Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
119     ewtab            = fr->ic->tabq_coul_FDV0;
120     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
121     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->ic->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->ic->rcoulomb_switch;
135     rswitch          = _mm_set1_ps(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm_set1_ps(d_scalar);
139     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_ps();
180         fiy0             = _mm_setzero_ps();
181         fiz0             = _mm_setzero_ps();
182         fix1             = _mm_setzero_ps();
183         fiy1             = _mm_setzero_ps();
184         fiz1             = _mm_setzero_ps();
185         fix2             = _mm_setzero_ps();
186         fiy2             = _mm_setzero_ps();
187         fiz2             = _mm_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226
227             rinv00           = sse41_invsqrt_f(rsq00);
228             rinv10           = sse41_invsqrt_f(rsq10);
229             rinv20           = sse41_invsqrt_f(rsq20);
230
231             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238
239             fjx0             = _mm_setzero_ps();
240             fjy0             = _mm_setzero_ps();
241             fjz0             = _mm_setzero_ps();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             r00              = _mm_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_ps(iq0,jq0);
254
255             /* EWALD ELECTROSTATICS */
256
257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
258             ewrt             = _mm_mul_ps(r00,ewtabscale);
259             ewitab           = _mm_cvttps_epi32(ewrt);
260             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
261             ewitab           = _mm_slli_epi32(ewitab,2);
262             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
263             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
264             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
265             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
266             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
267             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
268             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
269             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
270             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
271
272             d                = _mm_sub_ps(r00,rswitch);
273             d                = _mm_max_ps(d,_mm_setzero_ps());
274             d2               = _mm_mul_ps(d,d);
275             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
276
277             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
278
279             /* Evaluate switch function */
280             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
281             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
282             velec            = _mm_mul_ps(velec,sw);
283             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velec            = _mm_and_ps(velec,cutoff_mask);
287             velecsum         = _mm_add_ps(velecsum,velec);
288
289             fscal            = felec;
290
291             fscal            = _mm_and_ps(fscal,cutoff_mask);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             fjx0             = _mm_add_ps(fjx0,tx);
304             fjy0             = _mm_add_ps(fjy0,ty);
305             fjz0             = _mm_add_ps(fjz0,tz);
306
307             }
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq10,rcutoff2))
314             {
315
316             r10              = _mm_mul_ps(rsq10,rinv10);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm_mul_ps(iq1,jq0);
320
321             /* EWALD ELECTROSTATICS */
322
323             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
324             ewrt             = _mm_mul_ps(r10,ewtabscale);
325             ewitab           = _mm_cvttps_epi32(ewrt);
326             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
327             ewitab           = _mm_slli_epi32(ewitab,2);
328             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
329             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
330             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
331             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
332             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
333             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
334             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
335             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
336             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
337
338             d                = _mm_sub_ps(r10,rswitch);
339             d                = _mm_max_ps(d,_mm_setzero_ps());
340             d2               = _mm_mul_ps(d,d);
341             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
342
343             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
344
345             /* Evaluate switch function */
346             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
347             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
348             velec            = _mm_mul_ps(velec,sw);
349             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_and_ps(velec,cutoff_mask);
353             velecsum         = _mm_add_ps(velecsum,velec);
354
355             fscal            = felec;
356
357             fscal            = _mm_and_ps(fscal,cutoff_mask);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm_mul_ps(fscal,dx10);
361             ty               = _mm_mul_ps(fscal,dy10);
362             tz               = _mm_mul_ps(fscal,dz10);
363
364             /* Update vectorial force */
365             fix1             = _mm_add_ps(fix1,tx);
366             fiy1             = _mm_add_ps(fiy1,ty);
367             fiz1             = _mm_add_ps(fiz1,tz);
368
369             fjx0             = _mm_add_ps(fjx0,tx);
370             fjy0             = _mm_add_ps(fjy0,ty);
371             fjz0             = _mm_add_ps(fjz0,tz);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm_any_lt(rsq20,rcutoff2))
380             {
381
382             r20              = _mm_mul_ps(rsq20,rinv20);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq20             = _mm_mul_ps(iq2,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_ps(r20,ewtabscale);
391             ewitab           = _mm_cvttps_epi32(ewrt);
392             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
393             ewitab           = _mm_slli_epi32(ewitab,2);
394             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
395             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
396             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
397             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
398             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
399             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
400             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
401             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
402             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
403
404             d                = _mm_sub_ps(r20,rswitch);
405             d                = _mm_max_ps(d,_mm_setzero_ps());
406             d2               = _mm_mul_ps(d,d);
407             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
408
409             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
410
411             /* Evaluate switch function */
412             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
413             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
414             velec            = _mm_mul_ps(velec,sw);
415             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_and_ps(velec,cutoff_mask);
419             velecsum         = _mm_add_ps(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm_and_ps(fscal,cutoff_mask);
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm_mul_ps(fscal,dx20);
427             ty               = _mm_mul_ps(fscal,dy20);
428             tz               = _mm_mul_ps(fscal,dz20);
429
430             /* Update vectorial force */
431             fix2             = _mm_add_ps(fix2,tx);
432             fiy2             = _mm_add_ps(fiy2,ty);
433             fiz2             = _mm_add_ps(fiz2,tz);
434
435             fjx0             = _mm_add_ps(fjx0,tx);
436             fjy0             = _mm_add_ps(fjy0,ty);
437             fjz0             = _mm_add_ps(fjz0,tz);
438
439             }
440
441             fjptrA             = f+j_coord_offsetA;
442             fjptrB             = f+j_coord_offsetB;
443             fjptrC             = f+j_coord_offsetC;
444             fjptrD             = f+j_coord_offsetD;
445
446             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
447
448             /* Inner loop uses 195 flops */
449         }
450
451         if(jidx<j_index_end)
452         {
453
454             /* Get j neighbor index, and coordinate index */
455             jnrlistA         = jjnr[jidx];
456             jnrlistB         = jjnr[jidx+1];
457             jnrlistC         = jjnr[jidx+2];
458             jnrlistD         = jjnr[jidx+3];
459             /* Sign of each element will be negative for non-real atoms.
460              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
461              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
462              */
463             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
464             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
465             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
466             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
467             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
468             j_coord_offsetA  = DIM*jnrA;
469             j_coord_offsetB  = DIM*jnrB;
470             j_coord_offsetC  = DIM*jnrC;
471             j_coord_offsetD  = DIM*jnrD;
472
473             /* load j atom coordinates */
474             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
475                                               x+j_coord_offsetC,x+j_coord_offsetD,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_ps(ix0,jx0);
480             dy00             = _mm_sub_ps(iy0,jy0);
481             dz00             = _mm_sub_ps(iz0,jz0);
482             dx10             = _mm_sub_ps(ix1,jx0);
483             dy10             = _mm_sub_ps(iy1,jy0);
484             dz10             = _mm_sub_ps(iz1,jz0);
485             dx20             = _mm_sub_ps(ix2,jx0);
486             dy20             = _mm_sub_ps(iy2,jy0);
487             dz20             = _mm_sub_ps(iz2,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
491             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
492             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
493
494             rinv00           = sse41_invsqrt_f(rsq00);
495             rinv10           = sse41_invsqrt_f(rsq10);
496             rinv20           = sse41_invsqrt_f(rsq20);
497
498             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
499             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
500             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
501
502             /* Load parameters for j particles */
503             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
504                                                               charge+jnrC+0,charge+jnrD+0);
505
506             fjx0             = _mm_setzero_ps();
507             fjy0             = _mm_setzero_ps();
508             fjz0             = _mm_setzero_ps();
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             if (gmx_mm_any_lt(rsq00,rcutoff2))
515             {
516
517             r00              = _mm_mul_ps(rsq00,rinv00);
518             r00              = _mm_andnot_ps(dummy_mask,r00);
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq00             = _mm_mul_ps(iq0,jq0);
522
523             /* EWALD ELECTROSTATICS */
524
525             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
526             ewrt             = _mm_mul_ps(r00,ewtabscale);
527             ewitab           = _mm_cvttps_epi32(ewrt);
528             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
529             ewitab           = _mm_slli_epi32(ewitab,2);
530             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
531             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
532             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
533             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
534             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
535             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
536             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
537             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
538             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
539
540             d                = _mm_sub_ps(r00,rswitch);
541             d                = _mm_max_ps(d,_mm_setzero_ps());
542             d2               = _mm_mul_ps(d,d);
543             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
544
545             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
546
547             /* Evaluate switch function */
548             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
549             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
550             velec            = _mm_mul_ps(velec,sw);
551             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_and_ps(velec,cutoff_mask);
555             velec            = _mm_andnot_ps(dummy_mask,velec);
556             velecsum         = _mm_add_ps(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm_and_ps(fscal,cutoff_mask);
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_ps(fscal,dx00);
566             ty               = _mm_mul_ps(fscal,dy00);
567             tz               = _mm_mul_ps(fscal,dz00);
568
569             /* Update vectorial force */
570             fix0             = _mm_add_ps(fix0,tx);
571             fiy0             = _mm_add_ps(fiy0,ty);
572             fiz0             = _mm_add_ps(fiz0,tz);
573
574             fjx0             = _mm_add_ps(fjx0,tx);
575             fjy0             = _mm_add_ps(fjy0,ty);
576             fjz0             = _mm_add_ps(fjz0,tz);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq10,rcutoff2))
585             {
586
587             r10              = _mm_mul_ps(rsq10,rinv10);
588             r10              = _mm_andnot_ps(dummy_mask,r10);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq10             = _mm_mul_ps(iq1,jq0);
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = _mm_mul_ps(r10,ewtabscale);
597             ewitab           = _mm_cvttps_epi32(ewrt);
598             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
599             ewitab           = _mm_slli_epi32(ewitab,2);
600             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
601             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
602             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
603             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
604             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
605             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
606             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
607             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
608             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
609
610             d                = _mm_sub_ps(r10,rswitch);
611             d                = _mm_max_ps(d,_mm_setzero_ps());
612             d2               = _mm_mul_ps(d,d);
613             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
614
615             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
616
617             /* Evaluate switch function */
618             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
619             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
620             velec            = _mm_mul_ps(velec,sw);
621             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm_and_ps(velec,cutoff_mask);
625             velec            = _mm_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_and_ps(fscal,cutoff_mask);
631
632             fscal            = _mm_andnot_ps(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm_mul_ps(fscal,dx10);
636             ty               = _mm_mul_ps(fscal,dy10);
637             tz               = _mm_mul_ps(fscal,dz10);
638
639             /* Update vectorial force */
640             fix1             = _mm_add_ps(fix1,tx);
641             fiy1             = _mm_add_ps(fiy1,ty);
642             fiz1             = _mm_add_ps(fiz1,tz);
643
644             fjx0             = _mm_add_ps(fjx0,tx);
645             fjy0             = _mm_add_ps(fjy0,ty);
646             fjz0             = _mm_add_ps(fjz0,tz);
647
648             }
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm_any_lt(rsq20,rcutoff2))
655             {
656
657             r20              = _mm_mul_ps(rsq20,rinv20);
658             r20              = _mm_andnot_ps(dummy_mask,r20);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq20             = _mm_mul_ps(iq2,jq0);
662
663             /* EWALD ELECTROSTATICS */
664
665             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
666             ewrt             = _mm_mul_ps(r20,ewtabscale);
667             ewitab           = _mm_cvttps_epi32(ewrt);
668             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
669             ewitab           = _mm_slli_epi32(ewitab,2);
670             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
671             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
672             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
673             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
674             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
675             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
676             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
677             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
678             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
679
680             d                = _mm_sub_ps(r20,rswitch);
681             d                = _mm_max_ps(d,_mm_setzero_ps());
682             d2               = _mm_mul_ps(d,d);
683             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
684
685             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
686
687             /* Evaluate switch function */
688             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
689             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
690             velec            = _mm_mul_ps(velec,sw);
691             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
692
693             /* Update potential sum for this i atom from the interaction with this j atom. */
694             velec            = _mm_and_ps(velec,cutoff_mask);
695             velec            = _mm_andnot_ps(dummy_mask,velec);
696             velecsum         = _mm_add_ps(velecsum,velec);
697
698             fscal            = felec;
699
700             fscal            = _mm_and_ps(fscal,cutoff_mask);
701
702             fscal            = _mm_andnot_ps(dummy_mask,fscal);
703
704             /* Calculate temporary vectorial force */
705             tx               = _mm_mul_ps(fscal,dx20);
706             ty               = _mm_mul_ps(fscal,dy20);
707             tz               = _mm_mul_ps(fscal,dz20);
708
709             /* Update vectorial force */
710             fix2             = _mm_add_ps(fix2,tx);
711             fiy2             = _mm_add_ps(fiy2,ty);
712             fiz2             = _mm_add_ps(fiz2,tz);
713
714             fjx0             = _mm_add_ps(fjx0,tx);
715             fjy0             = _mm_add_ps(fjy0,ty);
716             fjz0             = _mm_add_ps(fjz0,tz);
717
718             }
719
720             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
721             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
722             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
723             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
724
725             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
726
727             /* Inner loop uses 198 flops */
728         }
729
730         /* End of innermost loop */
731
732         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
733                                               f+i_coord_offset,fshift+i_shift_offset);
734
735         ggid                        = gid[iidx];
736         /* Update potential energies */
737         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 19 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*198);
751 }
752 /*
753  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_single
754  * Electrostatics interaction: Ewald
755  * VdW interaction:            None
756  * Geometry:                   Water3-Particle
757  * Calculate force/pot:        Force
758  */
759 void
760 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_single
761                     (t_nblist                    * gmx_restrict       nlist,
762                      rvec                        * gmx_restrict          xx,
763                      rvec                        * gmx_restrict          ff,
764                      struct t_forcerec           * gmx_restrict          fr,
765                      t_mdatoms                   * gmx_restrict     mdatoms,
766                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
767                      t_nrnb                      * gmx_restrict        nrnb)
768 {
769     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
770      * just 0 for non-waters.
771      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
772      * jnr indices corresponding to data put in the four positions in the SIMD register.
773      */
774     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
775     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
776     int              jnrA,jnrB,jnrC,jnrD;
777     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
778     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
779     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
780     real             rcutoff_scalar;
781     real             *shiftvec,*fshift,*x,*f;
782     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
783     real             scratch[4*DIM];
784     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
785     int              vdwioffset0;
786     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
787     int              vdwioffset1;
788     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
789     int              vdwioffset2;
790     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
791     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
792     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
793     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
794     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
795     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
796     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
797     real             *charge;
798     __m128i          ewitab;
799     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
800     real             *ewtab;
801     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
802     real             rswitch_scalar,d_scalar;
803     __m128           dummy_mask,cutoff_mask;
804     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
805     __m128           one     = _mm_set1_ps(1.0);
806     __m128           two     = _mm_set1_ps(2.0);
807     x                = xx[0];
808     f                = ff[0];
809
810     nri              = nlist->nri;
811     iinr             = nlist->iinr;
812     jindex           = nlist->jindex;
813     jjnr             = nlist->jjnr;
814     shiftidx         = nlist->shift;
815     gid              = nlist->gid;
816     shiftvec         = fr->shift_vec[0];
817     fshift           = fr->fshift[0];
818     facel            = _mm_set1_ps(fr->ic->epsfac);
819     charge           = mdatoms->chargeA;
820
821     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
822     ewtab            = fr->ic->tabq_coul_FDV0;
823     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
824     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
825
826     /* Setup water-specific parameters */
827     inr              = nlist->iinr[0];
828     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
829     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
830     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
831
832     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
833     rcutoff_scalar   = fr->ic->rcoulomb;
834     rcutoff          = _mm_set1_ps(rcutoff_scalar);
835     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
836
837     rswitch_scalar   = fr->ic->rcoulomb_switch;
838     rswitch          = _mm_set1_ps(rswitch_scalar);
839     /* Setup switch parameters */
840     d_scalar         = rcutoff_scalar-rswitch_scalar;
841     d                = _mm_set1_ps(d_scalar);
842     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
843     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
844     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
845     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
846     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
847     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
848
849     /* Avoid stupid compiler warnings */
850     jnrA = jnrB = jnrC = jnrD = 0;
851     j_coord_offsetA = 0;
852     j_coord_offsetB = 0;
853     j_coord_offsetC = 0;
854     j_coord_offsetD = 0;
855
856     outeriter        = 0;
857     inneriter        = 0;
858
859     for(iidx=0;iidx<4*DIM;iidx++)
860     {
861         scratch[iidx] = 0.0;
862     }
863
864     /* Start outer loop over neighborlists */
865     for(iidx=0; iidx<nri; iidx++)
866     {
867         /* Load shift vector for this list */
868         i_shift_offset   = DIM*shiftidx[iidx];
869
870         /* Load limits for loop over neighbors */
871         j_index_start    = jindex[iidx];
872         j_index_end      = jindex[iidx+1];
873
874         /* Get outer coordinate index */
875         inr              = iinr[iidx];
876         i_coord_offset   = DIM*inr;
877
878         /* Load i particle coords and add shift vector */
879         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
880                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
881
882         fix0             = _mm_setzero_ps();
883         fiy0             = _mm_setzero_ps();
884         fiz0             = _mm_setzero_ps();
885         fix1             = _mm_setzero_ps();
886         fiy1             = _mm_setzero_ps();
887         fiz1             = _mm_setzero_ps();
888         fix2             = _mm_setzero_ps();
889         fiy2             = _mm_setzero_ps();
890         fiz2             = _mm_setzero_ps();
891
892         /* Start inner kernel loop */
893         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
894         {
895
896             /* Get j neighbor index, and coordinate index */
897             jnrA             = jjnr[jidx];
898             jnrB             = jjnr[jidx+1];
899             jnrC             = jjnr[jidx+2];
900             jnrD             = jjnr[jidx+3];
901             j_coord_offsetA  = DIM*jnrA;
902             j_coord_offsetB  = DIM*jnrB;
903             j_coord_offsetC  = DIM*jnrC;
904             j_coord_offsetD  = DIM*jnrD;
905
906             /* load j atom coordinates */
907             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
908                                               x+j_coord_offsetC,x+j_coord_offsetD,
909                                               &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm_sub_ps(ix0,jx0);
913             dy00             = _mm_sub_ps(iy0,jy0);
914             dz00             = _mm_sub_ps(iz0,jz0);
915             dx10             = _mm_sub_ps(ix1,jx0);
916             dy10             = _mm_sub_ps(iy1,jy0);
917             dz10             = _mm_sub_ps(iz1,jz0);
918             dx20             = _mm_sub_ps(ix2,jx0);
919             dy20             = _mm_sub_ps(iy2,jy0);
920             dz20             = _mm_sub_ps(iz2,jz0);
921
922             /* Calculate squared distance and things based on it */
923             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
924             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
925             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
926
927             rinv00           = sse41_invsqrt_f(rsq00);
928             rinv10           = sse41_invsqrt_f(rsq10);
929             rinv20           = sse41_invsqrt_f(rsq20);
930
931             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
932             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
933             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
937                                                               charge+jnrC+0,charge+jnrD+0);
938
939             fjx0             = _mm_setzero_ps();
940             fjy0             = _mm_setzero_ps();
941             fjz0             = _mm_setzero_ps();
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             if (gmx_mm_any_lt(rsq00,rcutoff2))
948             {
949
950             r00              = _mm_mul_ps(rsq00,rinv00);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq00             = _mm_mul_ps(iq0,jq0);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _mm_mul_ps(r00,ewtabscale);
959             ewitab           = _mm_cvttps_epi32(ewrt);
960             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
961             ewitab           = _mm_slli_epi32(ewitab,2);
962             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
963             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
964             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
965             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
966             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
967             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
968             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
969             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
970             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
971
972             d                = _mm_sub_ps(r00,rswitch);
973             d                = _mm_max_ps(d,_mm_setzero_ps());
974             d2               = _mm_mul_ps(d,d);
975             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
976
977             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
978
979             /* Evaluate switch function */
980             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
981             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
982             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
983
984             fscal            = felec;
985
986             fscal            = _mm_and_ps(fscal,cutoff_mask);
987
988             /* Calculate temporary vectorial force */
989             tx               = _mm_mul_ps(fscal,dx00);
990             ty               = _mm_mul_ps(fscal,dy00);
991             tz               = _mm_mul_ps(fscal,dz00);
992
993             /* Update vectorial force */
994             fix0             = _mm_add_ps(fix0,tx);
995             fiy0             = _mm_add_ps(fiy0,ty);
996             fiz0             = _mm_add_ps(fiz0,tz);
997
998             fjx0             = _mm_add_ps(fjx0,tx);
999             fjy0             = _mm_add_ps(fjy0,ty);
1000             fjz0             = _mm_add_ps(fjz0,tz);
1001
1002             }
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             if (gmx_mm_any_lt(rsq10,rcutoff2))
1009             {
1010
1011             r10              = _mm_mul_ps(rsq10,rinv10);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             qq10             = _mm_mul_ps(iq1,jq0);
1015
1016             /* EWALD ELECTROSTATICS */
1017
1018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1019             ewrt             = _mm_mul_ps(r10,ewtabscale);
1020             ewitab           = _mm_cvttps_epi32(ewrt);
1021             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1022             ewitab           = _mm_slli_epi32(ewitab,2);
1023             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1024             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1025             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1026             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1027             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1028             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1029             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1030             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1031             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1032
1033             d                = _mm_sub_ps(r10,rswitch);
1034             d                = _mm_max_ps(d,_mm_setzero_ps());
1035             d2               = _mm_mul_ps(d,d);
1036             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1037
1038             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1039
1040             /* Evaluate switch function */
1041             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1042             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1043             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_and_ps(fscal,cutoff_mask);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx10);
1051             ty               = _mm_mul_ps(fscal,dy10);
1052             tz               = _mm_mul_ps(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm_add_ps(fix1,tx);
1056             fiy1             = _mm_add_ps(fiy1,ty);
1057             fiz1             = _mm_add_ps(fiz1,tz);
1058
1059             fjx0             = _mm_add_ps(fjx0,tx);
1060             fjy0             = _mm_add_ps(fjy0,ty);
1061             fjz0             = _mm_add_ps(fjz0,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm_any_lt(rsq20,rcutoff2))
1070             {
1071
1072             r20              = _mm_mul_ps(rsq20,rinv20);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq20             = _mm_mul_ps(iq2,jq0);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _mm_mul_ps(r20,ewtabscale);
1081             ewitab           = _mm_cvttps_epi32(ewrt);
1082             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1083             ewitab           = _mm_slli_epi32(ewitab,2);
1084             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1085             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1086             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1087             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1088             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1089             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1090             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1091             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1092             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1093
1094             d                = _mm_sub_ps(r20,rswitch);
1095             d                = _mm_max_ps(d,_mm_setzero_ps());
1096             d2               = _mm_mul_ps(d,d);
1097             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1098
1099             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1100
1101             /* Evaluate switch function */
1102             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1103             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1104             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_ps(fscal,dx20);
1112             ty               = _mm_mul_ps(fscal,dy20);
1113             tz               = _mm_mul_ps(fscal,dz20);
1114
1115             /* Update vectorial force */
1116             fix2             = _mm_add_ps(fix2,tx);
1117             fiy2             = _mm_add_ps(fiy2,ty);
1118             fiz2             = _mm_add_ps(fiz2,tz);
1119
1120             fjx0             = _mm_add_ps(fjx0,tx);
1121             fjy0             = _mm_add_ps(fjy0,ty);
1122             fjz0             = _mm_add_ps(fjz0,tz);
1123
1124             }
1125
1126             fjptrA             = f+j_coord_offsetA;
1127             fjptrB             = f+j_coord_offsetB;
1128             fjptrC             = f+j_coord_offsetC;
1129             fjptrD             = f+j_coord_offsetD;
1130
1131             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1132
1133             /* Inner loop uses 186 flops */
1134         }
1135
1136         if(jidx<j_index_end)
1137         {
1138
1139             /* Get j neighbor index, and coordinate index */
1140             jnrlistA         = jjnr[jidx];
1141             jnrlistB         = jjnr[jidx+1];
1142             jnrlistC         = jjnr[jidx+2];
1143             jnrlistD         = jjnr[jidx+3];
1144             /* Sign of each element will be negative for non-real atoms.
1145              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1146              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1147              */
1148             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             j_coord_offsetA  = DIM*jnrA;
1154             j_coord_offsetB  = DIM*jnrB;
1155             j_coord_offsetC  = DIM*jnrC;
1156             j_coord_offsetD  = DIM*jnrD;
1157
1158             /* load j atom coordinates */
1159             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                               x+j_coord_offsetC,x+j_coord_offsetD,
1161                                               &jx0,&jy0,&jz0);
1162
1163             /* Calculate displacement vector */
1164             dx00             = _mm_sub_ps(ix0,jx0);
1165             dy00             = _mm_sub_ps(iy0,jy0);
1166             dz00             = _mm_sub_ps(iz0,jz0);
1167             dx10             = _mm_sub_ps(ix1,jx0);
1168             dy10             = _mm_sub_ps(iy1,jy0);
1169             dz10             = _mm_sub_ps(iz1,jz0);
1170             dx20             = _mm_sub_ps(ix2,jx0);
1171             dy20             = _mm_sub_ps(iy2,jy0);
1172             dz20             = _mm_sub_ps(iz2,jz0);
1173
1174             /* Calculate squared distance and things based on it */
1175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1176             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1177             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1178
1179             rinv00           = sse41_invsqrt_f(rsq00);
1180             rinv10           = sse41_invsqrt_f(rsq10);
1181             rinv20           = sse41_invsqrt_f(rsq20);
1182
1183             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1184             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1185             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1186
1187             /* Load parameters for j particles */
1188             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1189                                                               charge+jnrC+0,charge+jnrD+0);
1190
1191             fjx0             = _mm_setzero_ps();
1192             fjy0             = _mm_setzero_ps();
1193             fjz0             = _mm_setzero_ps();
1194
1195             /**************************
1196              * CALCULATE INTERACTIONS *
1197              **************************/
1198
1199             if (gmx_mm_any_lt(rsq00,rcutoff2))
1200             {
1201
1202             r00              = _mm_mul_ps(rsq00,rinv00);
1203             r00              = _mm_andnot_ps(dummy_mask,r00);
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq00             = _mm_mul_ps(iq0,jq0);
1207
1208             /* EWALD ELECTROSTATICS */
1209
1210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1211             ewrt             = _mm_mul_ps(r00,ewtabscale);
1212             ewitab           = _mm_cvttps_epi32(ewrt);
1213             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1214             ewitab           = _mm_slli_epi32(ewitab,2);
1215             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1216             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1217             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1218             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1219             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1220             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1221             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1222             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1223             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1224
1225             d                = _mm_sub_ps(r00,rswitch);
1226             d                = _mm_max_ps(d,_mm_setzero_ps());
1227             d2               = _mm_mul_ps(d,d);
1228             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1229
1230             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1231
1232             /* Evaluate switch function */
1233             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1234             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1235             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_and_ps(fscal,cutoff_mask);
1240
1241             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_ps(fscal,dx00);
1245             ty               = _mm_mul_ps(fscal,dy00);
1246             tz               = _mm_mul_ps(fscal,dz00);
1247
1248             /* Update vectorial force */
1249             fix0             = _mm_add_ps(fix0,tx);
1250             fiy0             = _mm_add_ps(fiy0,ty);
1251             fiz0             = _mm_add_ps(fiz0,tz);
1252
1253             fjx0             = _mm_add_ps(fjx0,tx);
1254             fjy0             = _mm_add_ps(fjy0,ty);
1255             fjz0             = _mm_add_ps(fjz0,tz);
1256
1257             }
1258
1259             /**************************
1260              * CALCULATE INTERACTIONS *
1261              **************************/
1262
1263             if (gmx_mm_any_lt(rsq10,rcutoff2))
1264             {
1265
1266             r10              = _mm_mul_ps(rsq10,rinv10);
1267             r10              = _mm_andnot_ps(dummy_mask,r10);
1268
1269             /* Compute parameters for interactions between i and j atoms */
1270             qq10             = _mm_mul_ps(iq1,jq0);
1271
1272             /* EWALD ELECTROSTATICS */
1273
1274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1275             ewrt             = _mm_mul_ps(r10,ewtabscale);
1276             ewitab           = _mm_cvttps_epi32(ewrt);
1277             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1278             ewitab           = _mm_slli_epi32(ewitab,2);
1279             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1280             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1281             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1282             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1283             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1284             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1285             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1286             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1287             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1288
1289             d                = _mm_sub_ps(r10,rswitch);
1290             d                = _mm_max_ps(d,_mm_setzero_ps());
1291             d2               = _mm_mul_ps(d,d);
1292             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1293
1294             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1295
1296             /* Evaluate switch function */
1297             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1298             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1299             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm_and_ps(fscal,cutoff_mask);
1304
1305             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1306
1307             /* Calculate temporary vectorial force */
1308             tx               = _mm_mul_ps(fscal,dx10);
1309             ty               = _mm_mul_ps(fscal,dy10);
1310             tz               = _mm_mul_ps(fscal,dz10);
1311
1312             /* Update vectorial force */
1313             fix1             = _mm_add_ps(fix1,tx);
1314             fiy1             = _mm_add_ps(fiy1,ty);
1315             fiz1             = _mm_add_ps(fiz1,tz);
1316
1317             fjx0             = _mm_add_ps(fjx0,tx);
1318             fjy0             = _mm_add_ps(fjy0,ty);
1319             fjz0             = _mm_add_ps(fjz0,tz);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             r20              = _mm_mul_ps(rsq20,rinv20);
1331             r20              = _mm_andnot_ps(dummy_mask,r20);
1332
1333             /* Compute parameters for interactions between i and j atoms */
1334             qq20             = _mm_mul_ps(iq2,jq0);
1335
1336             /* EWALD ELECTROSTATICS */
1337
1338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1339             ewrt             = _mm_mul_ps(r20,ewtabscale);
1340             ewitab           = _mm_cvttps_epi32(ewrt);
1341             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1342             ewitab           = _mm_slli_epi32(ewitab,2);
1343             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1344             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1345             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1346             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1347             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1348             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1349             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1350             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1351             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1352
1353             d                = _mm_sub_ps(r20,rswitch);
1354             d                = _mm_max_ps(d,_mm_setzero_ps());
1355             d2               = _mm_mul_ps(d,d);
1356             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1357
1358             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1359
1360             /* Evaluate switch function */
1361             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1362             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1363             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1364
1365             fscal            = felec;
1366
1367             fscal            = _mm_and_ps(fscal,cutoff_mask);
1368
1369             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1370
1371             /* Calculate temporary vectorial force */
1372             tx               = _mm_mul_ps(fscal,dx20);
1373             ty               = _mm_mul_ps(fscal,dy20);
1374             tz               = _mm_mul_ps(fscal,dz20);
1375
1376             /* Update vectorial force */
1377             fix2             = _mm_add_ps(fix2,tx);
1378             fiy2             = _mm_add_ps(fiy2,ty);
1379             fiz2             = _mm_add_ps(fiz2,tz);
1380
1381             fjx0             = _mm_add_ps(fjx0,tx);
1382             fjy0             = _mm_add_ps(fjy0,ty);
1383             fjz0             = _mm_add_ps(fjz0,tz);
1384
1385             }
1386
1387             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1388             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1389             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1390             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1391
1392             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1393
1394             /* Inner loop uses 189 flops */
1395         }
1396
1397         /* End of innermost loop */
1398
1399         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1400                                               f+i_coord_offset,fshift+i_shift_offset);
1401
1402         /* Increment number of inner iterations */
1403         inneriter                  += j_index_end - j_index_start;
1404
1405         /* Outer loop uses 18 flops */
1406     }
1407
1408     /* Increment number of outer iterations */
1409     outeriter        += nri;
1410
1411     /* Update outer/inner flops */
1412
1413     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*189);
1414 }