Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m128           dummy_mask,cutoff_mask;
94     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
95     __m128           one     = _mm_set1_ps(1.0);
96     __m128           two     = _mm_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_ps(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_ps(d_scalar);
136     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
222             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
223             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
224
225             rinv00           = gmx_mm_invsqrt_ps(rsq00);
226             rinv10           = gmx_mm_invsqrt_ps(rsq10);
227             rinv20           = gmx_mm_invsqrt_ps(rsq20);
228
229             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
230             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
231             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                               charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm_mul_ps(r00,ewtabscale);
262             ewitab           = _mm_cvttps_epi32(ewrt);
263             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
267             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
268             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
269             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
270             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
271             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
272             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
273             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
281             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
282
283             d                = _mm_sub_ps(r00,rswitch);
284             d                = _mm_max_ps(d,_mm_setzero_ps());
285             d2               = _mm_mul_ps(d,d);
286             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
287
288             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
289
290             /* Evaluate switch function */
291             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
292             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
293             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
294             velec            = _mm_mul_ps(velec,sw);
295             vvdw             = _mm_mul_ps(vvdw,sw);
296             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm_and_ps(velec,cutoff_mask);
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306             fscal            = _mm_and_ps(fscal,cutoff_mask);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx00);
310             ty               = _mm_mul_ps(fscal,dy00);
311             tz               = _mm_mul_ps(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm_add_ps(fix0,tx);
315             fiy0             = _mm_add_ps(fiy0,ty);
316             fiz0             = _mm_add_ps(fiz0,tz);
317
318             fjptrA             = f+j_coord_offsetA;
319             fjptrB             = f+j_coord_offsetB;
320             fjptrC             = f+j_coord_offsetC;
321             fjptrD             = f+j_coord_offsetD;
322             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq10,rcutoff2))
331             {
332
333             r10              = _mm_mul_ps(rsq10,rinv10);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm_mul_ps(iq1,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_ps(r10,ewtabscale);
342             ewitab           = _mm_cvttps_epi32(ewrt);
343             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
349             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
351             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
352             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
353             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
354
355             d                = _mm_sub_ps(r10,rswitch);
356             d                = _mm_max_ps(d,_mm_setzero_ps());
357             d2               = _mm_mul_ps(d,d);
358             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
359
360             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
361
362             /* Evaluate switch function */
363             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
364             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
365             velec            = _mm_mul_ps(velec,sw);
366             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm_and_ps(velec,cutoff_mask);
370             velecsum         = _mm_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm_and_ps(fscal,cutoff_mask);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_ps(fscal,dx10);
378             ty               = _mm_mul_ps(fscal,dy10);
379             tz               = _mm_mul_ps(fscal,dz10);
380
381             /* Update vectorial force */
382             fix1             = _mm_add_ps(fix1,tx);
383             fiy1             = _mm_add_ps(fiy1,ty);
384             fiz1             = _mm_add_ps(fiz1,tz);
385
386             fjptrA             = f+j_coord_offsetA;
387             fjptrB             = f+j_coord_offsetB;
388             fjptrC             = f+j_coord_offsetC;
389             fjptrD             = f+j_coord_offsetD;
390             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
391
392             }
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm_any_lt(rsq20,rcutoff2))
399             {
400
401             r20              = _mm_mul_ps(rsq20,rinv20);
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq20             = _mm_mul_ps(iq2,jq0);
405
406             /* EWALD ELECTROSTATICS */
407
408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
409             ewrt             = _mm_mul_ps(r20,ewtabscale);
410             ewitab           = _mm_cvttps_epi32(ewrt);
411             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
412             ewitab           = _mm_slli_epi32(ewitab,2);
413             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
414             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
415             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
416             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
417             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
418             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
419             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
420             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
421             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
422
423             d                = _mm_sub_ps(r20,rswitch);
424             d                = _mm_max_ps(d,_mm_setzero_ps());
425             d2               = _mm_mul_ps(d,d);
426             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
427
428             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
429
430             /* Evaluate switch function */
431             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
432             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
433             velec            = _mm_mul_ps(velec,sw);
434             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm_and_ps(velec,cutoff_mask);
438             velecsum         = _mm_add_ps(velecsum,velec);
439
440             fscal            = felec;
441
442             fscal            = _mm_and_ps(fscal,cutoff_mask);
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm_mul_ps(fscal,dx20);
446             ty               = _mm_mul_ps(fscal,dy20);
447             tz               = _mm_mul_ps(fscal,dz20);
448
449             /* Update vectorial force */
450             fix2             = _mm_add_ps(fix2,tx);
451             fiy2             = _mm_add_ps(fiy2,ty);
452             fiz2             = _mm_add_ps(fiz2,tz);
453
454             fjptrA             = f+j_coord_offsetA;
455             fjptrB             = f+j_coord_offsetB;
456             fjptrC             = f+j_coord_offsetC;
457             fjptrD             = f+j_coord_offsetD;
458             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
459
460             }
461
462             /* Inner loop uses 213 flops */
463         }
464
465         if(jidx<j_index_end)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrlistA         = jjnr[jidx];
470             jnrlistB         = jjnr[jidx+1];
471             jnrlistC         = jjnr[jidx+2];
472             jnrlistD         = jjnr[jidx+3];
473             /* Sign of each element will be negative for non-real atoms.
474              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
475              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
476              */
477             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
478             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
479             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
480             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
481             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
482             j_coord_offsetA  = DIM*jnrA;
483             j_coord_offsetB  = DIM*jnrB;
484             j_coord_offsetC  = DIM*jnrC;
485             j_coord_offsetD  = DIM*jnrD;
486
487             /* load j atom coordinates */
488             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
489                                               x+j_coord_offsetC,x+j_coord_offsetD,
490                                               &jx0,&jy0,&jz0);
491
492             /* Calculate displacement vector */
493             dx00             = _mm_sub_ps(ix0,jx0);
494             dy00             = _mm_sub_ps(iy0,jy0);
495             dz00             = _mm_sub_ps(iz0,jz0);
496             dx10             = _mm_sub_ps(ix1,jx0);
497             dy10             = _mm_sub_ps(iy1,jy0);
498             dz10             = _mm_sub_ps(iz1,jz0);
499             dx20             = _mm_sub_ps(ix2,jx0);
500             dy20             = _mm_sub_ps(iy2,jy0);
501             dz20             = _mm_sub_ps(iz2,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
505             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
506             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
507
508             rinv00           = gmx_mm_invsqrt_ps(rsq00);
509             rinv10           = gmx_mm_invsqrt_ps(rsq10);
510             rinv20           = gmx_mm_invsqrt_ps(rsq20);
511
512             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
513             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
514             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
515
516             /* Load parameters for j particles */
517             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
518                                                               charge+jnrC+0,charge+jnrD+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520             vdwjidx0B        = 2*vdwtype[jnrB+0];
521             vdwjidx0C        = 2*vdwtype[jnrC+0];
522             vdwjidx0D        = 2*vdwtype[jnrD+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             if (gmx_mm_any_lt(rsq00,rcutoff2))
529             {
530
531             r00              = _mm_mul_ps(rsq00,rinv00);
532             r00              = _mm_andnot_ps(dummy_mask,r00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm_mul_ps(iq0,jq0);
536             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,
538                                          vdwparam+vdwioffset0+vdwjidx0C,
539                                          vdwparam+vdwioffset0+vdwjidx0D,
540                                          &c6_00,&c12_00);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
545             ewrt             = _mm_mul_ps(r00,ewtabscale);
546             ewitab           = _mm_cvttps_epi32(ewrt);
547             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
548             ewitab           = _mm_slli_epi32(ewitab,2);
549             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
550             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
551             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
552             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
553             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
554             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
555             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
556             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
557             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
558
559             /* LENNARD-JONES DISPERSION/REPULSION */
560
561             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
562             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
563             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
564             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
565             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
566
567             d                = _mm_sub_ps(r00,rswitch);
568             d                = _mm_max_ps(d,_mm_setzero_ps());
569             d2               = _mm_mul_ps(d,d);
570             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
571
572             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
573
574             /* Evaluate switch function */
575             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
576             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
577             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
578             velec            = _mm_mul_ps(velec,sw);
579             vvdw             = _mm_mul_ps(vvdw,sw);
580             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm_and_ps(velec,cutoff_mask);
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
587             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
588             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
589
590             fscal            = _mm_add_ps(felec,fvdw);
591
592             fscal            = _mm_and_ps(fscal,cutoff_mask);
593
594             fscal            = _mm_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_ps(fscal,dx00);
598             ty               = _mm_mul_ps(fscal,dy00);
599             tz               = _mm_mul_ps(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm_add_ps(fix0,tx);
603             fiy0             = _mm_add_ps(fiy0,ty);
604             fiz0             = _mm_add_ps(fiz0,tz);
605
606             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
607             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
608             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
609             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
610             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm_any_lt(rsq10,rcutoff2))
619             {
620
621             r10              = _mm_mul_ps(rsq10,rinv10);
622             r10              = _mm_andnot_ps(dummy_mask,r10);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq10             = _mm_mul_ps(iq1,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_ps(r10,ewtabscale);
631             ewitab           = _mm_cvttps_epi32(ewrt);
632             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
636             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
637             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
638             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
639             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
640             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
641             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
642             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
643
644             d                = _mm_sub_ps(r10,rswitch);
645             d                = _mm_max_ps(d,_mm_setzero_ps());
646             d2               = _mm_mul_ps(d,d);
647             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
648
649             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
650
651             /* Evaluate switch function */
652             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
653             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
654             velec            = _mm_mul_ps(velec,sw);
655             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm_and_ps(velec,cutoff_mask);
659             velec            = _mm_andnot_ps(dummy_mask,velec);
660             velecsum         = _mm_add_ps(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm_and_ps(fscal,cutoff_mask);
665
666             fscal            = _mm_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_ps(fscal,dx10);
670             ty               = _mm_mul_ps(fscal,dy10);
671             tz               = _mm_mul_ps(fscal,dz10);
672
673             /* Update vectorial force */
674             fix1             = _mm_add_ps(fix1,tx);
675             fiy1             = _mm_add_ps(fiy1,ty);
676             fiz1             = _mm_add_ps(fiz1,tz);
677
678             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
679             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
680             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
681             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
682             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm_any_lt(rsq20,rcutoff2))
691             {
692
693             r20              = _mm_mul_ps(rsq20,rinv20);
694             r20              = _mm_andnot_ps(dummy_mask,r20);
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq20             = _mm_mul_ps(iq2,jq0);
698
699             /* EWALD ELECTROSTATICS */
700
701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
702             ewrt             = _mm_mul_ps(r20,ewtabscale);
703             ewitab           = _mm_cvttps_epi32(ewrt);
704             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
705             ewitab           = _mm_slli_epi32(ewitab,2);
706             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
707             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
708             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
709             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
710             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
711             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
712             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
713             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
714             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
715
716             d                = _mm_sub_ps(r20,rswitch);
717             d                = _mm_max_ps(d,_mm_setzero_ps());
718             d2               = _mm_mul_ps(d,d);
719             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
720
721             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
722
723             /* Evaluate switch function */
724             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
725             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
726             velec            = _mm_mul_ps(velec,sw);
727             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
728
729             /* Update potential sum for this i atom from the interaction with this j atom. */
730             velec            = _mm_and_ps(velec,cutoff_mask);
731             velec            = _mm_andnot_ps(dummy_mask,velec);
732             velecsum         = _mm_add_ps(velecsum,velec);
733
734             fscal            = felec;
735
736             fscal            = _mm_and_ps(fscal,cutoff_mask);
737
738             fscal            = _mm_andnot_ps(dummy_mask,fscal);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm_mul_ps(fscal,dx20);
742             ty               = _mm_mul_ps(fscal,dy20);
743             tz               = _mm_mul_ps(fscal,dz20);
744
745             /* Update vectorial force */
746             fix2             = _mm_add_ps(fix2,tx);
747             fiy2             = _mm_add_ps(fiy2,ty);
748             fiz2             = _mm_add_ps(fiz2,tz);
749
750             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
751             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
752             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
753             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
754             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
755
756             }
757
758             /* Inner loop uses 216 flops */
759         }
760
761         /* End of innermost loop */
762
763         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
764                                               f+i_coord_offset,fshift+i_shift_offset);
765
766         ggid                        = gid[iidx];
767         /* Update potential energies */
768         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
769         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
770
771         /* Increment number of inner iterations */
772         inneriter                  += j_index_end - j_index_start;
773
774         /* Outer loop uses 20 flops */
775     }
776
777     /* Increment number of outer iterations */
778     outeriter        += nri;
779
780     /* Update outer/inner flops */
781
782     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*216);
783 }
784 /*
785  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
786  * Electrostatics interaction: Ewald
787  * VdW interaction:            LennardJones
788  * Geometry:                   Water3-Particle
789  * Calculate force/pot:        Force
790  */
791 void
792 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
793                     (t_nblist * gmx_restrict                nlist,
794                      rvec * gmx_restrict                    xx,
795                      rvec * gmx_restrict                    ff,
796                      t_forcerec * gmx_restrict              fr,
797                      t_mdatoms * gmx_restrict               mdatoms,
798                      nb_kernel_data_t * gmx_restrict        kernel_data,
799                      t_nrnb * gmx_restrict                  nrnb)
800 {
801     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
802      * just 0 for non-waters.
803      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
804      * jnr indices corresponding to data put in the four positions in the SIMD register.
805      */
806     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
807     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
808     int              jnrA,jnrB,jnrC,jnrD;
809     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
810     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
811     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
812     real             rcutoff_scalar;
813     real             *shiftvec,*fshift,*x,*f;
814     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
815     real             scratch[4*DIM];
816     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
817     int              vdwioffset0;
818     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
819     int              vdwioffset1;
820     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
821     int              vdwioffset2;
822     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
823     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
824     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
825     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
826     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
827     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
828     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
829     real             *charge;
830     int              nvdwtype;
831     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
832     int              *vdwtype;
833     real             *vdwparam;
834     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
835     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
836     __m128i          ewitab;
837     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
838     real             *ewtab;
839     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
840     real             rswitch_scalar,d_scalar;
841     __m128           dummy_mask,cutoff_mask;
842     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
843     __m128           one     = _mm_set1_ps(1.0);
844     __m128           two     = _mm_set1_ps(2.0);
845     x                = xx[0];
846     f                = ff[0];
847
848     nri              = nlist->nri;
849     iinr             = nlist->iinr;
850     jindex           = nlist->jindex;
851     jjnr             = nlist->jjnr;
852     shiftidx         = nlist->shift;
853     gid              = nlist->gid;
854     shiftvec         = fr->shift_vec[0];
855     fshift           = fr->fshift[0];
856     facel            = _mm_set1_ps(fr->epsfac);
857     charge           = mdatoms->chargeA;
858     nvdwtype         = fr->ntype;
859     vdwparam         = fr->nbfp;
860     vdwtype          = mdatoms->typeA;
861
862     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
863     ewtab            = fr->ic->tabq_coul_FDV0;
864     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
865     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
866
867     /* Setup water-specific parameters */
868     inr              = nlist->iinr[0];
869     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
870     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
871     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
872     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
873
874     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
875     rcutoff_scalar   = fr->rcoulomb;
876     rcutoff          = _mm_set1_ps(rcutoff_scalar);
877     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
878
879     rswitch_scalar   = fr->rcoulomb_switch;
880     rswitch          = _mm_set1_ps(rswitch_scalar);
881     /* Setup switch parameters */
882     d_scalar         = rcutoff_scalar-rswitch_scalar;
883     d                = _mm_set1_ps(d_scalar);
884     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
885     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
886     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
887     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
888     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
889     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
890
891     /* Avoid stupid compiler warnings */
892     jnrA = jnrB = jnrC = jnrD = 0;
893     j_coord_offsetA = 0;
894     j_coord_offsetB = 0;
895     j_coord_offsetC = 0;
896     j_coord_offsetD = 0;
897
898     outeriter        = 0;
899     inneriter        = 0;
900
901     for(iidx=0;iidx<4*DIM;iidx++)
902     {
903         scratch[iidx] = 0.0;
904     }
905
906     /* Start outer loop over neighborlists */
907     for(iidx=0; iidx<nri; iidx++)
908     {
909         /* Load shift vector for this list */
910         i_shift_offset   = DIM*shiftidx[iidx];
911
912         /* Load limits for loop over neighbors */
913         j_index_start    = jindex[iidx];
914         j_index_end      = jindex[iidx+1];
915
916         /* Get outer coordinate index */
917         inr              = iinr[iidx];
918         i_coord_offset   = DIM*inr;
919
920         /* Load i particle coords and add shift vector */
921         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
922                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
923
924         fix0             = _mm_setzero_ps();
925         fiy0             = _mm_setzero_ps();
926         fiz0             = _mm_setzero_ps();
927         fix1             = _mm_setzero_ps();
928         fiy1             = _mm_setzero_ps();
929         fiz1             = _mm_setzero_ps();
930         fix2             = _mm_setzero_ps();
931         fiy2             = _mm_setzero_ps();
932         fiz2             = _mm_setzero_ps();
933
934         /* Start inner kernel loop */
935         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
936         {
937
938             /* Get j neighbor index, and coordinate index */
939             jnrA             = jjnr[jidx];
940             jnrB             = jjnr[jidx+1];
941             jnrC             = jjnr[jidx+2];
942             jnrD             = jjnr[jidx+3];
943             j_coord_offsetA  = DIM*jnrA;
944             j_coord_offsetB  = DIM*jnrB;
945             j_coord_offsetC  = DIM*jnrC;
946             j_coord_offsetD  = DIM*jnrD;
947
948             /* load j atom coordinates */
949             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
950                                               x+j_coord_offsetC,x+j_coord_offsetD,
951                                               &jx0,&jy0,&jz0);
952
953             /* Calculate displacement vector */
954             dx00             = _mm_sub_ps(ix0,jx0);
955             dy00             = _mm_sub_ps(iy0,jy0);
956             dz00             = _mm_sub_ps(iz0,jz0);
957             dx10             = _mm_sub_ps(ix1,jx0);
958             dy10             = _mm_sub_ps(iy1,jy0);
959             dz10             = _mm_sub_ps(iz1,jz0);
960             dx20             = _mm_sub_ps(ix2,jx0);
961             dy20             = _mm_sub_ps(iy2,jy0);
962             dz20             = _mm_sub_ps(iz2,jz0);
963
964             /* Calculate squared distance and things based on it */
965             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
966             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
967             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
968
969             rinv00           = gmx_mm_invsqrt_ps(rsq00);
970             rinv10           = gmx_mm_invsqrt_ps(rsq10);
971             rinv20           = gmx_mm_invsqrt_ps(rsq20);
972
973             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
974             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
975             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
976
977             /* Load parameters for j particles */
978             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
979                                                               charge+jnrC+0,charge+jnrD+0);
980             vdwjidx0A        = 2*vdwtype[jnrA+0];
981             vdwjidx0B        = 2*vdwtype[jnrB+0];
982             vdwjidx0C        = 2*vdwtype[jnrC+0];
983             vdwjidx0D        = 2*vdwtype[jnrD+0];
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (gmx_mm_any_lt(rsq00,rcutoff2))
990             {
991
992             r00              = _mm_mul_ps(rsq00,rinv00);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq00             = _mm_mul_ps(iq0,jq0);
996             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
997                                          vdwparam+vdwioffset0+vdwjidx0B,
998                                          vdwparam+vdwioffset0+vdwjidx0C,
999                                          vdwparam+vdwioffset0+vdwjidx0D,
1000                                          &c6_00,&c12_00);
1001
1002             /* EWALD ELECTROSTATICS */
1003
1004             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1005             ewrt             = _mm_mul_ps(r00,ewtabscale);
1006             ewitab           = _mm_cvttps_epi32(ewrt);
1007             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1008             ewitab           = _mm_slli_epi32(ewitab,2);
1009             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1010             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1011             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1012             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1013             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1014             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1015             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1016             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1017             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1018
1019             /* LENNARD-JONES DISPERSION/REPULSION */
1020
1021             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1022             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1023             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1024             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1025             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1026
1027             d                = _mm_sub_ps(r00,rswitch);
1028             d                = _mm_max_ps(d,_mm_setzero_ps());
1029             d2               = _mm_mul_ps(d,d);
1030             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1031
1032             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1033
1034             /* Evaluate switch function */
1035             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1036             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1037             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1038             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1039
1040             fscal            = _mm_add_ps(felec,fvdw);
1041
1042             fscal            = _mm_and_ps(fscal,cutoff_mask);
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_ps(fscal,dx00);
1046             ty               = _mm_mul_ps(fscal,dy00);
1047             tz               = _mm_mul_ps(fscal,dz00);
1048
1049             /* Update vectorial force */
1050             fix0             = _mm_add_ps(fix0,tx);
1051             fiy0             = _mm_add_ps(fiy0,ty);
1052             fiz0             = _mm_add_ps(fiz0,tz);
1053
1054             fjptrA             = f+j_coord_offsetA;
1055             fjptrB             = f+j_coord_offsetB;
1056             fjptrC             = f+j_coord_offsetC;
1057             fjptrD             = f+j_coord_offsetD;
1058             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1059
1060             }
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_mm_any_lt(rsq10,rcutoff2))
1067             {
1068
1069             r10              = _mm_mul_ps(rsq10,rinv10);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _mm_mul_ps(iq1,jq0);
1073
1074             /* EWALD ELECTROSTATICS */
1075
1076             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1077             ewrt             = _mm_mul_ps(r10,ewtabscale);
1078             ewitab           = _mm_cvttps_epi32(ewrt);
1079             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1080             ewitab           = _mm_slli_epi32(ewitab,2);
1081             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1082             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1083             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1084             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1085             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1086             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1087             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1088             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1089             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1090
1091             d                = _mm_sub_ps(r10,rswitch);
1092             d                = _mm_max_ps(d,_mm_setzero_ps());
1093             d2               = _mm_mul_ps(d,d);
1094             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1095
1096             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1097
1098             /* Evaluate switch function */
1099             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1100             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1101             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1102
1103             fscal            = felec;
1104
1105             fscal            = _mm_and_ps(fscal,cutoff_mask);
1106
1107             /* Calculate temporary vectorial force */
1108             tx               = _mm_mul_ps(fscal,dx10);
1109             ty               = _mm_mul_ps(fscal,dy10);
1110             tz               = _mm_mul_ps(fscal,dz10);
1111
1112             /* Update vectorial force */
1113             fix1             = _mm_add_ps(fix1,tx);
1114             fiy1             = _mm_add_ps(fiy1,ty);
1115             fiz1             = _mm_add_ps(fiz1,tz);
1116
1117             fjptrA             = f+j_coord_offsetA;
1118             fjptrB             = f+j_coord_offsetB;
1119             fjptrC             = f+j_coord_offsetC;
1120             fjptrD             = f+j_coord_offsetD;
1121             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1122
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq20,rcutoff2))
1130             {
1131
1132             r20              = _mm_mul_ps(rsq20,rinv20);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq20             = _mm_mul_ps(iq2,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_ps(r20,ewtabscale);
1141             ewitab           = _mm_cvttps_epi32(ewrt);
1142             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1143             ewitab           = _mm_slli_epi32(ewitab,2);
1144             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1145             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1146             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1147             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1148             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1149             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1150             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1151             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1152             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1153
1154             d                = _mm_sub_ps(r20,rswitch);
1155             d                = _mm_max_ps(d,_mm_setzero_ps());
1156             d2               = _mm_mul_ps(d,d);
1157             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1158
1159             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1160
1161             /* Evaluate switch function */
1162             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1163             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1164             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1165
1166             fscal            = felec;
1167
1168             fscal            = _mm_and_ps(fscal,cutoff_mask);
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm_mul_ps(fscal,dx20);
1172             ty               = _mm_mul_ps(fscal,dy20);
1173             tz               = _mm_mul_ps(fscal,dz20);
1174
1175             /* Update vectorial force */
1176             fix2             = _mm_add_ps(fix2,tx);
1177             fiy2             = _mm_add_ps(fiy2,ty);
1178             fiz2             = _mm_add_ps(fiz2,tz);
1179
1180             fjptrA             = f+j_coord_offsetA;
1181             fjptrB             = f+j_coord_offsetB;
1182             fjptrC             = f+j_coord_offsetC;
1183             fjptrD             = f+j_coord_offsetD;
1184             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1185
1186             }
1187
1188             /* Inner loop uses 201 flops */
1189         }
1190
1191         if(jidx<j_index_end)
1192         {
1193
1194             /* Get j neighbor index, and coordinate index */
1195             jnrlistA         = jjnr[jidx];
1196             jnrlistB         = jjnr[jidx+1];
1197             jnrlistC         = jjnr[jidx+2];
1198             jnrlistD         = jjnr[jidx+3];
1199             /* Sign of each element will be negative for non-real atoms.
1200              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1201              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1202              */
1203             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1204             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1205             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1206             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1207             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1208             j_coord_offsetA  = DIM*jnrA;
1209             j_coord_offsetB  = DIM*jnrB;
1210             j_coord_offsetC  = DIM*jnrC;
1211             j_coord_offsetD  = DIM*jnrD;
1212
1213             /* load j atom coordinates */
1214             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1215                                               x+j_coord_offsetC,x+j_coord_offsetD,
1216                                               &jx0,&jy0,&jz0);
1217
1218             /* Calculate displacement vector */
1219             dx00             = _mm_sub_ps(ix0,jx0);
1220             dy00             = _mm_sub_ps(iy0,jy0);
1221             dz00             = _mm_sub_ps(iz0,jz0);
1222             dx10             = _mm_sub_ps(ix1,jx0);
1223             dy10             = _mm_sub_ps(iy1,jy0);
1224             dz10             = _mm_sub_ps(iz1,jz0);
1225             dx20             = _mm_sub_ps(ix2,jx0);
1226             dy20             = _mm_sub_ps(iy2,jy0);
1227             dz20             = _mm_sub_ps(iz2,jz0);
1228
1229             /* Calculate squared distance and things based on it */
1230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1233
1234             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1237
1238             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1241
1242             /* Load parameters for j particles */
1243             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1244                                                               charge+jnrC+0,charge+jnrD+0);
1245             vdwjidx0A        = 2*vdwtype[jnrA+0];
1246             vdwjidx0B        = 2*vdwtype[jnrB+0];
1247             vdwjidx0C        = 2*vdwtype[jnrC+0];
1248             vdwjidx0D        = 2*vdwtype[jnrD+0];
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             if (gmx_mm_any_lt(rsq00,rcutoff2))
1255             {
1256
1257             r00              = _mm_mul_ps(rsq00,rinv00);
1258             r00              = _mm_andnot_ps(dummy_mask,r00);
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             qq00             = _mm_mul_ps(iq0,jq0);
1262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1263                                          vdwparam+vdwioffset0+vdwjidx0B,
1264                                          vdwparam+vdwioffset0+vdwjidx0C,
1265                                          vdwparam+vdwioffset0+vdwjidx0D,
1266                                          &c6_00,&c12_00);
1267
1268             /* EWALD ELECTROSTATICS */
1269
1270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1271             ewrt             = _mm_mul_ps(r00,ewtabscale);
1272             ewitab           = _mm_cvttps_epi32(ewrt);
1273             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1274             ewitab           = _mm_slli_epi32(ewitab,2);
1275             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1276             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1277             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1278             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1279             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1280             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1281             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1282             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1283             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1284
1285             /* LENNARD-JONES DISPERSION/REPULSION */
1286
1287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1288             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1289             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1290             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1291             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1292
1293             d                = _mm_sub_ps(r00,rswitch);
1294             d                = _mm_max_ps(d,_mm_setzero_ps());
1295             d2               = _mm_mul_ps(d,d);
1296             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1297
1298             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1299
1300             /* Evaluate switch function */
1301             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1302             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1303             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1304             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1305
1306             fscal            = _mm_add_ps(felec,fvdw);
1307
1308             fscal            = _mm_and_ps(fscal,cutoff_mask);
1309
1310             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1311
1312             /* Calculate temporary vectorial force */
1313             tx               = _mm_mul_ps(fscal,dx00);
1314             ty               = _mm_mul_ps(fscal,dy00);
1315             tz               = _mm_mul_ps(fscal,dz00);
1316
1317             /* Update vectorial force */
1318             fix0             = _mm_add_ps(fix0,tx);
1319             fiy0             = _mm_add_ps(fiy0,ty);
1320             fiz0             = _mm_add_ps(fiz0,tz);
1321
1322             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1323             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1324             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1325             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1327
1328             }
1329
1330             /**************************
1331              * CALCULATE INTERACTIONS *
1332              **************************/
1333
1334             if (gmx_mm_any_lt(rsq10,rcutoff2))
1335             {
1336
1337             r10              = _mm_mul_ps(rsq10,rinv10);
1338             r10              = _mm_andnot_ps(dummy_mask,r10);
1339
1340             /* Compute parameters for interactions between i and j atoms */
1341             qq10             = _mm_mul_ps(iq1,jq0);
1342
1343             /* EWALD ELECTROSTATICS */
1344
1345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1346             ewrt             = _mm_mul_ps(r10,ewtabscale);
1347             ewitab           = _mm_cvttps_epi32(ewrt);
1348             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1349             ewitab           = _mm_slli_epi32(ewitab,2);
1350             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1351             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1352             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1353             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1354             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1355             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1356             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1357             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1358             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1359
1360             d                = _mm_sub_ps(r10,rswitch);
1361             d                = _mm_max_ps(d,_mm_setzero_ps());
1362             d2               = _mm_mul_ps(d,d);
1363             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1364
1365             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1366
1367             /* Evaluate switch function */
1368             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1369             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1370             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1371
1372             fscal            = felec;
1373
1374             fscal            = _mm_and_ps(fscal,cutoff_mask);
1375
1376             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1377
1378             /* Calculate temporary vectorial force */
1379             tx               = _mm_mul_ps(fscal,dx10);
1380             ty               = _mm_mul_ps(fscal,dy10);
1381             tz               = _mm_mul_ps(fscal,dz10);
1382
1383             /* Update vectorial force */
1384             fix1             = _mm_add_ps(fix1,tx);
1385             fiy1             = _mm_add_ps(fiy1,ty);
1386             fiz1             = _mm_add_ps(fiz1,tz);
1387
1388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1392             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1393
1394             }
1395
1396             /**************************
1397              * CALCULATE INTERACTIONS *
1398              **************************/
1399
1400             if (gmx_mm_any_lt(rsq20,rcutoff2))
1401             {
1402
1403             r20              = _mm_mul_ps(rsq20,rinv20);
1404             r20              = _mm_andnot_ps(dummy_mask,r20);
1405
1406             /* Compute parameters for interactions between i and j atoms */
1407             qq20             = _mm_mul_ps(iq2,jq0);
1408
1409             /* EWALD ELECTROSTATICS */
1410
1411             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1412             ewrt             = _mm_mul_ps(r20,ewtabscale);
1413             ewitab           = _mm_cvttps_epi32(ewrt);
1414             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1415             ewitab           = _mm_slli_epi32(ewitab,2);
1416             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1417             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1418             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1419             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1420             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1421             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1422             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1423             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1424             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1425
1426             d                = _mm_sub_ps(r20,rswitch);
1427             d                = _mm_max_ps(d,_mm_setzero_ps());
1428             d2               = _mm_mul_ps(d,d);
1429             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1430
1431             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1432
1433             /* Evaluate switch function */
1434             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1435             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1436             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1437
1438             fscal            = felec;
1439
1440             fscal            = _mm_and_ps(fscal,cutoff_mask);
1441
1442             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1443
1444             /* Calculate temporary vectorial force */
1445             tx               = _mm_mul_ps(fscal,dx20);
1446             ty               = _mm_mul_ps(fscal,dy20);
1447             tz               = _mm_mul_ps(fscal,dz20);
1448
1449             /* Update vectorial force */
1450             fix2             = _mm_add_ps(fix2,tx);
1451             fiy2             = _mm_add_ps(fiy2,ty);
1452             fiz2             = _mm_add_ps(fiz2,tz);
1453
1454             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1455             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1456             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1457             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1458             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1459
1460             }
1461
1462             /* Inner loop uses 204 flops */
1463         }
1464
1465         /* End of innermost loop */
1466
1467         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1468                                               f+i_coord_offset,fshift+i_shift_offset);
1469
1470         /* Increment number of inner iterations */
1471         inneriter                  += j_index_end - j_index_start;
1472
1473         /* Outer loop uses 18 flops */
1474     }
1475
1476     /* Increment number of outer iterations */
1477     outeriter        += nri;
1478
1479     /* Update outer/inner flops */
1480
1481     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*204);
1482 }