Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
109     real             rswitch_scalar,d_scalar;
110     __m128           dummy_mask,cutoff_mask;
111     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
112     __m128           one     = _mm_set1_ps(1.0);
113     __m128           two     = _mm_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144     rcutoff_scalar   = fr->rcoulomb;
145     rcutoff          = _mm_set1_ps(rcutoff_scalar);
146     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
147
148     rswitch_scalar   = fr->rcoulomb_switch;
149     rswitch          = _mm_set1_ps(rswitch_scalar);
150     /* Setup switch parameters */
151     d_scalar         = rcutoff_scalar-rswitch_scalar;
152     d                = _mm_set1_ps(d_scalar);
153     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
154     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
157     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
158     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166
167     outeriter        = 0;
168     inneriter        = 0;
169
170     for(iidx=0;iidx<4*DIM;iidx++)
171     {
172         scratch[iidx] = 0.0;
173     }
174
175     /* Start outer loop over neighborlists */
176     for(iidx=0; iidx<nri; iidx++)
177     {
178         /* Load shift vector for this list */
179         i_shift_offset   = DIM*shiftidx[iidx];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
191                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
192
193         fix0             = _mm_setzero_ps();
194         fiy0             = _mm_setzero_ps();
195         fiz0             = _mm_setzero_ps();
196         fix1             = _mm_setzero_ps();
197         fiy1             = _mm_setzero_ps();
198         fiz1             = _mm_setzero_ps();
199         fix2             = _mm_setzero_ps();
200         fiy2             = _mm_setzero_ps();
201         fiz2             = _mm_setzero_ps();
202         fix3             = _mm_setzero_ps();
203         fiy3             = _mm_setzero_ps();
204         fiz3             = _mm_setzero_ps();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_ps();
208         vvdwsum          = _mm_setzero_ps();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             jnrC             = jjnr[jidx+2];
218             jnrD             = jjnr[jidx+3];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223
224             /* load j atom coordinates */
225             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
226                                               x+j_coord_offsetC,x+j_coord_offsetD,
227                                               &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm_sub_ps(ix0,jx0);
231             dy00             = _mm_sub_ps(iy0,jy0);
232             dz00             = _mm_sub_ps(iz0,jz0);
233             dx10             = _mm_sub_ps(ix1,jx0);
234             dy10             = _mm_sub_ps(iy1,jy0);
235             dz10             = _mm_sub_ps(iz1,jz0);
236             dx20             = _mm_sub_ps(ix2,jx0);
237             dy20             = _mm_sub_ps(iy2,jy0);
238             dz20             = _mm_sub_ps(iz2,jz0);
239             dx30             = _mm_sub_ps(ix3,jx0);
240             dy30             = _mm_sub_ps(iy3,jy0);
241             dz30             = _mm_sub_ps(iz3,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
245             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
246             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
247             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
248
249             rinv00           = gmx_mm_invsqrt_ps(rsq00);
250             rinv10           = gmx_mm_invsqrt_ps(rsq10);
251             rinv20           = gmx_mm_invsqrt_ps(rsq20);
252             rinv30           = gmx_mm_invsqrt_ps(rsq30);
253
254             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
255             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
257             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                               charge+jnrC+0,charge+jnrD+0);
262             vdwjidx0A        = 2*vdwtype[jnrA+0];
263             vdwjidx0B        = 2*vdwtype[jnrB+0];
264             vdwjidx0C        = 2*vdwtype[jnrC+0];
265             vdwjidx0D        = 2*vdwtype[jnrD+0];
266
267             fjx0             = _mm_setzero_ps();
268             fjy0             = _mm_setzero_ps();
269             fjz0             = _mm_setzero_ps();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm_any_lt(rsq00,rcutoff2))
276             {
277
278             r00              = _mm_mul_ps(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
282                                          vdwparam+vdwioffset0+vdwjidx0B,
283                                          vdwparam+vdwioffset0+vdwjidx0C,
284                                          vdwparam+vdwioffset0+vdwjidx0D,
285                                          &c6_00,&c12_00);
286
287             /* LENNARD-JONES DISPERSION/REPULSION */
288
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
291             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
292             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
293             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
294
295             d                = _mm_sub_ps(r00,rswitch);
296             d                = _mm_max_ps(d,_mm_setzero_ps());
297             d2               = _mm_mul_ps(d,d);
298             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
299
300             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
301
302             /* Evaluate switch function */
303             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
304             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
305             vvdw             = _mm_mul_ps(vvdw,sw);
306             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
310             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
311
312             fscal            = fvdw;
313
314             fscal            = _mm_and_ps(fscal,cutoff_mask);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_ps(fscal,dx00);
318             ty               = _mm_mul_ps(fscal,dy00);
319             tz               = _mm_mul_ps(fscal,dz00);
320
321             /* Update vectorial force */
322             fix0             = _mm_add_ps(fix0,tx);
323             fiy0             = _mm_add_ps(fiy0,ty);
324             fiz0             = _mm_add_ps(fiz0,tz);
325
326             fjx0             = _mm_add_ps(fjx0,tx);
327             fjy0             = _mm_add_ps(fjy0,ty);
328             fjz0             = _mm_add_ps(fjz0,tz);
329
330             }
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             if (gmx_mm_any_lt(rsq10,rcutoff2))
337             {
338
339             r10              = _mm_mul_ps(rsq10,rinv10);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq10             = _mm_mul_ps(iq1,jq0);
343
344             /* EWALD ELECTROSTATICS */
345
346             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
347             ewrt             = _mm_mul_ps(r10,ewtabscale);
348             ewitab           = _mm_cvttps_epi32(ewrt);
349             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
350             ewitab           = _mm_slli_epi32(ewitab,2);
351             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
352             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
353             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
354             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
355             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
356             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
357             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
358             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
359             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
360
361             d                = _mm_sub_ps(r10,rswitch);
362             d                = _mm_max_ps(d,_mm_setzero_ps());
363             d2               = _mm_mul_ps(d,d);
364             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
365
366             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
367
368             /* Evaluate switch function */
369             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
370             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
371             velec            = _mm_mul_ps(velec,sw);
372             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm_and_ps(velec,cutoff_mask);
376             velecsum         = _mm_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm_and_ps(fscal,cutoff_mask);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm_mul_ps(fscal,dx10);
384             ty               = _mm_mul_ps(fscal,dy10);
385             tz               = _mm_mul_ps(fscal,dz10);
386
387             /* Update vectorial force */
388             fix1             = _mm_add_ps(fix1,tx);
389             fiy1             = _mm_add_ps(fiy1,ty);
390             fiz1             = _mm_add_ps(fiz1,tz);
391
392             fjx0             = _mm_add_ps(fjx0,tx);
393             fjy0             = _mm_add_ps(fjy0,ty);
394             fjz0             = _mm_add_ps(fjz0,tz);
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (gmx_mm_any_lt(rsq20,rcutoff2))
403             {
404
405             r20              = _mm_mul_ps(rsq20,rinv20);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq20             = _mm_mul_ps(iq2,jq0);
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = _mm_mul_ps(r20,ewtabscale);
414             ewitab           = _mm_cvttps_epi32(ewrt);
415             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
419             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
420             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
421             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
422             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
423             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
424             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
425             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
426
427             d                = _mm_sub_ps(r20,rswitch);
428             d                = _mm_max_ps(d,_mm_setzero_ps());
429             d2               = _mm_mul_ps(d,d);
430             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
431
432             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
433
434             /* Evaluate switch function */
435             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
436             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
437             velec            = _mm_mul_ps(velec,sw);
438             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm_and_ps(velec,cutoff_mask);
442             velecsum         = _mm_add_ps(velecsum,velec);
443
444             fscal            = felec;
445
446             fscal            = _mm_and_ps(fscal,cutoff_mask);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm_mul_ps(fscal,dx20);
450             ty               = _mm_mul_ps(fscal,dy20);
451             tz               = _mm_mul_ps(fscal,dz20);
452
453             /* Update vectorial force */
454             fix2             = _mm_add_ps(fix2,tx);
455             fiy2             = _mm_add_ps(fiy2,ty);
456             fiz2             = _mm_add_ps(fiz2,tz);
457
458             fjx0             = _mm_add_ps(fjx0,tx);
459             fjy0             = _mm_add_ps(fjy0,ty);
460             fjz0             = _mm_add_ps(fjz0,tz);
461
462             }
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             if (gmx_mm_any_lt(rsq30,rcutoff2))
469             {
470
471             r30              = _mm_mul_ps(rsq30,rinv30);
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq30             = _mm_mul_ps(iq3,jq0);
475
476             /* EWALD ELECTROSTATICS */
477
478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
479             ewrt             = _mm_mul_ps(r30,ewtabscale);
480             ewitab           = _mm_cvttps_epi32(ewrt);
481             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
482             ewitab           = _mm_slli_epi32(ewitab,2);
483             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
484             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
485             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
486             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
487             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
488             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
489             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
490             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
491             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
492
493             d                = _mm_sub_ps(r30,rswitch);
494             d                = _mm_max_ps(d,_mm_setzero_ps());
495             d2               = _mm_mul_ps(d,d);
496             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
497
498             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
499
500             /* Evaluate switch function */
501             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
502             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
503             velec            = _mm_mul_ps(velec,sw);
504             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_and_ps(velec,cutoff_mask);
508             velecsum         = _mm_add_ps(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_and_ps(fscal,cutoff_mask);
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_ps(fscal,dx30);
516             ty               = _mm_mul_ps(fscal,dy30);
517             tz               = _mm_mul_ps(fscal,dz30);
518
519             /* Update vectorial force */
520             fix3             = _mm_add_ps(fix3,tx);
521             fiy3             = _mm_add_ps(fiy3,ty);
522             fiz3             = _mm_add_ps(fiz3,tz);
523
524             fjx0             = _mm_add_ps(fjx0,tx);
525             fjy0             = _mm_add_ps(fjy0,ty);
526             fjz0             = _mm_add_ps(fjz0,tz);
527
528             }
529
530             fjptrA             = f+j_coord_offsetA;
531             fjptrB             = f+j_coord_offsetB;
532             fjptrC             = f+j_coord_offsetC;
533             fjptrD             = f+j_coord_offsetD;
534
535             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
536
537             /* Inner loop uses 254 flops */
538         }
539
540         if(jidx<j_index_end)
541         {
542
543             /* Get j neighbor index, and coordinate index */
544             jnrlistA         = jjnr[jidx];
545             jnrlistB         = jjnr[jidx+1];
546             jnrlistC         = jjnr[jidx+2];
547             jnrlistD         = jjnr[jidx+3];
548             /* Sign of each element will be negative for non-real atoms.
549              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
550              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
551              */
552             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
553             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
554             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
555             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
556             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
557             j_coord_offsetA  = DIM*jnrA;
558             j_coord_offsetB  = DIM*jnrB;
559             j_coord_offsetC  = DIM*jnrC;
560             j_coord_offsetD  = DIM*jnrD;
561
562             /* load j atom coordinates */
563             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
564                                               x+j_coord_offsetC,x+j_coord_offsetD,
565                                               &jx0,&jy0,&jz0);
566
567             /* Calculate displacement vector */
568             dx00             = _mm_sub_ps(ix0,jx0);
569             dy00             = _mm_sub_ps(iy0,jy0);
570             dz00             = _mm_sub_ps(iz0,jz0);
571             dx10             = _mm_sub_ps(ix1,jx0);
572             dy10             = _mm_sub_ps(iy1,jy0);
573             dz10             = _mm_sub_ps(iz1,jz0);
574             dx20             = _mm_sub_ps(ix2,jx0);
575             dy20             = _mm_sub_ps(iy2,jy0);
576             dz20             = _mm_sub_ps(iz2,jz0);
577             dx30             = _mm_sub_ps(ix3,jx0);
578             dy30             = _mm_sub_ps(iy3,jy0);
579             dz30             = _mm_sub_ps(iz3,jz0);
580
581             /* Calculate squared distance and things based on it */
582             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
583             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
584             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
585             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
586
587             rinv00           = gmx_mm_invsqrt_ps(rsq00);
588             rinv10           = gmx_mm_invsqrt_ps(rsq10);
589             rinv20           = gmx_mm_invsqrt_ps(rsq20);
590             rinv30           = gmx_mm_invsqrt_ps(rsq30);
591
592             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
593             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
594             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
595             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599                                                               charge+jnrC+0,charge+jnrD+0);
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601             vdwjidx0B        = 2*vdwtype[jnrB+0];
602             vdwjidx0C        = 2*vdwtype[jnrC+0];
603             vdwjidx0D        = 2*vdwtype[jnrD+0];
604
605             fjx0             = _mm_setzero_ps();
606             fjy0             = _mm_setzero_ps();
607             fjz0             = _mm_setzero_ps();
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm_any_lt(rsq00,rcutoff2))
614             {
615
616             r00              = _mm_mul_ps(rsq00,rinv00);
617             r00              = _mm_andnot_ps(dummy_mask,r00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
621                                          vdwparam+vdwioffset0+vdwjidx0B,
622                                          vdwparam+vdwioffset0+vdwjidx0C,
623                                          vdwparam+vdwioffset0+vdwjidx0D,
624                                          &c6_00,&c12_00);
625
626             /* LENNARD-JONES DISPERSION/REPULSION */
627
628             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
629             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
630             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
631             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
632             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
633
634             d                = _mm_sub_ps(r00,rswitch);
635             d                = _mm_max_ps(d,_mm_setzero_ps());
636             d2               = _mm_mul_ps(d,d);
637             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
638
639             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
640
641             /* Evaluate switch function */
642             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
643             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
644             vvdw             = _mm_mul_ps(vvdw,sw);
645             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
649             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
650             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
651
652             fscal            = fvdw;
653
654             fscal            = _mm_and_ps(fscal,cutoff_mask);
655
656             fscal            = _mm_andnot_ps(dummy_mask,fscal);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm_mul_ps(fscal,dx00);
660             ty               = _mm_mul_ps(fscal,dy00);
661             tz               = _mm_mul_ps(fscal,dz00);
662
663             /* Update vectorial force */
664             fix0             = _mm_add_ps(fix0,tx);
665             fiy0             = _mm_add_ps(fiy0,ty);
666             fiz0             = _mm_add_ps(fiz0,tz);
667
668             fjx0             = _mm_add_ps(fjx0,tx);
669             fjy0             = _mm_add_ps(fjy0,ty);
670             fjz0             = _mm_add_ps(fjz0,tz);
671
672             }
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             if (gmx_mm_any_lt(rsq10,rcutoff2))
679             {
680
681             r10              = _mm_mul_ps(rsq10,rinv10);
682             r10              = _mm_andnot_ps(dummy_mask,r10);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq10             = _mm_mul_ps(iq1,jq0);
686
687             /* EWALD ELECTROSTATICS */
688
689             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
690             ewrt             = _mm_mul_ps(r10,ewtabscale);
691             ewitab           = _mm_cvttps_epi32(ewrt);
692             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
693             ewitab           = _mm_slli_epi32(ewitab,2);
694             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
695             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
696             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
697             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
698             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
699             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
700             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
701             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
702             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
703
704             d                = _mm_sub_ps(r10,rswitch);
705             d                = _mm_max_ps(d,_mm_setzero_ps());
706             d2               = _mm_mul_ps(d,d);
707             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
708
709             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
710
711             /* Evaluate switch function */
712             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
713             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
714             velec            = _mm_mul_ps(velec,sw);
715             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
716
717             /* Update potential sum for this i atom from the interaction with this j atom. */
718             velec            = _mm_and_ps(velec,cutoff_mask);
719             velec            = _mm_andnot_ps(dummy_mask,velec);
720             velecsum         = _mm_add_ps(velecsum,velec);
721
722             fscal            = felec;
723
724             fscal            = _mm_and_ps(fscal,cutoff_mask);
725
726             fscal            = _mm_andnot_ps(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm_mul_ps(fscal,dx10);
730             ty               = _mm_mul_ps(fscal,dy10);
731             tz               = _mm_mul_ps(fscal,dz10);
732
733             /* Update vectorial force */
734             fix1             = _mm_add_ps(fix1,tx);
735             fiy1             = _mm_add_ps(fiy1,ty);
736             fiz1             = _mm_add_ps(fiz1,tz);
737
738             fjx0             = _mm_add_ps(fjx0,tx);
739             fjy0             = _mm_add_ps(fjy0,ty);
740             fjz0             = _mm_add_ps(fjz0,tz);
741
742             }
743
744             /**************************
745              * CALCULATE INTERACTIONS *
746              **************************/
747
748             if (gmx_mm_any_lt(rsq20,rcutoff2))
749             {
750
751             r20              = _mm_mul_ps(rsq20,rinv20);
752             r20              = _mm_andnot_ps(dummy_mask,r20);
753
754             /* Compute parameters for interactions between i and j atoms */
755             qq20             = _mm_mul_ps(iq2,jq0);
756
757             /* EWALD ELECTROSTATICS */
758
759             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
760             ewrt             = _mm_mul_ps(r20,ewtabscale);
761             ewitab           = _mm_cvttps_epi32(ewrt);
762             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
763             ewitab           = _mm_slli_epi32(ewitab,2);
764             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
765             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
766             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
767             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
768             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
769             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
770             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
771             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
772             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
773
774             d                = _mm_sub_ps(r20,rswitch);
775             d                = _mm_max_ps(d,_mm_setzero_ps());
776             d2               = _mm_mul_ps(d,d);
777             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
778
779             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
780
781             /* Evaluate switch function */
782             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
783             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
784             velec            = _mm_mul_ps(velec,sw);
785             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
786
787             /* Update potential sum for this i atom from the interaction with this j atom. */
788             velec            = _mm_and_ps(velec,cutoff_mask);
789             velec            = _mm_andnot_ps(dummy_mask,velec);
790             velecsum         = _mm_add_ps(velecsum,velec);
791
792             fscal            = felec;
793
794             fscal            = _mm_and_ps(fscal,cutoff_mask);
795
796             fscal            = _mm_andnot_ps(dummy_mask,fscal);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm_mul_ps(fscal,dx20);
800             ty               = _mm_mul_ps(fscal,dy20);
801             tz               = _mm_mul_ps(fscal,dz20);
802
803             /* Update vectorial force */
804             fix2             = _mm_add_ps(fix2,tx);
805             fiy2             = _mm_add_ps(fiy2,ty);
806             fiz2             = _mm_add_ps(fiz2,tz);
807
808             fjx0             = _mm_add_ps(fjx0,tx);
809             fjy0             = _mm_add_ps(fjy0,ty);
810             fjz0             = _mm_add_ps(fjz0,tz);
811
812             }
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (gmx_mm_any_lt(rsq30,rcutoff2))
819             {
820
821             r30              = _mm_mul_ps(rsq30,rinv30);
822             r30              = _mm_andnot_ps(dummy_mask,r30);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq30             = _mm_mul_ps(iq3,jq0);
826
827             /* EWALD ELECTROSTATICS */
828
829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
830             ewrt             = _mm_mul_ps(r30,ewtabscale);
831             ewitab           = _mm_cvttps_epi32(ewrt);
832             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
833             ewitab           = _mm_slli_epi32(ewitab,2);
834             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
835             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
836             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
837             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
838             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
839             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
840             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
841             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
842             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
843
844             d                = _mm_sub_ps(r30,rswitch);
845             d                = _mm_max_ps(d,_mm_setzero_ps());
846             d2               = _mm_mul_ps(d,d);
847             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
848
849             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
850
851             /* Evaluate switch function */
852             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
853             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
854             velec            = _mm_mul_ps(velec,sw);
855             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
856
857             /* Update potential sum for this i atom from the interaction with this j atom. */
858             velec            = _mm_and_ps(velec,cutoff_mask);
859             velec            = _mm_andnot_ps(dummy_mask,velec);
860             velecsum         = _mm_add_ps(velecsum,velec);
861
862             fscal            = felec;
863
864             fscal            = _mm_and_ps(fscal,cutoff_mask);
865
866             fscal            = _mm_andnot_ps(dummy_mask,fscal);
867
868             /* Calculate temporary vectorial force */
869             tx               = _mm_mul_ps(fscal,dx30);
870             ty               = _mm_mul_ps(fscal,dy30);
871             tz               = _mm_mul_ps(fscal,dz30);
872
873             /* Update vectorial force */
874             fix3             = _mm_add_ps(fix3,tx);
875             fiy3             = _mm_add_ps(fiy3,ty);
876             fiz3             = _mm_add_ps(fiz3,tz);
877
878             fjx0             = _mm_add_ps(fjx0,tx);
879             fjy0             = _mm_add_ps(fjy0,ty);
880             fjz0             = _mm_add_ps(fjz0,tz);
881
882             }
883
884             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
885             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
886             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
887             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
888
889             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
890
891             /* Inner loop uses 258 flops */
892         }
893
894         /* End of innermost loop */
895
896         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
897                                               f+i_coord_offset,fshift+i_shift_offset);
898
899         ggid                        = gid[iidx];
900         /* Update potential energies */
901         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
902         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
903
904         /* Increment number of inner iterations */
905         inneriter                  += j_index_end - j_index_start;
906
907         /* Outer loop uses 26 flops */
908     }
909
910     /* Increment number of outer iterations */
911     outeriter        += nri;
912
913     /* Update outer/inner flops */
914
915     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*258);
916 }
917 /*
918  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_single
919  * Electrostatics interaction: Ewald
920  * VdW interaction:            LennardJones
921  * Geometry:                   Water4-Particle
922  * Calculate force/pot:        Force
923  */
924 void
925 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_single
926                     (t_nblist                    * gmx_restrict       nlist,
927                      rvec                        * gmx_restrict          xx,
928                      rvec                        * gmx_restrict          ff,
929                      t_forcerec                  * gmx_restrict          fr,
930                      t_mdatoms                   * gmx_restrict     mdatoms,
931                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
932                      t_nrnb                      * gmx_restrict        nrnb)
933 {
934     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
935      * just 0 for non-waters.
936      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
937      * jnr indices corresponding to data put in the four positions in the SIMD register.
938      */
939     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
940     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
941     int              jnrA,jnrB,jnrC,jnrD;
942     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
943     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
944     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
945     real             rcutoff_scalar;
946     real             *shiftvec,*fshift,*x,*f;
947     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
948     real             scratch[4*DIM];
949     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
950     int              vdwioffset0;
951     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
952     int              vdwioffset1;
953     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
954     int              vdwioffset2;
955     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
956     int              vdwioffset3;
957     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
958     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
959     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
960     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
961     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
962     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
963     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
964     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
965     real             *charge;
966     int              nvdwtype;
967     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
968     int              *vdwtype;
969     real             *vdwparam;
970     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
971     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
972     __m128i          ewitab;
973     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
974     real             *ewtab;
975     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
976     real             rswitch_scalar,d_scalar;
977     __m128           dummy_mask,cutoff_mask;
978     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
979     __m128           one     = _mm_set1_ps(1.0);
980     __m128           two     = _mm_set1_ps(2.0);
981     x                = xx[0];
982     f                = ff[0];
983
984     nri              = nlist->nri;
985     iinr             = nlist->iinr;
986     jindex           = nlist->jindex;
987     jjnr             = nlist->jjnr;
988     shiftidx         = nlist->shift;
989     gid              = nlist->gid;
990     shiftvec         = fr->shift_vec[0];
991     fshift           = fr->fshift[0];
992     facel            = _mm_set1_ps(fr->epsfac);
993     charge           = mdatoms->chargeA;
994     nvdwtype         = fr->ntype;
995     vdwparam         = fr->nbfp;
996     vdwtype          = mdatoms->typeA;
997
998     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
999     ewtab            = fr->ic->tabq_coul_FDV0;
1000     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1001     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1002
1003     /* Setup water-specific parameters */
1004     inr              = nlist->iinr[0];
1005     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1006     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1007     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1008     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1009
1010     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1011     rcutoff_scalar   = fr->rcoulomb;
1012     rcutoff          = _mm_set1_ps(rcutoff_scalar);
1013     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
1014
1015     rswitch_scalar   = fr->rcoulomb_switch;
1016     rswitch          = _mm_set1_ps(rswitch_scalar);
1017     /* Setup switch parameters */
1018     d_scalar         = rcutoff_scalar-rswitch_scalar;
1019     d                = _mm_set1_ps(d_scalar);
1020     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
1021     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1022     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1023     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
1024     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1025     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1026
1027     /* Avoid stupid compiler warnings */
1028     jnrA = jnrB = jnrC = jnrD = 0;
1029     j_coord_offsetA = 0;
1030     j_coord_offsetB = 0;
1031     j_coord_offsetC = 0;
1032     j_coord_offsetD = 0;
1033
1034     outeriter        = 0;
1035     inneriter        = 0;
1036
1037     for(iidx=0;iidx<4*DIM;iidx++)
1038     {
1039         scratch[iidx] = 0.0;
1040     }
1041
1042     /* Start outer loop over neighborlists */
1043     for(iidx=0; iidx<nri; iidx++)
1044     {
1045         /* Load shift vector for this list */
1046         i_shift_offset   = DIM*shiftidx[iidx];
1047
1048         /* Load limits for loop over neighbors */
1049         j_index_start    = jindex[iidx];
1050         j_index_end      = jindex[iidx+1];
1051
1052         /* Get outer coordinate index */
1053         inr              = iinr[iidx];
1054         i_coord_offset   = DIM*inr;
1055
1056         /* Load i particle coords and add shift vector */
1057         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1058                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1059
1060         fix0             = _mm_setzero_ps();
1061         fiy0             = _mm_setzero_ps();
1062         fiz0             = _mm_setzero_ps();
1063         fix1             = _mm_setzero_ps();
1064         fiy1             = _mm_setzero_ps();
1065         fiz1             = _mm_setzero_ps();
1066         fix2             = _mm_setzero_ps();
1067         fiy2             = _mm_setzero_ps();
1068         fiz2             = _mm_setzero_ps();
1069         fix3             = _mm_setzero_ps();
1070         fiy3             = _mm_setzero_ps();
1071         fiz3             = _mm_setzero_ps();
1072
1073         /* Start inner kernel loop */
1074         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1075         {
1076
1077             /* Get j neighbor index, and coordinate index */
1078             jnrA             = jjnr[jidx];
1079             jnrB             = jjnr[jidx+1];
1080             jnrC             = jjnr[jidx+2];
1081             jnrD             = jjnr[jidx+3];
1082             j_coord_offsetA  = DIM*jnrA;
1083             j_coord_offsetB  = DIM*jnrB;
1084             j_coord_offsetC  = DIM*jnrC;
1085             j_coord_offsetD  = DIM*jnrD;
1086
1087             /* load j atom coordinates */
1088             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1089                                               x+j_coord_offsetC,x+j_coord_offsetD,
1090                                               &jx0,&jy0,&jz0);
1091
1092             /* Calculate displacement vector */
1093             dx00             = _mm_sub_ps(ix0,jx0);
1094             dy00             = _mm_sub_ps(iy0,jy0);
1095             dz00             = _mm_sub_ps(iz0,jz0);
1096             dx10             = _mm_sub_ps(ix1,jx0);
1097             dy10             = _mm_sub_ps(iy1,jy0);
1098             dz10             = _mm_sub_ps(iz1,jz0);
1099             dx20             = _mm_sub_ps(ix2,jx0);
1100             dy20             = _mm_sub_ps(iy2,jy0);
1101             dz20             = _mm_sub_ps(iz2,jz0);
1102             dx30             = _mm_sub_ps(ix3,jx0);
1103             dy30             = _mm_sub_ps(iy3,jy0);
1104             dz30             = _mm_sub_ps(iz3,jz0);
1105
1106             /* Calculate squared distance and things based on it */
1107             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1108             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1109             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1110             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1111
1112             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1113             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1114             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1115             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1116
1117             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1118             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1119             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1120             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1121
1122             /* Load parameters for j particles */
1123             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1124                                                               charge+jnrC+0,charge+jnrD+0);
1125             vdwjidx0A        = 2*vdwtype[jnrA+0];
1126             vdwjidx0B        = 2*vdwtype[jnrB+0];
1127             vdwjidx0C        = 2*vdwtype[jnrC+0];
1128             vdwjidx0D        = 2*vdwtype[jnrD+0];
1129
1130             fjx0             = _mm_setzero_ps();
1131             fjy0             = _mm_setzero_ps();
1132             fjz0             = _mm_setzero_ps();
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             if (gmx_mm_any_lt(rsq00,rcutoff2))
1139             {
1140
1141             r00              = _mm_mul_ps(rsq00,rinv00);
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1145                                          vdwparam+vdwioffset0+vdwjidx0B,
1146                                          vdwparam+vdwioffset0+vdwjidx0C,
1147                                          vdwparam+vdwioffset0+vdwjidx0D,
1148                                          &c6_00,&c12_00);
1149
1150             /* LENNARD-JONES DISPERSION/REPULSION */
1151
1152             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1153             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1154             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1155             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1156             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1157
1158             d                = _mm_sub_ps(r00,rswitch);
1159             d                = _mm_max_ps(d,_mm_setzero_ps());
1160             d2               = _mm_mul_ps(d,d);
1161             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1162
1163             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1164
1165             /* Evaluate switch function */
1166             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1167             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1168             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1169
1170             fscal            = fvdw;
1171
1172             fscal            = _mm_and_ps(fscal,cutoff_mask);
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm_mul_ps(fscal,dx00);
1176             ty               = _mm_mul_ps(fscal,dy00);
1177             tz               = _mm_mul_ps(fscal,dz00);
1178
1179             /* Update vectorial force */
1180             fix0             = _mm_add_ps(fix0,tx);
1181             fiy0             = _mm_add_ps(fiy0,ty);
1182             fiz0             = _mm_add_ps(fiz0,tz);
1183
1184             fjx0             = _mm_add_ps(fjx0,tx);
1185             fjy0             = _mm_add_ps(fjy0,ty);
1186             fjz0             = _mm_add_ps(fjz0,tz);
1187
1188             }
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             if (gmx_mm_any_lt(rsq10,rcutoff2))
1195             {
1196
1197             r10              = _mm_mul_ps(rsq10,rinv10);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq10             = _mm_mul_ps(iq1,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_ps(r10,ewtabscale);
1206             ewitab           = _mm_cvttps_epi32(ewrt);
1207             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1208             ewitab           = _mm_slli_epi32(ewitab,2);
1209             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1210             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1211             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1212             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1213             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1214             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1215             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1216             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1217             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1218
1219             d                = _mm_sub_ps(r10,rswitch);
1220             d                = _mm_max_ps(d,_mm_setzero_ps());
1221             d2               = _mm_mul_ps(d,d);
1222             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1223
1224             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1225
1226             /* Evaluate switch function */
1227             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1228             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1229             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1230
1231             fscal            = felec;
1232
1233             fscal            = _mm_and_ps(fscal,cutoff_mask);
1234
1235             /* Calculate temporary vectorial force */
1236             tx               = _mm_mul_ps(fscal,dx10);
1237             ty               = _mm_mul_ps(fscal,dy10);
1238             tz               = _mm_mul_ps(fscal,dz10);
1239
1240             /* Update vectorial force */
1241             fix1             = _mm_add_ps(fix1,tx);
1242             fiy1             = _mm_add_ps(fiy1,ty);
1243             fiz1             = _mm_add_ps(fiz1,tz);
1244
1245             fjx0             = _mm_add_ps(fjx0,tx);
1246             fjy0             = _mm_add_ps(fjy0,ty);
1247             fjz0             = _mm_add_ps(fjz0,tz);
1248
1249             }
1250
1251             /**************************
1252              * CALCULATE INTERACTIONS *
1253              **************************/
1254
1255             if (gmx_mm_any_lt(rsq20,rcutoff2))
1256             {
1257
1258             r20              = _mm_mul_ps(rsq20,rinv20);
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             qq20             = _mm_mul_ps(iq2,jq0);
1262
1263             /* EWALD ELECTROSTATICS */
1264
1265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1266             ewrt             = _mm_mul_ps(r20,ewtabscale);
1267             ewitab           = _mm_cvttps_epi32(ewrt);
1268             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1269             ewitab           = _mm_slli_epi32(ewitab,2);
1270             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1271             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1272             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1273             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1274             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1275             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1276             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1277             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1278             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1279
1280             d                = _mm_sub_ps(r20,rswitch);
1281             d                = _mm_max_ps(d,_mm_setzero_ps());
1282             d2               = _mm_mul_ps(d,d);
1283             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1284
1285             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1286
1287             /* Evaluate switch function */
1288             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1289             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1290             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm_and_ps(fscal,cutoff_mask);
1295
1296             /* Calculate temporary vectorial force */
1297             tx               = _mm_mul_ps(fscal,dx20);
1298             ty               = _mm_mul_ps(fscal,dy20);
1299             tz               = _mm_mul_ps(fscal,dz20);
1300
1301             /* Update vectorial force */
1302             fix2             = _mm_add_ps(fix2,tx);
1303             fiy2             = _mm_add_ps(fiy2,ty);
1304             fiz2             = _mm_add_ps(fiz2,tz);
1305
1306             fjx0             = _mm_add_ps(fjx0,tx);
1307             fjy0             = _mm_add_ps(fjy0,ty);
1308             fjz0             = _mm_add_ps(fjz0,tz);
1309
1310             }
1311
1312             /**************************
1313              * CALCULATE INTERACTIONS *
1314              **************************/
1315
1316             if (gmx_mm_any_lt(rsq30,rcutoff2))
1317             {
1318
1319             r30              = _mm_mul_ps(rsq30,rinv30);
1320
1321             /* Compute parameters for interactions between i and j atoms */
1322             qq30             = _mm_mul_ps(iq3,jq0);
1323
1324             /* EWALD ELECTROSTATICS */
1325
1326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1327             ewrt             = _mm_mul_ps(r30,ewtabscale);
1328             ewitab           = _mm_cvttps_epi32(ewrt);
1329             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1330             ewitab           = _mm_slli_epi32(ewitab,2);
1331             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1332             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1333             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1334             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1335             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1336             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1337             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1338             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1339             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1340
1341             d                = _mm_sub_ps(r30,rswitch);
1342             d                = _mm_max_ps(d,_mm_setzero_ps());
1343             d2               = _mm_mul_ps(d,d);
1344             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1345
1346             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1347
1348             /* Evaluate switch function */
1349             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1350             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1351             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm_and_ps(fscal,cutoff_mask);
1356
1357             /* Calculate temporary vectorial force */
1358             tx               = _mm_mul_ps(fscal,dx30);
1359             ty               = _mm_mul_ps(fscal,dy30);
1360             tz               = _mm_mul_ps(fscal,dz30);
1361
1362             /* Update vectorial force */
1363             fix3             = _mm_add_ps(fix3,tx);
1364             fiy3             = _mm_add_ps(fiy3,ty);
1365             fiz3             = _mm_add_ps(fiz3,tz);
1366
1367             fjx0             = _mm_add_ps(fjx0,tx);
1368             fjy0             = _mm_add_ps(fjy0,ty);
1369             fjz0             = _mm_add_ps(fjz0,tz);
1370
1371             }
1372
1373             fjptrA             = f+j_coord_offsetA;
1374             fjptrB             = f+j_coord_offsetB;
1375             fjptrC             = f+j_coord_offsetC;
1376             fjptrD             = f+j_coord_offsetD;
1377
1378             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1379
1380             /* Inner loop uses 242 flops */
1381         }
1382
1383         if(jidx<j_index_end)
1384         {
1385
1386             /* Get j neighbor index, and coordinate index */
1387             jnrlistA         = jjnr[jidx];
1388             jnrlistB         = jjnr[jidx+1];
1389             jnrlistC         = jjnr[jidx+2];
1390             jnrlistD         = jjnr[jidx+3];
1391             /* Sign of each element will be negative for non-real atoms.
1392              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1393              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1394              */
1395             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1396             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1397             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1398             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1399             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1400             j_coord_offsetA  = DIM*jnrA;
1401             j_coord_offsetB  = DIM*jnrB;
1402             j_coord_offsetC  = DIM*jnrC;
1403             j_coord_offsetD  = DIM*jnrD;
1404
1405             /* load j atom coordinates */
1406             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1407                                               x+j_coord_offsetC,x+j_coord_offsetD,
1408                                               &jx0,&jy0,&jz0);
1409
1410             /* Calculate displacement vector */
1411             dx00             = _mm_sub_ps(ix0,jx0);
1412             dy00             = _mm_sub_ps(iy0,jy0);
1413             dz00             = _mm_sub_ps(iz0,jz0);
1414             dx10             = _mm_sub_ps(ix1,jx0);
1415             dy10             = _mm_sub_ps(iy1,jy0);
1416             dz10             = _mm_sub_ps(iz1,jz0);
1417             dx20             = _mm_sub_ps(ix2,jx0);
1418             dy20             = _mm_sub_ps(iy2,jy0);
1419             dz20             = _mm_sub_ps(iz2,jz0);
1420             dx30             = _mm_sub_ps(ix3,jx0);
1421             dy30             = _mm_sub_ps(iy3,jy0);
1422             dz30             = _mm_sub_ps(iz3,jz0);
1423
1424             /* Calculate squared distance and things based on it */
1425             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1426             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1427             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1428             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1429
1430             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1431             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1432             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1433             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1434
1435             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1436             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1437             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1438             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1439
1440             /* Load parameters for j particles */
1441             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1442                                                               charge+jnrC+0,charge+jnrD+0);
1443             vdwjidx0A        = 2*vdwtype[jnrA+0];
1444             vdwjidx0B        = 2*vdwtype[jnrB+0];
1445             vdwjidx0C        = 2*vdwtype[jnrC+0];
1446             vdwjidx0D        = 2*vdwtype[jnrD+0];
1447
1448             fjx0             = _mm_setzero_ps();
1449             fjy0             = _mm_setzero_ps();
1450             fjz0             = _mm_setzero_ps();
1451
1452             /**************************
1453              * CALCULATE INTERACTIONS *
1454              **************************/
1455
1456             if (gmx_mm_any_lt(rsq00,rcutoff2))
1457             {
1458
1459             r00              = _mm_mul_ps(rsq00,rinv00);
1460             r00              = _mm_andnot_ps(dummy_mask,r00);
1461
1462             /* Compute parameters for interactions between i and j atoms */
1463             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1464                                          vdwparam+vdwioffset0+vdwjidx0B,
1465                                          vdwparam+vdwioffset0+vdwjidx0C,
1466                                          vdwparam+vdwioffset0+vdwjidx0D,
1467                                          &c6_00,&c12_00);
1468
1469             /* LENNARD-JONES DISPERSION/REPULSION */
1470
1471             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1472             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1473             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1474             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1475             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1476
1477             d                = _mm_sub_ps(r00,rswitch);
1478             d                = _mm_max_ps(d,_mm_setzero_ps());
1479             d2               = _mm_mul_ps(d,d);
1480             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1481
1482             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1483
1484             /* Evaluate switch function */
1485             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1486             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1487             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1488
1489             fscal            = fvdw;
1490
1491             fscal            = _mm_and_ps(fscal,cutoff_mask);
1492
1493             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1494
1495             /* Calculate temporary vectorial force */
1496             tx               = _mm_mul_ps(fscal,dx00);
1497             ty               = _mm_mul_ps(fscal,dy00);
1498             tz               = _mm_mul_ps(fscal,dz00);
1499
1500             /* Update vectorial force */
1501             fix0             = _mm_add_ps(fix0,tx);
1502             fiy0             = _mm_add_ps(fiy0,ty);
1503             fiz0             = _mm_add_ps(fiz0,tz);
1504
1505             fjx0             = _mm_add_ps(fjx0,tx);
1506             fjy0             = _mm_add_ps(fjy0,ty);
1507             fjz0             = _mm_add_ps(fjz0,tz);
1508
1509             }
1510
1511             /**************************
1512              * CALCULATE INTERACTIONS *
1513              **************************/
1514
1515             if (gmx_mm_any_lt(rsq10,rcutoff2))
1516             {
1517
1518             r10              = _mm_mul_ps(rsq10,rinv10);
1519             r10              = _mm_andnot_ps(dummy_mask,r10);
1520
1521             /* Compute parameters for interactions between i and j atoms */
1522             qq10             = _mm_mul_ps(iq1,jq0);
1523
1524             /* EWALD ELECTROSTATICS */
1525
1526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1527             ewrt             = _mm_mul_ps(r10,ewtabscale);
1528             ewitab           = _mm_cvttps_epi32(ewrt);
1529             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1530             ewitab           = _mm_slli_epi32(ewitab,2);
1531             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1532             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1533             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1534             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1535             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1536             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1537             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1538             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1539             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1540
1541             d                = _mm_sub_ps(r10,rswitch);
1542             d                = _mm_max_ps(d,_mm_setzero_ps());
1543             d2               = _mm_mul_ps(d,d);
1544             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1545
1546             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1547
1548             /* Evaluate switch function */
1549             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1550             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1551             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1552
1553             fscal            = felec;
1554
1555             fscal            = _mm_and_ps(fscal,cutoff_mask);
1556
1557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1558
1559             /* Calculate temporary vectorial force */
1560             tx               = _mm_mul_ps(fscal,dx10);
1561             ty               = _mm_mul_ps(fscal,dy10);
1562             tz               = _mm_mul_ps(fscal,dz10);
1563
1564             /* Update vectorial force */
1565             fix1             = _mm_add_ps(fix1,tx);
1566             fiy1             = _mm_add_ps(fiy1,ty);
1567             fiz1             = _mm_add_ps(fiz1,tz);
1568
1569             fjx0             = _mm_add_ps(fjx0,tx);
1570             fjy0             = _mm_add_ps(fjy0,ty);
1571             fjz0             = _mm_add_ps(fjz0,tz);
1572
1573             }
1574
1575             /**************************
1576              * CALCULATE INTERACTIONS *
1577              **************************/
1578
1579             if (gmx_mm_any_lt(rsq20,rcutoff2))
1580             {
1581
1582             r20              = _mm_mul_ps(rsq20,rinv20);
1583             r20              = _mm_andnot_ps(dummy_mask,r20);
1584
1585             /* Compute parameters for interactions between i and j atoms */
1586             qq20             = _mm_mul_ps(iq2,jq0);
1587
1588             /* EWALD ELECTROSTATICS */
1589
1590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1591             ewrt             = _mm_mul_ps(r20,ewtabscale);
1592             ewitab           = _mm_cvttps_epi32(ewrt);
1593             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1594             ewitab           = _mm_slli_epi32(ewitab,2);
1595             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1596             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1597             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1598             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1599             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1600             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1601             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1602             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1603             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1604
1605             d                = _mm_sub_ps(r20,rswitch);
1606             d                = _mm_max_ps(d,_mm_setzero_ps());
1607             d2               = _mm_mul_ps(d,d);
1608             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1609
1610             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1611
1612             /* Evaluate switch function */
1613             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1614             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1615             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1616
1617             fscal            = felec;
1618
1619             fscal            = _mm_and_ps(fscal,cutoff_mask);
1620
1621             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1622
1623             /* Calculate temporary vectorial force */
1624             tx               = _mm_mul_ps(fscal,dx20);
1625             ty               = _mm_mul_ps(fscal,dy20);
1626             tz               = _mm_mul_ps(fscal,dz20);
1627
1628             /* Update vectorial force */
1629             fix2             = _mm_add_ps(fix2,tx);
1630             fiy2             = _mm_add_ps(fiy2,ty);
1631             fiz2             = _mm_add_ps(fiz2,tz);
1632
1633             fjx0             = _mm_add_ps(fjx0,tx);
1634             fjy0             = _mm_add_ps(fjy0,ty);
1635             fjz0             = _mm_add_ps(fjz0,tz);
1636
1637             }
1638
1639             /**************************
1640              * CALCULATE INTERACTIONS *
1641              **************************/
1642
1643             if (gmx_mm_any_lt(rsq30,rcutoff2))
1644             {
1645
1646             r30              = _mm_mul_ps(rsq30,rinv30);
1647             r30              = _mm_andnot_ps(dummy_mask,r30);
1648
1649             /* Compute parameters for interactions between i and j atoms */
1650             qq30             = _mm_mul_ps(iq3,jq0);
1651
1652             /* EWALD ELECTROSTATICS */
1653
1654             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1655             ewrt             = _mm_mul_ps(r30,ewtabscale);
1656             ewitab           = _mm_cvttps_epi32(ewrt);
1657             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1658             ewitab           = _mm_slli_epi32(ewitab,2);
1659             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1660             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1661             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1662             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1663             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1664             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1665             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1666             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1667             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1668
1669             d                = _mm_sub_ps(r30,rswitch);
1670             d                = _mm_max_ps(d,_mm_setzero_ps());
1671             d2               = _mm_mul_ps(d,d);
1672             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1673
1674             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1675
1676             /* Evaluate switch function */
1677             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1678             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1679             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1680
1681             fscal            = felec;
1682
1683             fscal            = _mm_and_ps(fscal,cutoff_mask);
1684
1685             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1686
1687             /* Calculate temporary vectorial force */
1688             tx               = _mm_mul_ps(fscal,dx30);
1689             ty               = _mm_mul_ps(fscal,dy30);
1690             tz               = _mm_mul_ps(fscal,dz30);
1691
1692             /* Update vectorial force */
1693             fix3             = _mm_add_ps(fix3,tx);
1694             fiy3             = _mm_add_ps(fiy3,ty);
1695             fiz3             = _mm_add_ps(fiz3,tz);
1696
1697             fjx0             = _mm_add_ps(fjx0,tx);
1698             fjy0             = _mm_add_ps(fjy0,ty);
1699             fjz0             = _mm_add_ps(fjz0,tz);
1700
1701             }
1702
1703             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1704             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1705             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1706             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1707
1708             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1709
1710             /* Inner loop uses 246 flops */
1711         }
1712
1713         /* End of innermost loop */
1714
1715         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1716                                               f+i_coord_offset,fshift+i_shift_offset);
1717
1718         /* Increment number of inner iterations */
1719         inneriter                  += j_index_end - j_index_start;
1720
1721         /* Outer loop uses 24 flops */
1722     }
1723
1724     /* Increment number of outer iterations */
1725     outeriter        += nri;
1726
1727     /* Update outer/inner flops */
1728
1729     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*246);
1730 }