c88493259c867cebf93c49d39ae5dd676ff7a1fd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100     real             rswitch_scalar,d_scalar;
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = _mm_set1_ps(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm_set1_ps(d_scalar);
137     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179
180         /* Load parameters for i particles */
181         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
182         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216
217             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             r00              = _mm_mul_ps(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_ps(iq0,jq0);
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _mm_mul_ps(r00,ewtabscale);
248             ewitab           = _mm_cvttps_epi32(ewrt);
249             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
250             ewitab           = _mm_slli_epi32(ewitab,2);
251             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
252             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
253             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
254             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
255             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
256             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
257             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
258             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
259             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
267             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
268
269             d                = _mm_sub_ps(r00,rswitch);
270             d                = _mm_max_ps(d,_mm_setzero_ps());
271             d2               = _mm_mul_ps(d,d);
272             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
273
274             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
275
276             /* Evaluate switch function */
277             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
278             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
279             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
280             velec            = _mm_mul_ps(velec,sw);
281             vvdw             = _mm_mul_ps(vvdw,sw);
282             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm_and_ps(velec,cutoff_mask);
286             velecsum         = _mm_add_ps(velecsum,velec);
287             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
288             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
289
290             fscal            = _mm_add_ps(felec,fvdw);
291
292             fscal            = _mm_and_ps(fscal,cutoff_mask);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_ps(fscal,dx00);
296             ty               = _mm_mul_ps(fscal,dy00);
297             tz               = _mm_mul_ps(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm_add_ps(fix0,tx);
301             fiy0             = _mm_add_ps(fiy0,ty);
302             fiz0             = _mm_add_ps(fiz0,tz);
303
304             fjptrA             = f+j_coord_offsetA;
305             fjptrB             = f+j_coord_offsetB;
306             fjptrC             = f+j_coord_offsetC;
307             fjptrD             = f+j_coord_offsetD;
308             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
309
310             }
311
312             /* Inner loop uses 83 flops */
313         }
314
315         if(jidx<j_index_end)
316         {
317
318             /* Get j neighbor index, and coordinate index */
319             jnrlistA         = jjnr[jidx];
320             jnrlistB         = jjnr[jidx+1];
321             jnrlistC         = jjnr[jidx+2];
322             jnrlistD         = jjnr[jidx+3];
323             /* Sign of each element will be negative for non-real atoms.
324              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
326              */
327             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
328             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
329             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
330             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
331             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
332             j_coord_offsetA  = DIM*jnrA;
333             j_coord_offsetB  = DIM*jnrB;
334             j_coord_offsetC  = DIM*jnrC;
335             j_coord_offsetD  = DIM*jnrD;
336
337             /* load j atom coordinates */
338             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
339                                               x+j_coord_offsetC,x+j_coord_offsetD,
340                                               &jx0,&jy0,&jz0);
341
342             /* Calculate displacement vector */
343             dx00             = _mm_sub_ps(ix0,jx0);
344             dy00             = _mm_sub_ps(iy0,jy0);
345             dz00             = _mm_sub_ps(iz0,jz0);
346
347             /* Calculate squared distance and things based on it */
348             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
349
350             rinv00           = gmx_mm_invsqrt_ps(rsq00);
351
352             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
353
354             /* Load parameters for j particles */
355             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
356                                                               charge+jnrC+0,charge+jnrD+0);
357             vdwjidx0A        = 2*vdwtype[jnrA+0];
358             vdwjidx0B        = 2*vdwtype[jnrB+0];
359             vdwjidx0C        = 2*vdwtype[jnrC+0];
360             vdwjidx0D        = 2*vdwtype[jnrD+0];
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq00,rcutoff2))
367             {
368
369             r00              = _mm_mul_ps(rsq00,rinv00);
370             r00              = _mm_andnot_ps(dummy_mask,r00);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq00             = _mm_mul_ps(iq0,jq0);
374             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
375                                          vdwparam+vdwioffset0+vdwjidx0B,
376                                          vdwparam+vdwioffset0+vdwjidx0C,
377                                          vdwparam+vdwioffset0+vdwjidx0D,
378                                          &c6_00,&c12_00);
379
380             /* EWALD ELECTROSTATICS */
381
382             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383             ewrt             = _mm_mul_ps(r00,ewtabscale);
384             ewitab           = _mm_cvttps_epi32(ewrt);
385             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
386             ewitab           = _mm_slli_epi32(ewitab,2);
387             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
388             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
389             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
390             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
391             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
392             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
393             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
394             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
395             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
396
397             /* LENNARD-JONES DISPERSION/REPULSION */
398
399             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
400             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
401             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
402             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
403             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
404
405             d                = _mm_sub_ps(r00,rswitch);
406             d                = _mm_max_ps(d,_mm_setzero_ps());
407             d2               = _mm_mul_ps(d,d);
408             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
409
410             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
411
412             /* Evaluate switch function */
413             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
414             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
415             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
416             velec            = _mm_mul_ps(velec,sw);
417             vvdw             = _mm_mul_ps(vvdw,sw);
418             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_ps(velec,cutoff_mask);
422             velec            = _mm_andnot_ps(dummy_mask,velec);
423             velecsum         = _mm_add_ps(velecsum,velec);
424             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
425             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
426             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
427
428             fscal            = _mm_add_ps(felec,fvdw);
429
430             fscal            = _mm_and_ps(fscal,cutoff_mask);
431
432             fscal            = _mm_andnot_ps(dummy_mask,fscal);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx00);
436             ty               = _mm_mul_ps(fscal,dy00);
437             tz               = _mm_mul_ps(fscal,dz00);
438
439             /* Update vectorial force */
440             fix0             = _mm_add_ps(fix0,tx);
441             fiy0             = _mm_add_ps(fiy0,ty);
442             fiz0             = _mm_add_ps(fiz0,tz);
443
444             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
445             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
446             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
447             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
448             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
449
450             }
451
452             /* Inner loop uses 84 flops */
453         }
454
455         /* End of innermost loop */
456
457         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
458                                               f+i_coord_offset,fshift+i_shift_offset);
459
460         ggid                        = gid[iidx];
461         /* Update potential energies */
462         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
463         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
464
465         /* Increment number of inner iterations */
466         inneriter                  += j_index_end - j_index_start;
467
468         /* Outer loop uses 9 flops */
469     }
470
471     /* Increment number of outer iterations */
472     outeriter        += nri;
473
474     /* Update outer/inner flops */
475
476     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
477 }
478 /*
479  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
480  * Electrostatics interaction: Ewald
481  * VdW interaction:            LennardJones
482  * Geometry:                   Particle-Particle
483  * Calculate force/pot:        Force
484  */
485 void
486 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
487                     (t_nblist                    * gmx_restrict       nlist,
488                      rvec                        * gmx_restrict          xx,
489                      rvec                        * gmx_restrict          ff,
490                      t_forcerec                  * gmx_restrict          fr,
491                      t_mdatoms                   * gmx_restrict     mdatoms,
492                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
493                      t_nrnb                      * gmx_restrict        nrnb)
494 {
495     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
496      * just 0 for non-waters.
497      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
498      * jnr indices corresponding to data put in the four positions in the SIMD register.
499      */
500     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
501     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
502     int              jnrA,jnrB,jnrC,jnrD;
503     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
504     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
505     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
506     real             rcutoff_scalar;
507     real             *shiftvec,*fshift,*x,*f;
508     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
509     real             scratch[4*DIM];
510     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
511     int              vdwioffset0;
512     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
513     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
514     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
515     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
516     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
517     real             *charge;
518     int              nvdwtype;
519     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
520     int              *vdwtype;
521     real             *vdwparam;
522     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
523     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
524     __m128i          ewitab;
525     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
526     real             *ewtab;
527     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
528     real             rswitch_scalar,d_scalar;
529     __m128           dummy_mask,cutoff_mask;
530     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
531     __m128           one     = _mm_set1_ps(1.0);
532     __m128           two     = _mm_set1_ps(2.0);
533     x                = xx[0];
534     f                = ff[0];
535
536     nri              = nlist->nri;
537     iinr             = nlist->iinr;
538     jindex           = nlist->jindex;
539     jjnr             = nlist->jjnr;
540     shiftidx         = nlist->shift;
541     gid              = nlist->gid;
542     shiftvec         = fr->shift_vec[0];
543     fshift           = fr->fshift[0];
544     facel            = _mm_set1_ps(fr->epsfac);
545     charge           = mdatoms->chargeA;
546     nvdwtype         = fr->ntype;
547     vdwparam         = fr->nbfp;
548     vdwtype          = mdatoms->typeA;
549
550     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
551     ewtab            = fr->ic->tabq_coul_FDV0;
552     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
553     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
554
555     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
556     rcutoff_scalar   = fr->rcoulomb;
557     rcutoff          = _mm_set1_ps(rcutoff_scalar);
558     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
559
560     rswitch_scalar   = fr->rcoulomb_switch;
561     rswitch          = _mm_set1_ps(rswitch_scalar);
562     /* Setup switch parameters */
563     d_scalar         = rcutoff_scalar-rswitch_scalar;
564     d                = _mm_set1_ps(d_scalar);
565     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
566     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
567     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
568     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
569     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
570     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
571
572     /* Avoid stupid compiler warnings */
573     jnrA = jnrB = jnrC = jnrD = 0;
574     j_coord_offsetA = 0;
575     j_coord_offsetB = 0;
576     j_coord_offsetC = 0;
577     j_coord_offsetD = 0;
578
579     outeriter        = 0;
580     inneriter        = 0;
581
582     for(iidx=0;iidx<4*DIM;iidx++)
583     {
584         scratch[iidx] = 0.0;
585     }
586
587     /* Start outer loop over neighborlists */
588     for(iidx=0; iidx<nri; iidx++)
589     {
590         /* Load shift vector for this list */
591         i_shift_offset   = DIM*shiftidx[iidx];
592
593         /* Load limits for loop over neighbors */
594         j_index_start    = jindex[iidx];
595         j_index_end      = jindex[iidx+1];
596
597         /* Get outer coordinate index */
598         inr              = iinr[iidx];
599         i_coord_offset   = DIM*inr;
600
601         /* Load i particle coords and add shift vector */
602         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
603
604         fix0             = _mm_setzero_ps();
605         fiy0             = _mm_setzero_ps();
606         fiz0             = _mm_setzero_ps();
607
608         /* Load parameters for i particles */
609         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
610         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
611
612         /* Start inner kernel loop */
613         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
614         {
615
616             /* Get j neighbor index, and coordinate index */
617             jnrA             = jjnr[jidx];
618             jnrB             = jjnr[jidx+1];
619             jnrC             = jjnr[jidx+2];
620             jnrD             = jjnr[jidx+3];
621             j_coord_offsetA  = DIM*jnrA;
622             j_coord_offsetB  = DIM*jnrB;
623             j_coord_offsetC  = DIM*jnrC;
624             j_coord_offsetD  = DIM*jnrD;
625
626             /* load j atom coordinates */
627             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
628                                               x+j_coord_offsetC,x+j_coord_offsetD,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm_sub_ps(ix0,jx0);
633             dy00             = _mm_sub_ps(iy0,jy0);
634             dz00             = _mm_sub_ps(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
638
639             rinv00           = gmx_mm_invsqrt_ps(rsq00);
640
641             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
645                                                               charge+jnrC+0,charge+jnrD+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647             vdwjidx0B        = 2*vdwtype[jnrB+0];
648             vdwjidx0C        = 2*vdwtype[jnrC+0];
649             vdwjidx0D        = 2*vdwtype[jnrD+0];
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (gmx_mm_any_lt(rsq00,rcutoff2))
656             {
657
658             r00              = _mm_mul_ps(rsq00,rinv00);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq00             = _mm_mul_ps(iq0,jq0);
662             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
663                                          vdwparam+vdwioffset0+vdwjidx0B,
664                                          vdwparam+vdwioffset0+vdwjidx0C,
665                                          vdwparam+vdwioffset0+vdwjidx0D,
666                                          &c6_00,&c12_00);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_ps(r00,ewtabscale);
672             ewitab           = _mm_cvttps_epi32(ewrt);
673             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
674             ewitab           = _mm_slli_epi32(ewitab,2);
675             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
677             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
678             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
679             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
680             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
681             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
682             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
683             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
684
685             /* LENNARD-JONES DISPERSION/REPULSION */
686
687             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
688             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
689             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
690             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
691             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
692
693             d                = _mm_sub_ps(r00,rswitch);
694             d                = _mm_max_ps(d,_mm_setzero_ps());
695             d2               = _mm_mul_ps(d,d);
696             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
697
698             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
699
700             /* Evaluate switch function */
701             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
702             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
703             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
704             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
705
706             fscal            = _mm_add_ps(felec,fvdw);
707
708             fscal            = _mm_and_ps(fscal,cutoff_mask);
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm_mul_ps(fscal,dx00);
712             ty               = _mm_mul_ps(fscal,dy00);
713             tz               = _mm_mul_ps(fscal,dz00);
714
715             /* Update vectorial force */
716             fix0             = _mm_add_ps(fix0,tx);
717             fiy0             = _mm_add_ps(fiy0,ty);
718             fiz0             = _mm_add_ps(fiz0,tz);
719
720             fjptrA             = f+j_coord_offsetA;
721             fjptrB             = f+j_coord_offsetB;
722             fjptrC             = f+j_coord_offsetC;
723             fjptrD             = f+j_coord_offsetD;
724             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
725
726             }
727
728             /* Inner loop uses 77 flops */
729         }
730
731         if(jidx<j_index_end)
732         {
733
734             /* Get j neighbor index, and coordinate index */
735             jnrlistA         = jjnr[jidx];
736             jnrlistB         = jjnr[jidx+1];
737             jnrlistC         = jjnr[jidx+2];
738             jnrlistD         = jjnr[jidx+3];
739             /* Sign of each element will be negative for non-real atoms.
740              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
741              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
742              */
743             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
744             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
745             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
746             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
747             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
748             j_coord_offsetA  = DIM*jnrA;
749             j_coord_offsetB  = DIM*jnrB;
750             j_coord_offsetC  = DIM*jnrC;
751             j_coord_offsetD  = DIM*jnrD;
752
753             /* load j atom coordinates */
754             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
755                                               x+j_coord_offsetC,x+j_coord_offsetD,
756                                               &jx0,&jy0,&jz0);
757
758             /* Calculate displacement vector */
759             dx00             = _mm_sub_ps(ix0,jx0);
760             dy00             = _mm_sub_ps(iy0,jy0);
761             dz00             = _mm_sub_ps(iz0,jz0);
762
763             /* Calculate squared distance and things based on it */
764             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
765
766             rinv00           = gmx_mm_invsqrt_ps(rsq00);
767
768             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
769
770             /* Load parameters for j particles */
771             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
772                                                               charge+jnrC+0,charge+jnrD+0);
773             vdwjidx0A        = 2*vdwtype[jnrA+0];
774             vdwjidx0B        = 2*vdwtype[jnrB+0];
775             vdwjidx0C        = 2*vdwtype[jnrC+0];
776             vdwjidx0D        = 2*vdwtype[jnrD+0];
777
778             /**************************
779              * CALCULATE INTERACTIONS *
780              **************************/
781
782             if (gmx_mm_any_lt(rsq00,rcutoff2))
783             {
784
785             r00              = _mm_mul_ps(rsq00,rinv00);
786             r00              = _mm_andnot_ps(dummy_mask,r00);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq00             = _mm_mul_ps(iq0,jq0);
790             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
791                                          vdwparam+vdwioffset0+vdwjidx0B,
792                                          vdwparam+vdwioffset0+vdwjidx0C,
793                                          vdwparam+vdwioffset0+vdwjidx0D,
794                                          &c6_00,&c12_00);
795
796             /* EWALD ELECTROSTATICS */
797
798             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
799             ewrt             = _mm_mul_ps(r00,ewtabscale);
800             ewitab           = _mm_cvttps_epi32(ewrt);
801             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
802             ewitab           = _mm_slli_epi32(ewitab,2);
803             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
804             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
805             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
806             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
807             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
808             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
809             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
810             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
811             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
812
813             /* LENNARD-JONES DISPERSION/REPULSION */
814
815             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
816             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
817             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
818             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
819             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
820
821             d                = _mm_sub_ps(r00,rswitch);
822             d                = _mm_max_ps(d,_mm_setzero_ps());
823             d2               = _mm_mul_ps(d,d);
824             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
825
826             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
827
828             /* Evaluate switch function */
829             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
830             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
831             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
832             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
833
834             fscal            = _mm_add_ps(felec,fvdw);
835
836             fscal            = _mm_and_ps(fscal,cutoff_mask);
837
838             fscal            = _mm_andnot_ps(dummy_mask,fscal);
839
840             /* Calculate temporary vectorial force */
841             tx               = _mm_mul_ps(fscal,dx00);
842             ty               = _mm_mul_ps(fscal,dy00);
843             tz               = _mm_mul_ps(fscal,dz00);
844
845             /* Update vectorial force */
846             fix0             = _mm_add_ps(fix0,tx);
847             fiy0             = _mm_add_ps(fiy0,ty);
848             fiz0             = _mm_add_ps(fiz0,tz);
849
850             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
851             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
852             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
853             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
854             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
855
856             }
857
858             /* Inner loop uses 78 flops */
859         }
860
861         /* End of innermost loop */
862
863         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
864                                               f+i_coord_offset,fshift+i_shift_offset);
865
866         /* Increment number of inner iterations */
867         inneriter                  += j_index_end - j_index_start;
868
869         /* Outer loop uses 7 flops */
870     }
871
872     /* Increment number of outer iterations */
873     outeriter        += nri;
874
875     /* Update outer/inner flops */
876
877     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
878 }