262             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1263
1264             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1265
1266             /* Evaluate switch function */
1267             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1268             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1269             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1270
1271             fscal            = felec;
1272
1273             fscal            = _mm_and_ps(fscal,cutoff_mask);
1274
1275             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1276
1277             /* Calculate temporary vectorial force */
1278             tx               = _mm_mul_ps(fscal,dx10);
1279             ty               = _mm_mul_ps(fscal,dy10);
1280             tz               = _mm_mul_ps(fscal,dz10);
1281
1282             /* Update vectorial force */
1283             fix1             = _mm_add_ps(fix1,tx);
1284             fiy1             = _mm_add_ps(fiy1,ty);
1285             fiz1             = _mm_add_ps(fiz1,tz);
1286
1287             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1288             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1289             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1290             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1291             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1292
1293             }
1294
1295             /**************************
1296              * CALCULATE INTERACTIONS *
1297              **************************/
1298
1299             if (gmx_mm_any_lt(rsq20,rcutoff2))
1300             {
1301
1302             r20              = _mm_mul_ps(rsq20,rinv20);
1303             r20              = _mm_andnot_ps(dummy_mask,r20);
1304
1305             /* Compute parameters for interactions between i and j atoms */
1306             qq20             = _mm_mul_ps(iq2,jq0);
1307
1308             /* EWALD ELECTROSTATICS */
1309
1310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1311             ewrt             = _mm_mul_ps(r20,ewtabscale);
1312             ewitab           = _mm_cvttps_epi32(ewrt);
1313             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1314             ewitab           = _mm_slli_epi32(ewitab,2);
1315             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1316             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1317             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1318             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1319             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1320             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1321             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1322             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1323             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1324
1325             d                = _mm_sub_ps(r20,rswitch);
1326             d                = _mm_max_ps(d,_mm_setzero_ps());
1327             d2               = _mm_mul_ps(d,d);
1328             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1329
1330             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1331
1332             /* Evaluate switch function */
1333             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1334             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1335             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1336
1337             fscal            = felec;
1338
1339             fscal            = _mm_and_ps(fscal,cutoff_mask);
1340
1341             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1342
1343             /* Calculate temporary vectorial force */
1344             tx               = _mm_mul_ps(fscal,dx20);
1345             ty               = _mm_mul_ps(fscal,dy20);
1346             tz               = _mm_mul_ps(fscal,dz20);
1347
1348             /* Update vectorial force */
1349             fix2             = _mm_add_ps(fix2,tx);
1350             fiy2             = _mm_add_ps(fiy2,ty);
1351             fiz2             = _mm_add_ps(fiz2,tz);
1352
1353             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1354             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1355             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1356             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1357             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1358
1359             }
1360
1361             /* Inner loop uses 189 flops */
1362         }
1363
1364         /* End of innermost loop */
1365
1366         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1367                                               f+i_coord_offset,fshift+i_shift_offset);
1368
1369         /* Increment number of inner iterations */
1370         inneriter                  += j_index_end - j_index_start;
1371
1372         /* Outer loop uses 18 flops */
1373     }
1374
1375     /* Increment number of outer iterations */
1376     outeriter        += nri;
1377
1378     /* Update outer/inner flops */
1379
1380     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*189);
1381 }