Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
144
145     rswitch_scalar   = fr->rcoulomb_switch;
146     rswitch          = _mm_set1_ps(rswitch_scalar);
147     /* Setup switch parameters */
148     d_scalar         = rcutoff_scalar-rswitch_scalar;
149     d                = _mm_set1_ps(d_scalar);
150     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
151     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
154     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
189
190         fix0             = _mm_setzero_ps();
191         fiy0             = _mm_setzero_ps();
192         fiz0             = _mm_setzero_ps();
193         fix1             = _mm_setzero_ps();
194         fiy1             = _mm_setzero_ps();
195         fiz1             = _mm_setzero_ps();
196         fix2             = _mm_setzero_ps();
197         fiy2             = _mm_setzero_ps();
198         fiz2             = _mm_setzero_ps();
199
200         /* Reset potential sums */
201         velecsum         = _mm_setzero_ps();
202         vvdwsum          = _mm_setzero_ps();
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
206         {
207
208             /* Get j neighbor index, and coordinate index */
209             jnrA             = jjnr[jidx];
210             jnrB             = jjnr[jidx+1];
211             jnrC             = jjnr[jidx+2];
212             jnrD             = jjnr[jidx+3];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217
218             /* load j atom coordinates */
219             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
220                                               x+j_coord_offsetC,x+j_coord_offsetD,
221                                               &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_ps(ix0,jx0);
225             dy00             = _mm_sub_ps(iy0,jy0);
226             dz00             = _mm_sub_ps(iz0,jz0);
227             dx10             = _mm_sub_ps(ix1,jx0);
228             dy10             = _mm_sub_ps(iy1,jy0);
229             dz10             = _mm_sub_ps(iz1,jz0);
230             dx20             = _mm_sub_ps(ix2,jx0);
231             dy20             = _mm_sub_ps(iy2,jy0);
232             dz20             = _mm_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = gmx_mm_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm_invsqrt_ps(rsq20);
242
243             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
244             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                               charge+jnrC+0,charge+jnrD+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254
255             fjx0             = _mm_setzero_ps();
256             fjy0             = _mm_setzero_ps();
257             fjz0             = _mm_setzero_ps();
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             if (gmx_mm_any_lt(rsq00,rcutoff2))
264             {
265
266             r00              = _mm_mul_ps(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq00             = _mm_mul_ps(iq0,jq0);
270             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
271                                          vdwparam+vdwioffset0+vdwjidx0B,
272                                          vdwparam+vdwioffset0+vdwjidx0C,
273                                          vdwparam+vdwioffset0+vdwjidx0D,
274                                          &c6_00,&c12_00);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
279             ewrt             = _mm_mul_ps(r00,ewtabscale);
280             ewitab           = _mm_cvttps_epi32(ewrt);
281             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
285             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
286             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
287             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
288             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
289             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
290             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
291             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
292
293             /* LENNARD-JONES DISPERSION/REPULSION */
294
295             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
296             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
297             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
298             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
299             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
300
301             d                = _mm_sub_ps(r00,rswitch);
302             d                = _mm_max_ps(d,_mm_setzero_ps());
303             d2               = _mm_mul_ps(d,d);
304             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
305
306             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
307
308             /* Evaluate switch function */
309             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
310             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
311             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
312             velec            = _mm_mul_ps(velec,sw);
313             vvdw             = _mm_mul_ps(vvdw,sw);
314             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm_and_ps(velec,cutoff_mask);
318             velecsum         = _mm_add_ps(velecsum,velec);
319             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
320             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
321
322             fscal            = _mm_add_ps(felec,fvdw);
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm_mul_ps(fscal,dx00);
328             ty               = _mm_mul_ps(fscal,dy00);
329             tz               = _mm_mul_ps(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm_add_ps(fix0,tx);
333             fiy0             = _mm_add_ps(fiy0,ty);
334             fiz0             = _mm_add_ps(fiz0,tz);
335
336             fjx0             = _mm_add_ps(fjx0,tx);
337             fjy0             = _mm_add_ps(fjy0,ty);
338             fjz0             = _mm_add_ps(fjz0,tz);
339
340             }
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm_any_lt(rsq10,rcutoff2))
347             {
348
349             r10              = _mm_mul_ps(rsq10,rinv10);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq10             = _mm_mul_ps(iq1,jq0);
353
354             /* EWALD ELECTROSTATICS */
355
356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357             ewrt             = _mm_mul_ps(r10,ewtabscale);
358             ewitab           = _mm_cvttps_epi32(ewrt);
359             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
360             ewitab           = _mm_slli_epi32(ewitab,2);
361             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
362             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
363             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
364             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
365             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
366             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
367             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
368             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
369             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
370
371             d                = _mm_sub_ps(r10,rswitch);
372             d                = _mm_max_ps(d,_mm_setzero_ps());
373             d2               = _mm_mul_ps(d,d);
374             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
375
376             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
377
378             /* Evaluate switch function */
379             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
380             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
381             velec            = _mm_mul_ps(velec,sw);
382             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm_and_ps(velec,cutoff_mask);
386             velecsum         = _mm_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm_and_ps(fscal,cutoff_mask);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_ps(fscal,dx10);
394             ty               = _mm_mul_ps(fscal,dy10);
395             tz               = _mm_mul_ps(fscal,dz10);
396
397             /* Update vectorial force */
398             fix1             = _mm_add_ps(fix1,tx);
399             fiy1             = _mm_add_ps(fiy1,ty);
400             fiz1             = _mm_add_ps(fiz1,tz);
401
402             fjx0             = _mm_add_ps(fjx0,tx);
403             fjy0             = _mm_add_ps(fjy0,ty);
404             fjz0             = _mm_add_ps(fjz0,tz);
405
406             }
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             if (gmx_mm_any_lt(rsq20,rcutoff2))
413             {
414
415             r20              = _mm_mul_ps(rsq20,rinv20);
416
417             /* Compute parameters for interactions between i and j atoms */
418             qq20             = _mm_mul_ps(iq2,jq0);
419
420             /* EWALD ELECTROSTATICS */
421
422             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
423             ewrt             = _mm_mul_ps(r20,ewtabscale);
424             ewitab           = _mm_cvttps_epi32(ewrt);
425             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
426             ewitab           = _mm_slli_epi32(ewitab,2);
427             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
428             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
429             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
430             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
431             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
432             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
433             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
434             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
435             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
436
437             d                = _mm_sub_ps(r20,rswitch);
438             d                = _mm_max_ps(d,_mm_setzero_ps());
439             d2               = _mm_mul_ps(d,d);
440             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
441
442             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
443
444             /* Evaluate switch function */
445             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
446             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
447             velec            = _mm_mul_ps(velec,sw);
448             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velec            = _mm_and_ps(velec,cutoff_mask);
452             velecsum         = _mm_add_ps(velecsum,velec);
453
454             fscal            = felec;
455
456             fscal            = _mm_and_ps(fscal,cutoff_mask);
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm_mul_ps(fscal,dx20);
460             ty               = _mm_mul_ps(fscal,dy20);
461             tz               = _mm_mul_ps(fscal,dz20);
462
463             /* Update vectorial force */
464             fix2             = _mm_add_ps(fix2,tx);
465             fiy2             = _mm_add_ps(fiy2,ty);
466             fiz2             = _mm_add_ps(fiz2,tz);
467
468             fjx0             = _mm_add_ps(fjx0,tx);
469             fjy0             = _mm_add_ps(fjy0,ty);
470             fjz0             = _mm_add_ps(fjz0,tz);
471
472             }
473
474             fjptrA             = f+j_coord_offsetA;
475             fjptrB             = f+j_coord_offsetB;
476             fjptrC             = f+j_coord_offsetC;
477             fjptrD             = f+j_coord_offsetD;
478
479             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
480
481             /* Inner loop uses 213 flops */
482         }
483
484         if(jidx<j_index_end)
485         {
486
487             /* Get j neighbor index, and coordinate index */
488             jnrlistA         = jjnr[jidx];
489             jnrlistB         = jjnr[jidx+1];
490             jnrlistC         = jjnr[jidx+2];
491             jnrlistD         = jjnr[jidx+3];
492             /* Sign of each element will be negative for non-real atoms.
493              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
494              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
495              */
496             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
497             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
498             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
499             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
500             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
501             j_coord_offsetA  = DIM*jnrA;
502             j_coord_offsetB  = DIM*jnrB;
503             j_coord_offsetC  = DIM*jnrC;
504             j_coord_offsetD  = DIM*jnrD;
505
506             /* load j atom coordinates */
507             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
508                                               x+j_coord_offsetC,x+j_coord_offsetD,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm_sub_ps(ix0,jx0);
513             dy00             = _mm_sub_ps(iy0,jy0);
514             dz00             = _mm_sub_ps(iz0,jz0);
515             dx10             = _mm_sub_ps(ix1,jx0);
516             dy10             = _mm_sub_ps(iy1,jy0);
517             dz10             = _mm_sub_ps(iz1,jz0);
518             dx20             = _mm_sub_ps(ix2,jx0);
519             dy20             = _mm_sub_ps(iy2,jy0);
520             dz20             = _mm_sub_ps(iz2,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
524             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
525             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
526
527             rinv00           = gmx_mm_invsqrt_ps(rsq00);
528             rinv10           = gmx_mm_invsqrt_ps(rsq10);
529             rinv20           = gmx_mm_invsqrt_ps(rsq20);
530
531             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
532             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
533             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
534
535             /* Load parameters for j particles */
536             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
537                                                               charge+jnrC+0,charge+jnrD+0);
538             vdwjidx0A        = 2*vdwtype[jnrA+0];
539             vdwjidx0B        = 2*vdwtype[jnrB+0];
540             vdwjidx0C        = 2*vdwtype[jnrC+0];
541             vdwjidx0D        = 2*vdwtype[jnrD+0];
542
543             fjx0             = _mm_setzero_ps();
544             fjy0             = _mm_setzero_ps();
545             fjz0             = _mm_setzero_ps();
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq00,rcutoff2))
552             {
553
554             r00              = _mm_mul_ps(rsq00,rinv00);
555             r00              = _mm_andnot_ps(dummy_mask,r00);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq00             = _mm_mul_ps(iq0,jq0);
559             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
560                                          vdwparam+vdwioffset0+vdwjidx0B,
561                                          vdwparam+vdwioffset0+vdwjidx0C,
562                                          vdwparam+vdwioffset0+vdwjidx0D,
563                                          &c6_00,&c12_00);
564
565             /* EWALD ELECTROSTATICS */
566
567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
568             ewrt             = _mm_mul_ps(r00,ewtabscale);
569             ewitab           = _mm_cvttps_epi32(ewrt);
570             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
574             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
575             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
576             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
577             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
578             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
579             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
580             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
581
582             /* LENNARD-JONES DISPERSION/REPULSION */
583
584             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
585             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
586             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
587             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
588             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
589
590             d                = _mm_sub_ps(r00,rswitch);
591             d                = _mm_max_ps(d,_mm_setzero_ps());
592             d2               = _mm_mul_ps(d,d);
593             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
594
595             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
596
597             /* Evaluate switch function */
598             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
599             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
600             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
601             velec            = _mm_mul_ps(velec,sw);
602             vvdw             = _mm_mul_ps(vvdw,sw);
603             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_and_ps(velec,cutoff_mask);
607             velec            = _mm_andnot_ps(dummy_mask,velec);
608             velecsum         = _mm_add_ps(velecsum,velec);
609             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
610             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
611             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
612
613             fscal            = _mm_add_ps(felec,fvdw);
614
615             fscal            = _mm_and_ps(fscal,cutoff_mask);
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_ps(fscal,dx00);
621             ty               = _mm_mul_ps(fscal,dy00);
622             tz               = _mm_mul_ps(fscal,dz00);
623
624             /* Update vectorial force */
625             fix0             = _mm_add_ps(fix0,tx);
626             fiy0             = _mm_add_ps(fiy0,ty);
627             fiz0             = _mm_add_ps(fiz0,tz);
628
629             fjx0             = _mm_add_ps(fjx0,tx);
630             fjy0             = _mm_add_ps(fjy0,ty);
631             fjz0             = _mm_add_ps(fjz0,tz);
632
633             }
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             if (gmx_mm_any_lt(rsq10,rcutoff2))
640             {
641
642             r10              = _mm_mul_ps(rsq10,rinv10);
643             r10              = _mm_andnot_ps(dummy_mask,r10);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq10             = _mm_mul_ps(iq1,jq0);
647
648             /* EWALD ELECTROSTATICS */
649
650             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
651             ewrt             = _mm_mul_ps(r10,ewtabscale);
652             ewitab           = _mm_cvttps_epi32(ewrt);
653             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
654             ewitab           = _mm_slli_epi32(ewitab,2);
655             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
656             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
657             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
658             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
659             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
660             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
661             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
662             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
663             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
664
665             d                = _mm_sub_ps(r10,rswitch);
666             d                = _mm_max_ps(d,_mm_setzero_ps());
667             d2               = _mm_mul_ps(d,d);
668             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
669
670             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
671
672             /* Evaluate switch function */
673             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
674             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
675             velec            = _mm_mul_ps(velec,sw);
676             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
677
678             /* Update potential sum for this i atom from the interaction with this j atom. */
679             velec            = _mm_and_ps(velec,cutoff_mask);
680             velec            = _mm_andnot_ps(dummy_mask,velec);
681             velecsum         = _mm_add_ps(velecsum,velec);
682
683             fscal            = felec;
684
685             fscal            = _mm_and_ps(fscal,cutoff_mask);
686
687             fscal            = _mm_andnot_ps(dummy_mask,fscal);
688
689             /* Calculate temporary vectorial force */
690             tx               = _mm_mul_ps(fscal,dx10);
691             ty               = _mm_mul_ps(fscal,dy10);
692             tz               = _mm_mul_ps(fscal,dz10);
693
694             /* Update vectorial force */
695             fix1             = _mm_add_ps(fix1,tx);
696             fiy1             = _mm_add_ps(fiy1,ty);
697             fiz1             = _mm_add_ps(fiz1,tz);
698
699             fjx0             = _mm_add_ps(fjx0,tx);
700             fjy0             = _mm_add_ps(fjy0,ty);
701             fjz0             = _mm_add_ps(fjz0,tz);
702
703             }
704
705             /**************************
706              * CALCULATE INTERACTIONS *
707              **************************/
708
709             if (gmx_mm_any_lt(rsq20,rcutoff2))
710             {
711
712             r20              = _mm_mul_ps(rsq20,rinv20);
713             r20              = _mm_andnot_ps(dummy_mask,r20);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq20             = _mm_mul_ps(iq2,jq0);
717
718             /* EWALD ELECTROSTATICS */
719
720             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
721             ewrt             = _mm_mul_ps(r20,ewtabscale);
722             ewitab           = _mm_cvttps_epi32(ewrt);
723             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
724             ewitab           = _mm_slli_epi32(ewitab,2);
725             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
726             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
727             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
728             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
729             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
730             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
731             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
732             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
733             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
734
735             d                = _mm_sub_ps(r20,rswitch);
736             d                = _mm_max_ps(d,_mm_setzero_ps());
737             d2               = _mm_mul_ps(d,d);
738             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
739
740             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
741
742             /* Evaluate switch function */
743             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
744             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
745             velec            = _mm_mul_ps(velec,sw);
746             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
747
748             /* Update potential sum for this i atom from the interaction with this j atom. */
749             velec            = _mm_and_ps(velec,cutoff_mask);
750             velec            = _mm_andnot_ps(dummy_mask,velec);
751             velecsum         = _mm_add_ps(velecsum,velec);
752
753             fscal            = felec;
754
755             fscal            = _mm_and_ps(fscal,cutoff_mask);
756
757             fscal            = _mm_andnot_ps(dummy_mask,fscal);
758
759             /* Calculate temporary vectorial force */
760             tx               = _mm_mul_ps(fscal,dx20);
761             ty               = _mm_mul_ps(fscal,dy20);
762             tz               = _mm_mul_ps(fscal,dz20);
763
764             /* Update vectorial force */
765             fix2             = _mm_add_ps(fix2,tx);
766             fiy2             = _mm_add_ps(fiy2,ty);
767             fiz2             = _mm_add_ps(fiz2,tz);
768
769             fjx0             = _mm_add_ps(fjx0,tx);
770             fjy0             = _mm_add_ps(fjy0,ty);
771             fjz0             = _mm_add_ps(fjz0,tz);
772
773             }
774
775             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
776             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
777             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
778             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
779
780             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
781
782             /* Inner loop uses 216 flops */
783         }
784
785         /* End of innermost loop */
786
787         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
788                                               f+i_coord_offset,fshift+i_shift_offset);
789
790         ggid                        = gid[iidx];
791         /* Update potential energies */
792         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
793         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
794
795         /* Increment number of inner iterations */
796         inneriter                  += j_index_end - j_index_start;
797
798         /* Outer loop uses 20 flops */
799     }
800
801     /* Increment number of outer iterations */
802     outeriter        += nri;
803
804     /* Update outer/inner flops */
805
806     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*216);
807 }
808 /*
809  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
810  * Electrostatics interaction: Ewald
811  * VdW interaction:            LennardJones
812  * Geometry:                   Water3-Particle
813  * Calculate force/pot:        Force
814  */
815 void
816 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_single
817                     (t_nblist                    * gmx_restrict       nlist,
818                      rvec                        * gmx_restrict          xx,
819                      rvec                        * gmx_restrict          ff,
820                      t_forcerec                  * gmx_restrict          fr,
821                      t_mdatoms                   * gmx_restrict     mdatoms,
822                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
823                      t_nrnb                      * gmx_restrict        nrnb)
824 {
825     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
826      * just 0 for non-waters.
827      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
828      * jnr indices corresponding to data put in the four positions in the SIMD register.
829      */
830     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
831     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
832     int              jnrA,jnrB,jnrC,jnrD;
833     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
834     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
835     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
836     real             rcutoff_scalar;
837     real             *shiftvec,*fshift,*x,*f;
838     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
839     real             scratch[4*DIM];
840     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
841     int              vdwioffset0;
842     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
843     int              vdwioffset1;
844     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
845     int              vdwioffset2;
846     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
847     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
848     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
849     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
850     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
851     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
852     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
853     real             *charge;
854     int              nvdwtype;
855     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
856     int              *vdwtype;
857     real             *vdwparam;
858     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
859     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
860     __m128i          ewitab;
861     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
862     real             *ewtab;
863     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
864     real             rswitch_scalar,d_scalar;
865     __m128           dummy_mask,cutoff_mask;
866     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
867     __m128           one     = _mm_set1_ps(1.0);
868     __m128           two     = _mm_set1_ps(2.0);
869     x                = xx[0];
870     f                = ff[0];
871
872     nri              = nlist->nri;
873     iinr             = nlist->iinr;
874     jindex           = nlist->jindex;
875     jjnr             = nlist->jjnr;
876     shiftidx         = nlist->shift;
877     gid              = nlist->gid;
878     shiftvec         = fr->shift_vec[0];
879     fshift           = fr->fshift[0];
880     facel            = _mm_set1_ps(fr->epsfac);
881     charge           = mdatoms->chargeA;
882     nvdwtype         = fr->ntype;
883     vdwparam         = fr->nbfp;
884     vdwtype          = mdatoms->typeA;
885
886     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
887     ewtab            = fr->ic->tabq_coul_FDV0;
888     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
889     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
890
891     /* Setup water-specific parameters */
892     inr              = nlist->iinr[0];
893     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
894     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
895     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
896     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
897
898     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
899     rcutoff_scalar   = fr->rcoulomb;
900     rcutoff          = _mm_set1_ps(rcutoff_scalar);
901     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
902
903     rswitch_scalar   = fr->rcoulomb_switch;
904     rswitch          = _mm_set1_ps(rswitch_scalar);
905     /* Setup switch parameters */
906     d_scalar         = rcutoff_scalar-rswitch_scalar;
907     d                = _mm_set1_ps(d_scalar);
908     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
909     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
910     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
911     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
912     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
913     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
914
915     /* Avoid stupid compiler warnings */
916     jnrA = jnrB = jnrC = jnrD = 0;
917     j_coord_offsetA = 0;
918     j_coord_offsetB = 0;
919     j_coord_offsetC = 0;
920     j_coord_offsetD = 0;
921
922     outeriter        = 0;
923     inneriter        = 0;
924
925     for(iidx=0;iidx<4*DIM;iidx++)
926     {
927         scratch[iidx] = 0.0;
928     }
929
930     /* Start outer loop over neighborlists */
931     for(iidx=0; iidx<nri; iidx++)
932     {
933         /* Load shift vector for this list */
934         i_shift_offset   = DIM*shiftidx[iidx];
935
936         /* Load limits for loop over neighbors */
937         j_index_start    = jindex[iidx];
938         j_index_end      = jindex[iidx+1];
939
940         /* Get outer coordinate index */
941         inr              = iinr[iidx];
942         i_coord_offset   = DIM*inr;
943
944         /* Load i particle coords and add shift vector */
945         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
946                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
947
948         fix0             = _mm_setzero_ps();
949         fiy0             = _mm_setzero_ps();
950         fiz0             = _mm_setzero_ps();
951         fix1             = _mm_setzero_ps();
952         fiy1             = _mm_setzero_ps();
953         fiz1             = _mm_setzero_ps();
954         fix2             = _mm_setzero_ps();
955         fiy2             = _mm_setzero_ps();
956         fiz2             = _mm_setzero_ps();
957
958         /* Start inner kernel loop */
959         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
960         {
961
962             /* Get j neighbor index, and coordinate index */
963             jnrA             = jjnr[jidx];
964             jnrB             = jjnr[jidx+1];
965             jnrC             = jjnr[jidx+2];
966             jnrD             = jjnr[jidx+3];
967             j_coord_offsetA  = DIM*jnrA;
968             j_coord_offsetB  = DIM*jnrB;
969             j_coord_offsetC  = DIM*jnrC;
970             j_coord_offsetD  = DIM*jnrD;
971
972             /* load j atom coordinates */
973             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
974                                               x+j_coord_offsetC,x+j_coord_offsetD,
975                                               &jx0,&jy0,&jz0);
976
977             /* Calculate displacement vector */
978             dx00             = _mm_sub_ps(ix0,jx0);
979             dy00             = _mm_sub_ps(iy0,jy0);
980             dz00             = _mm_sub_ps(iz0,jz0);
981             dx10             = _mm_sub_ps(ix1,jx0);
982             dy10             = _mm_sub_ps(iy1,jy0);
983             dz10             = _mm_sub_ps(iz1,jz0);
984             dx20             = _mm_sub_ps(ix2,jx0);
985             dy20             = _mm_sub_ps(iy2,jy0);
986             dz20             = _mm_sub_ps(iz2,jz0);
987
988             /* Calculate squared distance and things based on it */
989             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
990             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
991             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
992
993             rinv00           = gmx_mm_invsqrt_ps(rsq00);
994             rinv10           = gmx_mm_invsqrt_ps(rsq10);
995             rinv20           = gmx_mm_invsqrt_ps(rsq20);
996
997             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
998             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
999             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1000
1001             /* Load parameters for j particles */
1002             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1003                                                               charge+jnrC+0,charge+jnrD+0);
1004             vdwjidx0A        = 2*vdwtype[jnrA+0];
1005             vdwjidx0B        = 2*vdwtype[jnrB+0];
1006             vdwjidx0C        = 2*vdwtype[jnrC+0];
1007             vdwjidx0D        = 2*vdwtype[jnrD+0];
1008
1009             fjx0             = _mm_setzero_ps();
1010             fjy0             = _mm_setzero_ps();
1011             fjz0             = _mm_setzero_ps();
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq00,rcutoff2))
1018             {
1019
1020             r00              = _mm_mul_ps(rsq00,rinv00);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq00             = _mm_mul_ps(iq0,jq0);
1024             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1025                                          vdwparam+vdwioffset0+vdwjidx0B,
1026                                          vdwparam+vdwioffset0+vdwjidx0C,
1027                                          vdwparam+vdwioffset0+vdwjidx0D,
1028                                          &c6_00,&c12_00);
1029
1030             /* EWALD ELECTROSTATICS */
1031
1032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1033             ewrt             = _mm_mul_ps(r00,ewtabscale);
1034             ewitab           = _mm_cvttps_epi32(ewrt);
1035             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1036             ewitab           = _mm_slli_epi32(ewitab,2);
1037             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1038             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1039             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1040             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1041             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1042             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1043             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1044             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1045             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1046
1047             /* LENNARD-JONES DISPERSION/REPULSION */
1048
1049             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1050             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1051             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1052             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1053             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1054
1055             d                = _mm_sub_ps(r00,rswitch);
1056             d                = _mm_max_ps(d,_mm_setzero_ps());
1057             d2               = _mm_mul_ps(d,d);
1058             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1059
1060             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1061
1062             /* Evaluate switch function */
1063             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1064             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1065             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1066             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1067
1068             fscal            = _mm_add_ps(felec,fvdw);
1069
1070             fscal            = _mm_and_ps(fscal,cutoff_mask);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_ps(fscal,dx00);
1074             ty               = _mm_mul_ps(fscal,dy00);
1075             tz               = _mm_mul_ps(fscal,dz00);
1076
1077             /* Update vectorial force */
1078             fix0             = _mm_add_ps(fix0,tx);
1079             fiy0             = _mm_add_ps(fiy0,ty);
1080             fiz0             = _mm_add_ps(fiz0,tz);
1081
1082             fjx0             = _mm_add_ps(fjx0,tx);
1083             fjy0             = _mm_add_ps(fjy0,ty);
1084             fjz0             = _mm_add_ps(fjz0,tz);
1085
1086             }
1087
1088             /**************************
1089              * CALCULATE INTERACTIONS *
1090              **************************/
1091
1092             if (gmx_mm_any_lt(rsq10,rcutoff2))
1093             {
1094
1095             r10              = _mm_mul_ps(rsq10,rinv10);
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             qq10             = _mm_mul_ps(iq1,jq0);
1099
1100             /* EWALD ELECTROSTATICS */
1101
1102             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1103             ewrt             = _mm_mul_ps(r10,ewtabscale);
1104             ewitab           = _mm_cvttps_epi32(ewrt);
1105             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1106             ewitab           = _mm_slli_epi32(ewitab,2);
1107             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1108             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1109             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1110             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1111             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1112             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1113             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1114             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1115             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1116
1117             d                = _mm_sub_ps(r10,rswitch);
1118             d                = _mm_max_ps(d,_mm_setzero_ps());
1119             d2               = _mm_mul_ps(d,d);
1120             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1121
1122             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1123
1124             /* Evaluate switch function */
1125             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1126             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1127             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1128
1129             fscal            = felec;
1130
1131             fscal            = _mm_and_ps(fscal,cutoff_mask);
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm_mul_ps(fscal,dx10);
1135             ty               = _mm_mul_ps(fscal,dy10);
1136             tz               = _mm_mul_ps(fscal,dz10);
1137
1138             /* Update vectorial force */
1139             fix1             = _mm_add_ps(fix1,tx);
1140             fiy1             = _mm_add_ps(fiy1,ty);
1141             fiz1             = _mm_add_ps(fiz1,tz);
1142
1143             fjx0             = _mm_add_ps(fjx0,tx);
1144             fjy0             = _mm_add_ps(fjy0,ty);
1145             fjz0             = _mm_add_ps(fjz0,tz);
1146
1147             }
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             if (gmx_mm_any_lt(rsq20,rcutoff2))
1154             {
1155
1156             r20              = _mm_mul_ps(rsq20,rinv20);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq20             = _mm_mul_ps(iq2,jq0);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _mm_mul_ps(r20,ewtabscale);
1165             ewitab           = _mm_cvttps_epi32(ewrt);
1166             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1167             ewitab           = _mm_slli_epi32(ewitab,2);
1168             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1169             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1170             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1171             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1172             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1173             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1174             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1175             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1176             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1177
1178             d                = _mm_sub_ps(r20,rswitch);
1179             d                = _mm_max_ps(d,_mm_setzero_ps());
1180             d2               = _mm_mul_ps(d,d);
1181             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1182
1183             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1184
1185             /* Evaluate switch function */
1186             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1187             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1188             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm_and_ps(fscal,cutoff_mask);
1193
1194             /* Calculate temporary vectorial force */
1195             tx               = _mm_mul_ps(fscal,dx20);
1196             ty               = _mm_mul_ps(fscal,dy20);
1197             tz               = _mm_mul_ps(fscal,dz20);
1198
1199             /* Update vectorial force */
1200             fix2             = _mm_add_ps(fix2,tx);
1201             fiy2             = _mm_add_ps(fiy2,ty);
1202             fiz2             = _mm_add_ps(fiz2,tz);
1203
1204             fjx0             = _mm_add_ps(fjx0,tx);
1205             fjy0             = _mm_add_ps(fjy0,ty);
1206             fjz0             = _mm_add_ps(fjz0,tz);
1207
1208             }
1209
1210             fjptrA             = f+j_coord_offsetA;
1211             fjptrB             = f+j_coord_offsetB;
1212             fjptrC             = f+j_coord_offsetC;
1213             fjptrD             = f+j_coord_offsetD;
1214
1215             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1216
1217             /* Inner loop uses 201 flops */
1218         }
1219
1220         if(jidx<j_index_end)
1221         {
1222
1223             /* Get j neighbor index, and coordinate index */
1224             jnrlistA         = jjnr[jidx];
1225             jnrlistB         = jjnr[jidx+1];
1226             jnrlistC         = jjnr[jidx+2];
1227             jnrlistD         = jjnr[jidx+3];
1228             /* Sign of each element will be negative for non-real atoms.
1229              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1230              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1231              */
1232             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1233             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1234             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1235             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1236             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1237             j_coord_offsetA  = DIM*jnrA;
1238             j_coord_offsetB  = DIM*jnrB;
1239             j_coord_offsetC  = DIM*jnrC;
1240             j_coord_offsetD  = DIM*jnrD;
1241
1242             /* load j atom coordinates */
1243             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1244                                               x+j_coord_offsetC,x+j_coord_offsetD,
1245                                               &jx0,&jy0,&jz0);
1246
1247             /* Calculate displacement vector */
1248             dx00             = _mm_sub_ps(ix0,jx0);
1249             dy00             = _mm_sub_ps(iy0,jy0);
1250             dz00             = _mm_sub_ps(iz0,jz0);
1251             dx10             = _mm_sub_ps(ix1,jx0);
1252             dy10             = _mm_sub_ps(iy1,jy0);
1253             dz10             = _mm_sub_ps(iz1,jz0);
1254             dx20             = _mm_sub_ps(ix2,jx0);
1255             dy20             = _mm_sub_ps(iy2,jy0);
1256             dz20             = _mm_sub_ps(iz2,jz0);
1257
1258             /* Calculate squared distance and things based on it */
1259             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1260             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1261             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1262
1263             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1264             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1265             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1266
1267             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1268             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1269             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1270
1271             /* Load parameters for j particles */
1272             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1273                                                               charge+jnrC+0,charge+jnrD+0);
1274             vdwjidx0A        = 2*vdwtype[jnrA+0];
1275             vdwjidx0B        = 2*vdwtype[jnrB+0];
1276             vdwjidx0C        = 2*vdwtype[jnrC+0];
1277             vdwjidx0D        = 2*vdwtype[jnrD+0];
1278
1279             fjx0             = _mm_setzero_ps();
1280             fjy0             = _mm_setzero_ps();
1281             fjz0             = _mm_setzero_ps();
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_mm_any_lt(rsq00,rcutoff2))
1288             {
1289
1290             r00              = _mm_mul_ps(rsq00,rinv00);
1291             r00              = _mm_andnot_ps(dummy_mask,r00);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq00             = _mm_mul_ps(iq0,jq0);
1295             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1296                                          vdwparam+vdwioffset0+vdwjidx0B,
1297                                          vdwparam+vdwioffset0+vdwjidx0C,
1298                                          vdwparam+vdwioffset0+vdwjidx0D,
1299                                          &c6_00,&c12_00);
1300
1301             /* EWALD ELECTROSTATICS */
1302
1303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1304             ewrt             = _mm_mul_ps(r00,ewtabscale);
1305             ewitab           = _mm_cvttps_epi32(ewrt);
1306             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1307             ewitab           = _mm_slli_epi32(ewitab,2);
1308             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1309             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1310             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1311             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1312             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1313             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1314             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1315             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
1316             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1317
1318             /* LENNARD-JONES DISPERSION/REPULSION */
1319
1320             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1321             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1322             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1323             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1324             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1325
1326             d                = _mm_sub_ps(r00,rswitch);
1327             d                = _mm_max_ps(d,_mm_setzero_ps());
1328             d2               = _mm_mul_ps(d,d);
1329             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1330
1331             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1332
1333             /* Evaluate switch function */
1334             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1335             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
1336             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1337             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1338
1339             fscal            = _mm_add_ps(felec,fvdw);
1340
1341             fscal            = _mm_and_ps(fscal,cutoff_mask);
1342
1343             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1344
1345             /* Calculate temporary vectorial force */
1346             tx               = _mm_mul_ps(fscal,dx00);
1347             ty               = _mm_mul_ps(fscal,dy00);
1348             tz               = _mm_mul_ps(fscal,dz00);
1349
1350             /* Update vectorial force */
1351             fix0             = _mm_add_ps(fix0,tx);
1352             fiy0             = _mm_add_ps(fiy0,ty);
1353             fiz0             = _mm_add_ps(fiz0,tz);
1354
1355             fjx0             = _mm_add_ps(fjx0,tx);
1356             fjy0             = _mm_add_ps(fjy0,ty);
1357             fjz0             = _mm_add_ps(fjz0,tz);
1358
1359             }
1360
1361             /**************************
1362              * CALCULATE INTERACTIONS *
1363              **************************/
1364
1365             if (gmx_mm_any_lt(rsq10,rcutoff2))
1366             {
1367
1368             r10              = _mm_mul_ps(rsq10,rinv10);
1369             r10              = _mm_andnot_ps(dummy_mask,r10);
1370
1371             /* Compute parameters for interactions between i and j atoms */
1372             qq10             = _mm_mul_ps(iq1,jq0);
1373
1374             /* EWALD ELECTROSTATICS */
1375
1376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1377             ewrt             = _mm_mul_ps(r10,ewtabscale);
1378             ewitab           = _mm_cvttps_epi32(ewrt);
1379             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1380             ewitab           = _mm_slli_epi32(ewitab,2);
1381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1388             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1389             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1390
1391             d                = _mm_sub_ps(r10,rswitch);
1392             d                = _mm_max_ps(d,_mm_setzero_ps());
1393             d2               = _mm_mul_ps(d,d);
1394             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1395
1396             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1397
1398             /* Evaluate switch function */
1399             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1400             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1401             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1402
1403             fscal            = felec;
1404
1405             fscal            = _mm_and_ps(fscal,cutoff_mask);
1406
1407             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm_mul_ps(fscal,dx10);
1411             ty               = _mm_mul_ps(fscal,dy10);
1412             tz               = _mm_mul_ps(fscal,dz10);
1413
1414             /* Update vectorial force */
1415             fix1             = _mm_add_ps(fix1,tx);
1416             fiy1             = _mm_add_ps(fiy1,ty);
1417             fiz1             = _mm_add_ps(fiz1,tz);
1418
1419             fjx0             = _mm_add_ps(fjx0,tx);
1420             fjy0             = _mm_add_ps(fjy0,ty);
1421             fjz0             = _mm_add_ps(fjz0,tz);
1422
1423             }
1424
1425             /**************************
1426              * CALCULATE INTERACTIONS *
1427              **************************/
1428
1429             if (gmx_mm_any_lt(rsq20,rcutoff2))
1430             {
1431
1432             r20              = _mm_mul_ps(rsq20,rinv20);
1433             r20              = _mm_andnot_ps(dummy_mask,r20);
1434
1435             /* Compute parameters for interactions between i and j atoms */
1436             qq20             = _mm_mul_ps(iq2,jq0);
1437
1438             /* EWALD ELECTROSTATICS */
1439
1440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1441             ewrt             = _mm_mul_ps(r20,ewtabscale);
1442             ewitab           = _mm_cvttps_epi32(ewrt);
1443             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1444             ewitab           = _mm_slli_epi32(ewitab,2);
1445             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1446             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1447             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1448             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1449             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1450             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1451             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1452             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1453             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1454
1455             d                = _mm_sub_ps(r20,rswitch);
1456             d                = _mm_max_ps(d,_mm_setzero_ps());
1457             d2               = _mm_mul_ps(d,d);
1458             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1459
1460             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1461
1462             /* Evaluate switch function */
1463             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1464             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1465             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1466
1467             fscal            = felec;
1468
1469             fscal            = _mm_and_ps(fscal,cutoff_mask);
1470
1471             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1472
1473             /* Calculate temporary vectorial force */
1474             tx               = _mm_mul_ps(fscal,dx20);
1475             ty               = _mm_mul_ps(fscal,dy20);
1476             tz               = _mm_mul_ps(fscal,dz20);
1477
1478             /* Update vectorial force */
1479             fix2             = _mm_add_ps(fix2,tx);
1480             fiy2             = _mm_add_ps(fiy2,ty);
1481             fiz2             = _mm_add_ps(fiz2,tz);
1482
1483             fjx0             = _mm_add_ps(fjx0,tx);
1484             fjy0             = _mm_add_ps(fjy0,ty);
1485             fjz0             = _mm_add_ps(fjz0,tz);
1486
1487             }
1488
1489             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1490             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1491             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1492             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1493
1494             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1495
1496             /* Inner loop uses 204 flops */
1497         }
1498
1499         /* End of innermost loop */
1500
1501         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1502                                               f+i_coord_offset,fshift+i_shift_offset);
1503
1504         /* Increment number of inner iterations */
1505         inneriter                  += j_index_end - j_index_start;
1506
1507         /* Outer loop uses 18 flops */
1508     }
1509
1510     /* Increment number of outer iterations */
1511     outeriter        += nri;
1512
1513     /* Update outer/inner flops */
1514
1515     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*204);
1516 }