Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108     real             rswitch_scalar,d_scalar;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_ps(rcutoff_scalar);
145     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
146
147     rswitch_scalar   = fr->rcoulomb_switch;
148     rswitch          = _mm_set1_ps(rswitch_scalar);
149     /* Setup switch parameters */
150     d_scalar         = rcutoff_scalar-rswitch_scalar;
151     d                = _mm_set1_ps(d_scalar);
152     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
153     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
156     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
157     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = jnrC = jnrD = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163     j_coord_offsetC = 0;
164     j_coord_offsetD = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191
192         fix0             = _mm_setzero_ps();
193         fiy0             = _mm_setzero_ps();
194         fiz0             = _mm_setzero_ps();
195         fix1             = _mm_setzero_ps();
196         fiy1             = _mm_setzero_ps();
197         fiz1             = _mm_setzero_ps();
198         fix2             = _mm_setzero_ps();
199         fiy2             = _mm_setzero_ps();
200         fiz2             = _mm_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm_setzero_ps();
204         vvdwsum          = _mm_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               x+j_coord_offsetC,x+j_coord_offsetD,
223                                               &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm_sub_ps(ix0,jx0);
227             dy00             = _mm_sub_ps(iy0,jy0);
228             dz00             = _mm_sub_ps(iz0,jz0);
229             dx10             = _mm_sub_ps(ix1,jx0);
230             dy10             = _mm_sub_ps(iy1,jy0);
231             dz10             = _mm_sub_ps(iz1,jz0);
232             dx20             = _mm_sub_ps(ix2,jx0);
233             dy20             = _mm_sub_ps(iy2,jy0);
234             dz20             = _mm_sub_ps(iz2,jz0);
235
236             /* Calculate squared distance and things based on it */
237             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
238             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
239             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
240
241             rinv00           = gmx_mm_invsqrt_ps(rsq00);
242             rinv10           = gmx_mm_invsqrt_ps(rsq10);
243             rinv20           = gmx_mm_invsqrt_ps(rsq20);
244
245             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
246             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
247             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
248
249             /* Load parameters for j particles */
250             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251                                                               charge+jnrC+0,charge+jnrD+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256
257             fjx0             = _mm_setzero_ps();
258             fjy0             = _mm_setzero_ps();
259             fjz0             = _mm_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             if (gmx_mm_any_lt(rsq00,rcutoff2))
266             {
267
268             r00              = _mm_mul_ps(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq00             = _mm_mul_ps(iq0,jq0);
272             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
273                                          vdwparam+vdwioffset0+vdwjidx0B,
274                                          vdwparam+vdwioffset0+vdwjidx0C,
275                                          vdwparam+vdwioffset0+vdwjidx0D,
276                                          &c6_00,&c12_00);
277
278             /* EWALD ELECTROSTATICS */
279
280             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
281             ewrt             = _mm_mul_ps(r00,ewtabscale);
282             ewitab           = _mm_cvttps_epi32(ewrt);
283             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
284             ewitab           = _mm_slli_epi32(ewitab,2);
285             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
286             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
287             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
288             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
289             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
290             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
291             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
292             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
293             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
294
295             /* LENNARD-JONES DISPERSION/REPULSION */
296
297             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
298             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
299             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
300             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
301             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
302
303             d                = _mm_sub_ps(r00,rswitch);
304             d                = _mm_max_ps(d,_mm_setzero_ps());
305             d2               = _mm_mul_ps(d,d);
306             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
307
308             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
309
310             /* Evaluate switch function */
311             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
312             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
313             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
314             velec            = _mm_mul_ps(velec,sw);
315             vvdw             = _mm_mul_ps(vvdw,sw);
316             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_and_ps(velec,cutoff_mask);
320             velecsum         = _mm_add_ps(velecsum,velec);
321             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
322             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
323
324             fscal            = _mm_add_ps(felec,fvdw);
325
326             fscal            = _mm_and_ps(fscal,cutoff_mask);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_ps(fscal,dx00);
330             ty               = _mm_mul_ps(fscal,dy00);
331             tz               = _mm_mul_ps(fscal,dz00);
332
333             /* Update vectorial force */
334             fix0             = _mm_add_ps(fix0,tx);
335             fiy0             = _mm_add_ps(fiy0,ty);
336             fiz0             = _mm_add_ps(fiz0,tz);
337
338             fjx0             = _mm_add_ps(fjx0,tx);
339             fjy0             = _mm_add_ps(fjy0,ty);
340             fjz0             = _mm_add_ps(fjz0,tz);
341
342             }
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm_any_lt(rsq10,rcutoff2))
349             {
350
351             r10              = _mm_mul_ps(rsq10,rinv10);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq10             = _mm_mul_ps(iq1,jq0);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359             ewrt             = _mm_mul_ps(r10,ewtabscale);
360             ewitab           = _mm_cvttps_epi32(ewrt);
361             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
362             ewitab           = _mm_slli_epi32(ewitab,2);
363             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
364             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
365             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
366             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
367             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
368             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
369             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
370             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
371             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
372
373             d                = _mm_sub_ps(r10,rswitch);
374             d                = _mm_max_ps(d,_mm_setzero_ps());
375             d2               = _mm_mul_ps(d,d);
376             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
377
378             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
379
380             /* Evaluate switch function */
381             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
382             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
383             velec            = _mm_mul_ps(velec,sw);
384             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm_and_ps(velec,cutoff_mask);
388             velecsum         = _mm_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm_and_ps(fscal,cutoff_mask);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_ps(fscal,dx10);
396             ty               = _mm_mul_ps(fscal,dy10);
397             tz               = _mm_mul_ps(fscal,dz10);
398
399             /* Update vectorial force */
400             fix1             = _mm_add_ps(fix1,tx);
401             fiy1             = _mm_add_ps(fiy1,ty);
402             fiz1             = _mm_add_ps(fiz1,tz);
403
404             fjx0             = _mm_add_ps(fjx0,tx);
405             fjy0             = _mm_add_ps(fjy0,ty);
406             fjz0             = _mm_add_ps(fjz0,tz);
407
408             }
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             if (gmx_mm_any_lt(rsq20,rcutoff2))
415             {
416
417             r20              = _mm_mul_ps(rsq20,rinv20);
418
419             /* Compute parameters for interactions between i and j atoms */
420             qq20             = _mm_mul_ps(iq2,jq0);
421
422             /* EWALD ELECTROSTATICS */
423
424             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
425             ewrt             = _mm_mul_ps(r20,ewtabscale);
426             ewitab           = _mm_cvttps_epi32(ewrt);
427             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
428             ewitab           = _mm_slli_epi32(ewitab,2);
429             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
430             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
431             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
432             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
433             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
434             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
435             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
436             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
437             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
438
439             d                = _mm_sub_ps(r20,rswitch);
440             d                = _mm_max_ps(d,_mm_setzero_ps());
441             d2               = _mm_mul_ps(d,d);
442             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
443
444             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
445
446             /* Evaluate switch function */
447             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
448             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
449             velec            = _mm_mul_ps(velec,sw);
450             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_and_ps(velec,cutoff_mask);
454             velecsum         = _mm_add_ps(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_and_ps(fscal,cutoff_mask);
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_ps(fscal,dx20);
462             ty               = _mm_mul_ps(fscal,dy20);
463             tz               = _mm_mul_ps(fscal,dz20);
464
465             /* Update vectorial force */
466             fix2             = _mm_add_ps(fix2,tx);
467             fiy2             = _mm_add_ps(fiy2,ty);
468             fiz2             = _mm_add_ps(fiz2,tz);
469
470             fjx0             = _mm_add_ps(fjx0,tx);
471             fjy0             = _mm_add_ps(fjy0,ty);
472             fjz0             = _mm_add_ps(fjz0,tz);
473
474             }
475
476             fjptrA             = f+j_coord_offsetA;
477             fjptrB             = f+j_coord_offsetB;
478             fjptrC             = f+j_coord_offsetC;
479             fjptrD             = f+j_coord_offsetD;
480
481             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
482
483             /* Inner loop uses 213 flops */
484         }
485
486         if(jidx<j_index_end)
487         {
488
489             /* Get j neighbor index, and coordinate index */
490             jnrlistA         = jjnr[jidx];
491             jnrlistB         = jjnr[jidx+1];
492             jnrlistC         = jjnr[jidx+2];
493             jnrlistD         = jjnr[jidx+3];
494             /* Sign of each element will be negative for non-real atoms.
495              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
496              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
497              */
498             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
499             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
500             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
501             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
502             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
503             j_coord_offsetA  = DIM*jnrA;
504             j_coord_offsetB  = DIM*jnrB;
505             j_coord_offsetC  = DIM*jnrC;
506             j_coord_offsetD  = DIM*jnrD;
507
508             /* load j atom coordinates */
509             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
510                                               x+j_coord_offsetC,x+j_coord_offsetD,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_ps(ix0,jx0);
515             dy00             = _mm_sub_ps(iy0,jy0);
516             dz00             = _mm_sub_ps(iz0,jz0);
517             dx10             = _mm_sub_ps(ix1,jx0);
518             dy10             = _mm_sub_ps(iy1,jy0);
519             dz10             = _mm_sub_ps(iz1,jz0);
520             dx20             = _mm_sub_ps(ix2,jx0);
521             dy20             = _mm_sub_ps(iy2,jy0);
522             dz20             = _mm_sub_ps(iz2,jz0);
523
524             /* Calculate squared distance and things based on it */
525             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
526             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
527             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
528
529             rinv00           = gmx_mm_invsqrt_ps(rsq00);
530             rinv10           = gmx_mm_invsqrt_ps(rsq10);
531             rinv20           = gmx_mm_invsqrt_ps(rsq20);
532
533             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
534             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
535             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
536
537             /* Load parameters for j particles */
538             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
539                                                               charge+jnrC+0,charge+jnrD+0);
540             vdwjidx0A        = 2*vdwtype[jnrA+0];
541             vdwjidx0B        = 2*vdwtype[jnrB+0];
542             vdwjidx0C        = 2*vdwtype[jnrC+0];
543             vdwjidx0D        = 2*vdwtype[jnrD+0];
544
545             fjx0             = _mm_setzero_ps();
546             fjy0             = _mm_setzero_ps();
547             fjz0             = _mm_setzero_ps();
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             if (gmx_mm_any_lt(rsq00,rcutoff2))
554             {
555
556             r00              = _mm_mul_ps(rsq00,rinv00);
557             r00              = _mm_andnot_ps(dummy_mask,r00);
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq00             = _mm_mul_ps(iq0,jq0);
561             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
562                                          vdwparam+vdwioffset0+vdwjidx0B,
563                                          vdwparam+vdwioffset0+vdwjidx0C,
564                                          vdwparam+vdwioffset0+vdwjidx0D,
565                                          &c6_00,&c12_00);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm_mul_ps(r00,ewtabscale);
571             ewitab           = _mm_cvttps_epi32(ewrt);
572             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
576             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
577             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
578             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
579             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
580             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
581             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
582             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
588             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
589             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
590             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
591
592             d                = _mm_sub_ps(r00,rswitch);
593             d                = _mm_max_ps(d,_mm_setzero_ps());
594             d2               = _mm_mul_ps(d,d);
595             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
596
597             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
598
599             /* Evaluate switch function */
600             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
601             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
602             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
603             velec            = _mm_mul_ps(velec,sw);
604             vvdw             = _mm_mul_ps(vvdw,sw);
605             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_and_ps(velec,cutoff_mask);
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
612             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
613             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
614
615             fscal            = _mm_add_ps(felec,fvdw);
616
617             fscal            = _mm_and_ps(fscal,cutoff_mask);
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx00);
623             ty               = _mm_mul_ps(fscal,dy00);
624             tz               = _mm_mul_ps(fscal,dz00);
625
626             /* Update vectorial force */
627             fix0             = _mm_add_ps(fix0,tx);
628             fiy0             = _mm_add_ps(fiy0,ty);
629             fiz0             = _mm_add_ps(fiz0,tz);
630
631             fjx0             = _mm_add_ps(fjx0,tx);
632             fjy0             = _mm_add_ps(fjy0,ty);
633             fjz0             = _mm_add_ps(fjz0,tz);
634
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq10,rcutoff2))
642             {
643
644             r10              = _mm_mul_ps(rsq10,rinv10);
645             r10              = _mm_andnot_ps(dummy_mask,r10);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq10             = _mm_mul_ps(iq1,jq0);
649
650             /* EWALD ELECTROSTATICS */
651
652             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
653             ewrt             = _mm_mul_ps(r10,ewtabscale);
654             ewitab           = _mm_cvttps_epi32(ewrt);
655             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
656             ewitab           = _mm_slli_epi32(ewitab,2);
657             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
658             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
659             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
660             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
661             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
662             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
663             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
664             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
665             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
666
667             d                = _mm_sub_ps(r10,rswitch);
668             d                = _mm_max_ps(d,_mm_setzero_ps());
669             d2               = _mm_mul_ps(d,d);
670             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
671
672             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
673
674             /* Evaluate switch function */
675             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
676             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
677             velec            = _mm_mul_ps(velec,sw);
678             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm_and_ps(velec,cutoff_mask);
682             velec            = _mm_andnot_ps(dummy_mask,velec);
683             velecsum         = _mm_add_ps(velecsum,velec);
684
685             fscal            = felec;
686
687             fscal            = _mm_and_ps(fscal,cutoff_mask);
688
689             fscal            = _mm_andnot_ps(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_ps(fscal,dx10);
693             ty               = _mm_mul_ps(fscal,dy10);
694             tz               = _mm_mul_ps(fscal,dz10);
695
696             /* Update vectorial force */
697             fix1             = _mm_add_ps(fix1,tx);
698             fiy1             = _mm_add_ps(fiy1,ty);
699             fiz1             = _mm_add_ps(fiz1,tz);
700
701             fjx0             = _mm_add_ps(fjx0,tx);
702             fjy0             = _mm_add_ps(fjy0,ty);
703             fjz0             = _mm_add_ps(fjz0,tz);
704
705             }
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             if (gmx_mm_any_lt(rsq20,rcutoff2))
712             {
713
714             r20              = _mm_mul_ps(rsq20,rinv20);
715             r20              = _mm_andnot_ps(dummy_mask,r20);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq20             = _mm_mul_ps(iq2,jq0);
719
720             /* EWALD ELECTROSTATICS */
721
722             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
723             ewrt             = _mm_mul_ps(r20,ewtabscale);
724             ewitab           = _mm_cvttps_epi32(ewrt);
725             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
726             ewitab           = _mm_slli_epi32(ewitab,2);
727             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
728             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
729             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
730             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
731             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
732             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
733             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
734             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
735             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
736
737             d                = _mm_sub_ps(r20,rswitch);
738             d                = _mm_max_ps(d,_mm_setzero_ps());
739             d2               = _mm_mul_ps(d,d);
740             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
741
742             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
743
744             /* Evaluate switch function */
745             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
746             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
747             velec            = _mm_mul_ps(velec,sw);
748             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
749
750             /* Update potential sum for this i atom from the interaction with this j atom. */
751             velec            = _mm_and_ps(velec,cutoff_mask);
752             velec            = _mm_andnot_ps(dummy_mask,velec);
753             velecsum         = _mm_add_ps(velecsum,velec);
754
755             fscal            = felec;
756
757             fscal            = _mm_and_ps(fscal,cutoff_mask);
758
759             fscal            = _mm_andnot_ps(dummy_mask,fscal);
760
761             /* Calculate temporary vectorial force */
762             tx               = _mm_mul_ps(fscal,dx20);
763             ty               = _mm_mul_ps(fscal,dy20);
764             tz               = _mm_mul_ps(fscal,dz20);
765
766             /* Update vectorial force */
767             fix2             = _mm_add_ps(fix2,tx);
768             fiy2             = _mm_add_ps(fiy2,ty);
769             fiz2             = _mm_add_ps(fiz2,tz);
770
771             fjx0             = _mm_add_ps(fjx0,tx);
772             fjy0             = _mm_add_ps(fjy0,ty);
773             fjz0             = _mm_add_ps(fjz0,tz);
774
775             }
776
777             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
778             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
779             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
780             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
781
782             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
783
784             /* Inner loop uses 216 flops */
785         }
786
787         /* End of innermost loop */
788
789         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
790                                               f+i_coord_offset,fshift+i_shift_offset);
791
792         ggid                        = gid[iidx];
793         /* Update potential energies */
794         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
795         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
796
797         /* Increment number of inner iterations */
798         inneriter                  += j_index_end - j_index_start;
799
800         /* Outer loop uses 20 flops */
801     }
802
803     /* Increment number of outer iterations */
804     outeriter        += nri;
805
806     /* Update outer/inner flops */
807
808     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*216);
809 }
810 /*
811  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
812  * Electrostatics interaction: Ewald
813  * VdW interaction:            LennardJones
814  * Geometry:                   Water3-Particle
815  * Calculate force/pot:        Force
816  */
817 void
818 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
819                     (t_nblist                    * gmx_restrict       nlist,
820                      rvec                        * gmx_restrict          xx,
821                      rvec                        * gmx_restrict          ff,
822                      t_forcerec                  * gmx_restrict          fr,
823                      t_mdatoms                   * gmx_restrict     mdatoms,
824                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
825                      t_nrnb                      * gmx_restrict        nrnb)
826 {
827     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
828      * just 0 for non-waters.
829      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
830      * jnr indices corresponding to data put in the four positions in the SIMD register.
831      */
832     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
833     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
834     int              jnrA,jnrB,jnrC,jnrD;
835     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
836     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
837     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
838     real             rcutoff_scalar;
839     real             *shiftvec,*fshift,*x,*f;
840     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
841     real             scratch[4*DIM];
842     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
843     int              vdwioffset0;
844     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
845     int              vdwioffset1;
846     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
847     int              vdwioffset2;
848     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
849     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
850     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
851     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
852     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
853     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
854     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
855     real             *charge;
856     int              nvdwtype;
857     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
858     int              *vdwtype;
859     real             *vdwparam;
860     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
861     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
862     __m128i          ewitab;
863     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
864     real             *ewtab;
865     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
866     real             rswitch_scalar,d_scalar;
867     __m128           dummy_mask,cutoff_mask;
868     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
869     __m128           one     = _mm_set1_ps(1.0);
870     __m128           two     = _mm_set1_ps(2.0);
871     x                = xx[0];
872     f                = ff[0];
873
874     nri              = nlist->nri;
875     iinr             = nlist->iinr;
876     jindex           = nlist->jindex;
877     jjnr             = nlist->jjnr;
878     shiftidx         = nlist->shift;
879     gid              = nlist->gid;
880     shiftvec         = fr->shift_vec[0];
881     fshift           = fr->fshift[0];
882     facel            = _mm_set1_ps(fr->epsfac);
883     charge           = mdatoms->chargeA;
884     nvdwtype         = fr->ntype;
885     vdwparam         = fr->nbfp;
886     vdwtype          = mdatoms->typeA;
887
888     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
889     ewtab            = fr->ic->tabq_coul_FDV0;
890     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
891     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
892
893     /* Setup water-specific parameters */
894     inr              = nlist->iinr[0];
895     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
896     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
897     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
898     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
899
900     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
901     rcutoff_scalar   = fr->rcoulomb;
902     rcutoff          = _mm_set1_ps(rcutoff_scalar);
903     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
904
905     rswitch_scalar   = fr->rcoulomb_switch;
906     rswitch          = _mm_set1_ps(rswitch_scalar);
907     /* Setup switch parameters */
908     d_scalar         = rcutoff_scalar-rswitch_scalar;
909     d                = _mm_set1_ps(d_scalar);
910     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
911     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
912     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
913     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
914     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
915     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
916
917     /* Avoid stupid compiler warnings */
918     jnrA = jnrB = jnrC = jnrD = 0;
919     j_coord_offsetA = 0;
920     j_coord_offsetB = 0;
921     j_coord_offsetC = 0;
922     j_coord_offsetD = 0;
923
924     outeriter        = 0;
925     inneriter        = 0;
926
927     for(iidx=0;iidx<4*DIM;iidx++)
928     {
929         scratch[iidx] = 0.0;
930     }
931
932     /* Start outer loop over neighborlists */
933     for(iidx=0; iidx<nri; iidx++)
934     {
935         /* Load shift vector for this list */
936         i_shift_offset   = DIM*shiftidx[iidx];
937
938         /* Load limits for loop over neighbors */
939         j_index_start    = jindex[iidx];
940         j_index_end      = jindex[iidx+1];
941
942         /* Get outer coordinate index */
943         inr              = iinr[iidx];
944         i_coord_offset   = DIM*inr;
945
946         /* Load i particle coords and add shift vector */
947         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
948                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
949
950         fix0             = _mm_setzero_ps();
951         fiy0             = _mm_setzero_ps();
952         fiz0             = _mm_setzero_ps();
953         fix1             = _mm_setzero_ps();
954         fiy1             = _mm_setzero_ps();
955         fiz1             = _mm_setzero_ps();
956         fix2             = _mm_setzero_ps();
957         fiy2             = _mm_setzero_ps();
958         fiz2             = _mm_setzero_ps();
959
960         /* Start inner kernel loop */
961         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
962         {
963
964             /* Get j neighbor index, and coordinate index */
965             jnrA             = jjnr[jidx];
966             jnrB             = jjnr[jidx+1];
967             jnrC             = jjnr[jidx+2];
968             jnrD             = jjnr[jidx+3];
969             j_coord_offsetA  = DIM*jnrA;
970             j_coord_offsetB  = DIM*jnrB;
971             j_coord_offsetC  = DIM*jnrC;
972             j_coord_offsetD  = DIM*jnrD;
973
974             /* load j atom coordinates */
975             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
976                                               x+j_coord_offsetC,x+j_coord_offsetD,
977                                               &jx0,&jy0,&jz0);
978
979             /* Calculate displacement vector */
980             dx00             = _mm_sub_ps(ix0,jx0);
981             dy00             = _mm_sub_ps(iy0,jy0);
982             dz00             = _mm_sub_ps(iz0,jz0);
983             dx10             = _mm_sub_ps(ix1,jx0);
984             dy10             = _mm_sub_ps(iy1,jy0);
985             dz10             = _mm_sub_ps(iz1,jz0);
986             dx20             = _mm_sub_ps(ix2,jx0);
987             dy20             = _mm_sub_ps(iy2,jy0);
988             dz20             = _mm_sub_ps(iz2,jz0);
989
990             /* Calculate squared distance and things based on it */
991             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
992             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
993             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
994
995             rinv00           = gmx_mm_invsqrt_ps(rsq00);
996             rinv10           = gmx_mm_invsqrt_ps(rsq10);
997             rinv20           = gmx_mm_invsqrt_ps(rsq20);
998
999             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1000             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1001             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1002
1003             /* Load parameters for j particles */
1004             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1005                                                               charge+jnrC+0,charge+jnrD+0);
1006             vdwjidx0A        = 2*vdwtype[jnrA+0];
1007             vdwjidx0B        = 2*vdwtype[jnrB+0];
1008             vdwjidx0C        = 2*vdwtype[jnrC+0];
1009             vdwjidx0D        = 2*vdwtype[jnrD+0];
1010
1011             fjx0             = _mm_setzero_ps();
1012             fjy0             = _mm_setzero_ps();
1013             fjz0             = _mm_setzero_ps();
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             if (gmx_mm_any_lt(rsq00,rcutoff2))
1020             {
1021
1022             r00              = _mm_mul_ps(rsq00,rinv00);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq00             = _mm_mul_ps(iq0,jq0);
1026             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1027                                          vdwparam+vdwioffset0+vdwjidx0B,
1028                                          vdwparam+vdwioffset0+vdwjidx0C,
1029                                          vdwparam+vdwioffset0+vdwjidx0D,
1030                                          &c6_00,&c12_00);
1031
1032             /* EWALD ELECTROSTATICS */
1033
1034             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1035             ewrt             = _mm_mul_ps(r00,ewtabscale);
1036             ewitab           = _mm_cvttps_epi32(ewrt);
1037             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1038             ewitab           = _mm_slli_epi32(ewitab,2);
1039             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1040             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1041             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1042             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1043             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1044             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1045             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1046             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1047             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1048
1049             /* LENNARD-JONES DISPERSION/REPULSION */
1050
1051             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1052             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1053             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1054             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1055             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1056
1057             d                = _mm_sub_ps(r00,rswitch);
1058             d                = _mm_max_ps(d,_mm_setzero_ps());
1059             d2               = _mm_mul_ps(d,d);
1060             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1061
1062             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1063
1064             /* Evaluate switch function */
1065             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1066             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1067             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1068             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1069
1070             fscal            = _mm_add_ps(felec,fvdw);
1071
1072             fscal            = _mm_and_ps(fscal,cutoff_mask);
1073
1074             /* Calculate temporary vectorial force */
1075             tx               = _mm_mul_ps(fscal,dx00);
1076             ty               = _mm_mul_ps(fscal,dy00);
1077             tz               = _mm_mul_ps(fscal,dz00);
1078
1079             /* Update vectorial force */
1080             fix0             = _mm_add_ps(fix0,tx);
1081             fiy0             = _mm_add_ps(fiy0,ty);
1082             fiz0             = _mm_add_ps(fiz0,tz);
1083
1084             fjx0             = _mm_add_ps(fjx0,tx);
1085             fjy0             = _mm_add_ps(fjy0,ty);
1086             fjz0             = _mm_add_ps(fjz0,tz);
1087
1088             }
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             if (gmx_mm_any_lt(rsq10,rcutoff2))
1095             {
1096
1097             r10              = _mm_mul_ps(rsq10,rinv10);
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq10             = _mm_mul_ps(iq1,jq0);
1101
1102             /* EWALD ELECTROSTATICS */
1103
1104             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1105             ewrt             = _mm_mul_ps(r10,ewtabscale);
1106             ewitab           = _mm_cvttps_epi32(ewrt);
1107             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1108             ewitab           = _mm_slli_epi32(ewitab,2);
1109             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1110             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1111             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1112             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1113             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1114             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1115             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1116             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1117             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1118
1119             d                = _mm_sub_ps(r10,rswitch);
1120             d                = _mm_max_ps(d,_mm_setzero_ps());
1121             d2               = _mm_mul_ps(d,d);
1122             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1123
1124             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1125
1126             /* Evaluate switch function */
1127             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1128             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1129             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1130
1131             fscal            = felec;
1132
1133             fscal            = _mm_and_ps(fscal,cutoff_mask);
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = _mm_mul_ps(fscal,dx10);
1137             ty               = _mm_mul_ps(fscal,dy10);
1138             tz               = _mm_mul_ps(fscal,dz10);
1139
1140             /* Update vectorial force */
1141             fix1             = _mm_add_ps(fix1,tx);
1142             fiy1             = _mm_add_ps(fiy1,ty);
1143             fiz1             = _mm_add_ps(fiz1,tz);
1144
1145             fjx0             = _mm_add_ps(fjx0,tx);
1146             fjy0             = _mm_add_ps(fjy0,ty);
1147             fjz0             = _mm_add_ps(fjz0,tz);
1148
1149             }
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             if (gmx_mm_any_lt(rsq20,rcutoff2))
1156             {
1157
1158             r20              = _mm_mul_ps(rsq20,rinv20);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq20             = _mm_mul_ps(iq2,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _mm_mul_ps(r20,ewtabscale);
1167             ewitab           = _mm_cvttps_epi32(ewrt);
1168             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1169             ewitab           = _mm_slli_epi32(ewitab,2);
1170             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1171             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1172             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1173             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1174             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1175             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1176             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1177             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1178             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1179
1180             d                = _mm_sub_ps(r20,rswitch);
1181             d                = _mm_max_ps(d,_mm_setzero_ps());
1182             d2               = _mm_mul_ps(d,d);
1183             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1184
1185             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1186
1187             /* Evaluate switch function */
1188             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1189             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1190             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm_and_ps(fscal,cutoff_mask);
1195
1196             /* Calculate temporary vectorial force */
1197             tx               = _mm_mul_ps(fscal,dx20);
1198             ty               = _mm_mul_ps(fscal,dy20);
1199             tz               = _mm_mul_ps(fscal,dz20);
1200
1201             /* Update vectorial force */
1202             fix2             = _mm_add_ps(fix2,tx);
1203             fiy2             = _mm_add_ps(fiy2,ty);
1204             fiz2             = _mm_add_ps(fiz2,tz);
1205
1206             fjx0             = _mm_add_ps(fjx0,tx);
1207             fjy0             = _mm_add_ps(fjy0,ty);
1208             fjz0             = _mm_add_ps(fjz0,tz);
1209
1210             }
1211
1212             fjptrA             = f+j_coord_offsetA;
1213             fjptrB             = f+j_coord_offsetB;
1214             fjptrC             = f+j_coord_offsetC;
1215             fjptrD             = f+j_coord_offsetD;
1216
1217             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1218
1219             /* Inner loop uses 201 flops */
1220         }
1221
1222         if(jidx<j_index_end)
1223         {
1224
1225             /* Get j neighbor index, and coordinate index */
1226             jnrlistA         = jjnr[jidx];
1227             jnrlistB         = jjnr[jidx+1];
1228             jnrlistC         = jjnr[jidx+2];
1229             jnrlistD         = jjnr[jidx+3];
1230             /* Sign of each element will be negative for non-real atoms.
1231              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1232              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1233              */
1234             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1235             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1236             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1237             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1238             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1239             j_coord_offsetA  = DIM*jnrA;
1240             j_coord_offsetB  = DIM*jnrB;
1241             j_coord_offsetC  = DIM*jnrC;
1242             j_coord_offsetD  = DIM*jnrD;
1243
1244             /* load j atom coordinates */
1245             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1246                                               x+j_coord_offsetC,x+j_coord_offsetD,
1247                                               &jx0,&jy0,&jz0);
1248
1249             /* Calculate displacement vector */
1250             dx00             = _mm_sub_ps(ix0,jx0);
1251             dy00             = _mm_sub_ps(iy0,jy0);
1252             dz00             = _mm_sub_ps(iz0,jz0);
1253             dx10             = _mm_sub_ps(ix1,jx0);
1254             dy10             = _mm_sub_ps(iy1,jy0);
1255             dz10             = _mm_sub_ps(iz1,jz0);
1256             dx20             = _mm_sub_ps(ix2,jx0);
1257             dy20             = _mm_sub_ps(iy2,jy0);
1258             dz20             = _mm_sub_ps(iz2,jz0);
1259
1260             /* Calculate squared distance and things based on it */
1261             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1262             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1263             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1264
1265             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1266             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1267             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1268
1269             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1270             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1271             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1272
1273             /* Load parameters for j particles */
1274             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1275                                                               charge+jnrC+0,charge+jnrD+0);
1276             vdwjidx0A        = 2*vdwtype[jnrA+0];
1277             vdwjidx0B        = 2*vdwtype[jnrB+0];
1278             vdwjidx0C        = 2*vdwtype[jnrC+0];
1279             vdwjidx0D        = 2*vdwtype[jnrD+0];
1280
1281             fjx0             = _mm_setzero_ps();
1282             fjy0             = _mm_setzero_ps();
1283             fjz0             = _mm_setzero_ps();
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_mm_any_lt(rsq00,rcutoff2))
1290             {
1291
1292             r00              = _mm_mul_ps(rsq00,rinv00);
1293             r00              = _mm_andnot_ps(dummy_mask,r00);
1294
1295             /* Compute parameters for interactions between i and j atoms */
1296             qq00             = _mm_mul_ps(iq0,jq0);
1297             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1298                                          vdwparam+vdwioffset0+vdwjidx0B,
1299                                          vdwparam+vdwioffset0+vdwjidx0C,
1300                                          vdwparam+vdwioffset0+vdwjidx0D,
1301                                          &c6_00,&c12_00);
1302
1303             /* EWALD ELECTROSTATICS */
1304
1305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1306             ewrt             = _mm_mul_ps(r00,ewtabscale);
1307             ewitab           = _mm_cvttps_epi32(ewrt);
1308             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1309             ewitab           = _mm_slli_epi32(ewitab,2);
1310             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1311             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1312             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1313             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1314             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1315             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1316             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1317             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1318             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1319
1320             /* LENNARD-JONES DISPERSION/REPULSION */
1321
1322             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1323             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1324             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1325             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1326             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1327
1328             d                = _mm_sub_ps(r00,rswitch);
1329             d                = _mm_max_ps(d,_mm_setzero_ps());
1330             d2               = _mm_mul_ps(d,d);
1331             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1332
1333             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1334
1335             /* Evaluate switch function */
1336             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1337             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1338             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1339             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1340
1341             fscal            = _mm_add_ps(felec,fvdw);
1342
1343             fscal            = _mm_and_ps(fscal,cutoff_mask);
1344
1345             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1346
1347             /* Calculate temporary vectorial force */
1348             tx               = _mm_mul_ps(fscal,dx00);
1349             ty               = _mm_mul_ps(fscal,dy00);
1350             tz               = _mm_mul_ps(fscal,dz00);
1351
1352             /* Update vectorial force */
1353             fix0             = _mm_add_ps(fix0,tx);
1354             fiy0             = _mm_add_ps(fiy0,ty);
1355             fiz0             = _mm_add_ps(fiz0,tz);
1356
1357             fjx0             = _mm_add_ps(fjx0,tx);
1358             fjy0             = _mm_add_ps(fjy0,ty);
1359             fjz0             = _mm_add_ps(fjz0,tz);
1360
1361             }
1362
1363             /**************************
1364              * CALCULATE INTERACTIONS *
1365              **************************/
1366
1367             if (gmx_mm_any_lt(rsq10,rcutoff2))
1368             {
1369
1370             r10              = _mm_mul_ps(rsq10,rinv10);
1371             r10              = _mm_andnot_ps(dummy_mask,r10);
1372
1373             /* Compute parameters for interactions between i and j atoms */
1374             qq10             = _mm_mul_ps(iq1,jq0);
1375
1376             /* EWALD ELECTROSTATICS */
1377
1378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1379             ewrt             = _mm_mul_ps(r10,ewtabscale);
1380             ewitab           = _mm_cvttps_epi32(ewrt);
1381             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1382             ewitab           = _mm_slli_epi32(ewitab,2);
1383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1390             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1391             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1392
1393             d                = _mm_sub_ps(r10,rswitch);
1394             d                = _mm_max_ps(d,_mm_setzero_ps());
1395             d2               = _mm_mul_ps(d,d);
1396             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1397
1398             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1399
1400             /* Evaluate switch function */
1401             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1402             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1403             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1404
1405             fscal            = felec;
1406
1407             fscal            = _mm_and_ps(fscal,cutoff_mask);
1408
1409             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1410
1411             /* Calculate temporary vectorial force */
1412             tx               = _mm_mul_ps(fscal,dx10);
1413             ty               = _mm_mul_ps(fscal,dy10);
1414             tz               = _mm_mul_ps(fscal,dz10);
1415
1416             /* Update vectorial force */
1417             fix1             = _mm_add_ps(fix1,tx);
1418             fiy1             = _mm_add_ps(fiy1,ty);
1419             fiz1             = _mm_add_ps(fiz1,tz);
1420
1421             fjx0             = _mm_add_ps(fjx0,tx);
1422             fjy0             = _mm_add_ps(fjy0,ty);
1423             fjz0             = _mm_add_ps(fjz0,tz);
1424
1425             }
1426
1427             /**************************
1428              * CALCULATE INTERACTIONS *
1429              **************************/
1430
1431             if (gmx_mm_any_lt(rsq20,rcutoff2))
1432             {
1433
1434             r20              = _mm_mul_ps(rsq20,rinv20);
1435             r20              = _mm_andnot_ps(dummy_mask,r20);
1436
1437             /* Compute parameters for interactions between i and j atoms */
1438             qq20             = _mm_mul_ps(iq2,jq0);
1439
1440             /* EWALD ELECTROSTATICS */
1441
1442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1443             ewrt             = _mm_mul_ps(r20,ewtabscale);
1444             ewitab           = _mm_cvttps_epi32(ewrt);
1445             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1446             ewitab           = _mm_slli_epi32(ewitab,2);
1447             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1448             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1449             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1450             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1451             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1452             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1453             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1454             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1455             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1456
1457             d                = _mm_sub_ps(r20,rswitch);
1458             d                = _mm_max_ps(d,_mm_setzero_ps());
1459             d2               = _mm_mul_ps(d,d);
1460             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1461
1462             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1463
1464             /* Evaluate switch function */
1465             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1466             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1467             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1468
1469             fscal            = felec;
1470
1471             fscal            = _mm_and_ps(fscal,cutoff_mask);
1472
1473             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1474
1475             /* Calculate temporary vectorial force */
1476             tx               = _mm_mul_ps(fscal,dx20);
1477             ty               = _mm_mul_ps(fscal,dy20);
1478             tz               = _mm_mul_ps(fscal,dz20);
1479
1480             /* Update vectorial force */
1481             fix2             = _mm_add_ps(fix2,tx);
1482             fiy2             = _mm_add_ps(fiy2,ty);
1483             fiz2             = _mm_add_ps(fiz2,tz);
1484
1485             fjx0             = _mm_add_ps(fjx0,tx);
1486             fjy0             = _mm_add_ps(fjy0,ty);
1487             fjz0             = _mm_add_ps(fjz0,tz);
1488
1489             }
1490
1491             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1492             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1493             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1494             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1495
1496             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1497
1498             /* Inner loop uses 204 flops */
1499         }
1500
1501         /* End of innermost loop */
1502
1503         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1504                                               f+i_coord_offset,fshift+i_shift_offset);
1505
1506         /* Increment number of inner iterations */
1507         inneriter                  += j_index_end - j_index_start;
1508
1509         /* Outer loop uses 18 flops */
1510     }
1511
1512     /* Increment number of outer iterations */
1513     outeriter        += nri;
1514
1515     /* Update outer/inner flops */
1516
1517     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*204);
1518 }