Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->ic->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->ic->rcoulomb_switch;
132     rswitch          = _mm_set1_ps(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_ps(d_scalar);
136     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178
179         /* Load parameters for i particles */
180         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
181         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               x+j_coord_offsetC,x+j_coord_offsetD,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_ps(ix0,jx0);
208             dy00             = _mm_sub_ps(iy0,jy0);
209             dz00             = _mm_sub_ps(iz0,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
213
214             rinv00           = sse41_invsqrt_f(rsq00);
215
216             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
220                                                               charge+jnrC+0,charge+jnrD+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             if (gmx_mm_any_lt(rsq00,rcutoff2))
231             {
232
233             r00              = _mm_mul_ps(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_ps(iq0,jq0);
237             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,
239                                          vdwparam+vdwioffset0+vdwjidx0C,
240                                          vdwparam+vdwioffset0+vdwjidx0D,
241                                          &c6_00,&c12_00);
242
243             /* EWALD ELECTROSTATICS */
244
245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
246             ewrt             = _mm_mul_ps(r00,ewtabscale);
247             ewitab           = _mm_cvttps_epi32(ewrt);
248             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
249             ewitab           = _mm_slli_epi32(ewitab,2);
250             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
251             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
252             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
253             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
254             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
255             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
256             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
257             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
258             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             d                = _mm_sub_ps(r00,rswitch);
269             d                = _mm_max_ps(d,_mm_setzero_ps());
270             d2               = _mm_mul_ps(d,d);
271             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
272
273             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
274
275             /* Evaluate switch function */
276             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
277             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
278             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
279             velec            = _mm_mul_ps(velec,sw);
280             vvdw             = _mm_mul_ps(vvdw,sw);
281             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_and_ps(velec,cutoff_mask);
285             velecsum         = _mm_add_ps(velecsum,velec);
286             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
287             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
288
289             fscal            = _mm_add_ps(felec,fvdw);
290
291             fscal            = _mm_and_ps(fscal,cutoff_mask);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308
309             }
310
311             /* Inner loop uses 83 flops */
312         }
313
314         if(jidx<j_index_end)
315         {
316
317             /* Get j neighbor index, and coordinate index */
318             jnrlistA         = jjnr[jidx];
319             jnrlistB         = jjnr[jidx+1];
320             jnrlistC         = jjnr[jidx+2];
321             jnrlistD         = jjnr[jidx+3];
322             /* Sign of each element will be negative for non-real atoms.
323              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325              */
326             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
327             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
328             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
329             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
330             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
331             j_coord_offsetA  = DIM*jnrA;
332             j_coord_offsetB  = DIM*jnrB;
333             j_coord_offsetC  = DIM*jnrC;
334             j_coord_offsetD  = DIM*jnrD;
335
336             /* load j atom coordinates */
337             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
338                                               x+j_coord_offsetC,x+j_coord_offsetD,
339                                               &jx0,&jy0,&jz0);
340
341             /* Calculate displacement vector */
342             dx00             = _mm_sub_ps(ix0,jx0);
343             dy00             = _mm_sub_ps(iy0,jy0);
344             dz00             = _mm_sub_ps(iz0,jz0);
345
346             /* Calculate squared distance and things based on it */
347             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
348
349             rinv00           = sse41_invsqrt_f(rsq00);
350
351             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
352
353             /* Load parameters for j particles */
354             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
355                                                               charge+jnrC+0,charge+jnrD+0);
356             vdwjidx0A        = 2*vdwtype[jnrA+0];
357             vdwjidx0B        = 2*vdwtype[jnrB+0];
358             vdwjidx0C        = 2*vdwtype[jnrC+0];
359             vdwjidx0D        = 2*vdwtype[jnrD+0];
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq00,rcutoff2))
366             {
367
368             r00              = _mm_mul_ps(rsq00,rinv00);
369             r00              = _mm_andnot_ps(dummy_mask,r00);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq00             = _mm_mul_ps(iq0,jq0);
373             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
374                                          vdwparam+vdwioffset0+vdwjidx0B,
375                                          vdwparam+vdwioffset0+vdwjidx0C,
376                                          vdwparam+vdwioffset0+vdwjidx0D,
377                                          &c6_00,&c12_00);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _mm_mul_ps(r00,ewtabscale);
383             ewitab           = _mm_cvttps_epi32(ewrt);
384             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
388             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
389             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
390             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
391             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
392             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
393             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
394             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
395
396             /* LENNARD-JONES DISPERSION/REPULSION */
397
398             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
399             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
400             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
401             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
402             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
403
404             d                = _mm_sub_ps(r00,rswitch);
405             d                = _mm_max_ps(d,_mm_setzero_ps());
406             d2               = _mm_mul_ps(d,d);
407             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
408
409             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
410
411             /* Evaluate switch function */
412             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
413             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
414             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
415             velec            = _mm_mul_ps(velec,sw);
416             vvdw             = _mm_mul_ps(vvdw,sw);
417             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_and_ps(velec,cutoff_mask);
421             velec            = _mm_andnot_ps(dummy_mask,velec);
422             velecsum         = _mm_add_ps(velecsum,velec);
423             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
424             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
425             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
426
427             fscal            = _mm_add_ps(felec,fvdw);
428
429             fscal            = _mm_and_ps(fscal,cutoff_mask);
430
431             fscal            = _mm_andnot_ps(dummy_mask,fscal);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm_mul_ps(fscal,dx00);
435             ty               = _mm_mul_ps(fscal,dy00);
436             tz               = _mm_mul_ps(fscal,dz00);
437
438             /* Update vectorial force */
439             fix0             = _mm_add_ps(fix0,tx);
440             fiy0             = _mm_add_ps(fiy0,ty);
441             fiz0             = _mm_add_ps(fiz0,tz);
442
443             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
444             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
445             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
446             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
447             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
448
449             }
450
451             /* Inner loop uses 84 flops */
452         }
453
454         /* End of innermost loop */
455
456         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
457                                               f+i_coord_offset,fshift+i_shift_offset);
458
459         ggid                        = gid[iidx];
460         /* Update potential energies */
461         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
462         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
463
464         /* Increment number of inner iterations */
465         inneriter                  += j_index_end - j_index_start;
466
467         /* Outer loop uses 9 flops */
468     }
469
470     /* Increment number of outer iterations */
471     outeriter        += nri;
472
473     /* Update outer/inner flops */
474
475     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
476 }
477 /*
478  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
479  * Electrostatics interaction: Ewald
480  * VdW interaction:            LennardJones
481  * Geometry:                   Particle-Particle
482  * Calculate force/pot:        Force
483  */
484 void
485 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
486                     (t_nblist                    * gmx_restrict       nlist,
487                      rvec                        * gmx_restrict          xx,
488                      rvec                        * gmx_restrict          ff,
489                      struct t_forcerec           * gmx_restrict          fr,
490                      t_mdatoms                   * gmx_restrict     mdatoms,
491                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
492                      t_nrnb                      * gmx_restrict        nrnb)
493 {
494     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
495      * just 0 for non-waters.
496      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
497      * jnr indices corresponding to data put in the four positions in the SIMD register.
498      */
499     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
500     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
501     int              jnrA,jnrB,jnrC,jnrD;
502     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
503     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
504     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
505     real             rcutoff_scalar;
506     real             *shiftvec,*fshift,*x,*f;
507     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
508     real             scratch[4*DIM];
509     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
510     int              vdwioffset0;
511     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
512     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
513     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
514     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
515     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
516     real             *charge;
517     int              nvdwtype;
518     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
519     int              *vdwtype;
520     real             *vdwparam;
521     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
522     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
523     __m128i          ewitab;
524     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
525     real             *ewtab;
526     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
527     real             rswitch_scalar,d_scalar;
528     __m128           dummy_mask,cutoff_mask;
529     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
530     __m128           one     = _mm_set1_ps(1.0);
531     __m128           two     = _mm_set1_ps(2.0);
532     x                = xx[0];
533     f                = ff[0];
534
535     nri              = nlist->nri;
536     iinr             = nlist->iinr;
537     jindex           = nlist->jindex;
538     jjnr             = nlist->jjnr;
539     shiftidx         = nlist->shift;
540     gid              = nlist->gid;
541     shiftvec         = fr->shift_vec[0];
542     fshift           = fr->fshift[0];
543     facel            = _mm_set1_ps(fr->ic->epsfac);
544     charge           = mdatoms->chargeA;
545     nvdwtype         = fr->ntype;
546     vdwparam         = fr->nbfp;
547     vdwtype          = mdatoms->typeA;
548
549     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
550     ewtab            = fr->ic->tabq_coul_FDV0;
551     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
552     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
553
554     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
555     rcutoff_scalar   = fr->ic->rcoulomb;
556     rcutoff          = _mm_set1_ps(rcutoff_scalar);
557     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
558
559     rswitch_scalar   = fr->ic->rcoulomb_switch;
560     rswitch          = _mm_set1_ps(rswitch_scalar);
561     /* Setup switch parameters */
562     d_scalar         = rcutoff_scalar-rswitch_scalar;
563     d                = _mm_set1_ps(d_scalar);
564     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
565     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
566     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
567     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
568     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
569     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
570
571     /* Avoid stupid compiler warnings */
572     jnrA = jnrB = jnrC = jnrD = 0;
573     j_coord_offsetA = 0;
574     j_coord_offsetB = 0;
575     j_coord_offsetC = 0;
576     j_coord_offsetD = 0;
577
578     outeriter        = 0;
579     inneriter        = 0;
580
581     for(iidx=0;iidx<4*DIM;iidx++)
582     {
583         scratch[iidx] = 0.0;
584     }
585
586     /* Start outer loop over neighborlists */
587     for(iidx=0; iidx<nri; iidx++)
588     {
589         /* Load shift vector for this list */
590         i_shift_offset   = DIM*shiftidx[iidx];
591
592         /* Load limits for loop over neighbors */
593         j_index_start    = jindex[iidx];
594         j_index_end      = jindex[iidx+1];
595
596         /* Get outer coordinate index */
597         inr              = iinr[iidx];
598         i_coord_offset   = DIM*inr;
599
600         /* Load i particle coords and add shift vector */
601         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
602
603         fix0             = _mm_setzero_ps();
604         fiy0             = _mm_setzero_ps();
605         fiz0             = _mm_setzero_ps();
606
607         /* Load parameters for i particles */
608         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
609         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
610
611         /* Start inner kernel loop */
612         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
613         {
614
615             /* Get j neighbor index, and coordinate index */
616             jnrA             = jjnr[jidx];
617             jnrB             = jjnr[jidx+1];
618             jnrC             = jjnr[jidx+2];
619             jnrD             = jjnr[jidx+3];
620             j_coord_offsetA  = DIM*jnrA;
621             j_coord_offsetB  = DIM*jnrB;
622             j_coord_offsetC  = DIM*jnrC;
623             j_coord_offsetD  = DIM*jnrD;
624
625             /* load j atom coordinates */
626             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
627                                               x+j_coord_offsetC,x+j_coord_offsetD,
628                                               &jx0,&jy0,&jz0);
629
630             /* Calculate displacement vector */
631             dx00             = _mm_sub_ps(ix0,jx0);
632             dy00             = _mm_sub_ps(iy0,jy0);
633             dz00             = _mm_sub_ps(iz0,jz0);
634
635             /* Calculate squared distance and things based on it */
636             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
637
638             rinv00           = sse41_invsqrt_f(rsq00);
639
640             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
641
642             /* Load parameters for j particles */
643             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
644                                                               charge+jnrC+0,charge+jnrD+0);
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646             vdwjidx0B        = 2*vdwtype[jnrB+0];
647             vdwjidx0C        = 2*vdwtype[jnrC+0];
648             vdwjidx0D        = 2*vdwtype[jnrD+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm_any_lt(rsq00,rcutoff2))
655             {
656
657             r00              = _mm_mul_ps(rsq00,rinv00);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq00             = _mm_mul_ps(iq0,jq0);
661             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
662                                          vdwparam+vdwioffset0+vdwjidx0B,
663                                          vdwparam+vdwioffset0+vdwjidx0C,
664                                          vdwparam+vdwioffset0+vdwjidx0D,
665                                          &c6_00,&c12_00);
666
667             /* EWALD ELECTROSTATICS */
668
669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
670             ewrt             = _mm_mul_ps(r00,ewtabscale);
671             ewitab           = _mm_cvttps_epi32(ewrt);
672             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
673             ewitab           = _mm_slli_epi32(ewitab,2);
674             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
675             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
676             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
677             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
678             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
679             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
680             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
681             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
682             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
683
684             /* LENNARD-JONES DISPERSION/REPULSION */
685
686             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
687             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
688             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
689             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
690             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
691
692             d                = _mm_sub_ps(r00,rswitch);
693             d                = _mm_max_ps(d,_mm_setzero_ps());
694             d2               = _mm_mul_ps(d,d);
695             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
696
697             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
698
699             /* Evaluate switch function */
700             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
701             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
702             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
703             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
704
705             fscal            = _mm_add_ps(felec,fvdw);
706
707             fscal            = _mm_and_ps(fscal,cutoff_mask);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm_mul_ps(fscal,dx00);
711             ty               = _mm_mul_ps(fscal,dy00);
712             tz               = _mm_mul_ps(fscal,dz00);
713
714             /* Update vectorial force */
715             fix0             = _mm_add_ps(fix0,tx);
716             fiy0             = _mm_add_ps(fiy0,ty);
717             fiz0             = _mm_add_ps(fiz0,tz);
718
719             fjptrA             = f+j_coord_offsetA;
720             fjptrB             = f+j_coord_offsetB;
721             fjptrC             = f+j_coord_offsetC;
722             fjptrD             = f+j_coord_offsetD;
723             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
724
725             }
726
727             /* Inner loop uses 77 flops */
728         }
729
730         if(jidx<j_index_end)
731         {
732
733             /* Get j neighbor index, and coordinate index */
734             jnrlistA         = jjnr[jidx];
735             jnrlistB         = jjnr[jidx+1];
736             jnrlistC         = jjnr[jidx+2];
737             jnrlistD         = jjnr[jidx+3];
738             /* Sign of each element will be negative for non-real atoms.
739              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
740              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
741              */
742             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
743             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
744             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
745             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
746             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
747             j_coord_offsetA  = DIM*jnrA;
748             j_coord_offsetB  = DIM*jnrB;
749             j_coord_offsetC  = DIM*jnrC;
750             j_coord_offsetD  = DIM*jnrD;
751
752             /* load j atom coordinates */
753             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
754                                               x+j_coord_offsetC,x+j_coord_offsetD,
755                                               &jx0,&jy0,&jz0);
756
757             /* Calculate displacement vector */
758             dx00             = _mm_sub_ps(ix0,jx0);
759             dy00             = _mm_sub_ps(iy0,jy0);
760             dz00             = _mm_sub_ps(iz0,jz0);
761
762             /* Calculate squared distance and things based on it */
763             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
764
765             rinv00           = sse41_invsqrt_f(rsq00);
766
767             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
768
769             /* Load parameters for j particles */
770             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
771                                                               charge+jnrC+0,charge+jnrD+0);
772             vdwjidx0A        = 2*vdwtype[jnrA+0];
773             vdwjidx0B        = 2*vdwtype[jnrB+0];
774             vdwjidx0C        = 2*vdwtype[jnrC+0];
775             vdwjidx0D        = 2*vdwtype[jnrD+0];
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             if (gmx_mm_any_lt(rsq00,rcutoff2))
782             {
783
784             r00              = _mm_mul_ps(rsq00,rinv00);
785             r00              = _mm_andnot_ps(dummy_mask,r00);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq00             = _mm_mul_ps(iq0,jq0);
789             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
790                                          vdwparam+vdwioffset0+vdwjidx0B,
791                                          vdwparam+vdwioffset0+vdwjidx0C,
792                                          vdwparam+vdwioffset0+vdwjidx0D,
793                                          &c6_00,&c12_00);
794
795             /* EWALD ELECTROSTATICS */
796
797             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
798             ewrt             = _mm_mul_ps(r00,ewtabscale);
799             ewitab           = _mm_cvttps_epi32(ewrt);
800             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
801             ewitab           = _mm_slli_epi32(ewitab,2);
802             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
803             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
804             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
805             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
806             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
807             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
808             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
809             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
810             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
811
812             /* LENNARD-JONES DISPERSION/REPULSION */
813
814             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
815             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
816             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
817             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
818             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
819
820             d                = _mm_sub_ps(r00,rswitch);
821             d                = _mm_max_ps(d,_mm_setzero_ps());
822             d2               = _mm_mul_ps(d,d);
823             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
824
825             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
826
827             /* Evaluate switch function */
828             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
829             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
830             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
831             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
832
833             fscal            = _mm_add_ps(felec,fvdw);
834
835             fscal            = _mm_and_ps(fscal,cutoff_mask);
836
837             fscal            = _mm_andnot_ps(dummy_mask,fscal);
838
839             /* Calculate temporary vectorial force */
840             tx               = _mm_mul_ps(fscal,dx00);
841             ty               = _mm_mul_ps(fscal,dy00);
842             tz               = _mm_mul_ps(fscal,dz00);
843
844             /* Update vectorial force */
845             fix0             = _mm_add_ps(fix0,tx);
846             fiy0             = _mm_add_ps(fiy0,ty);
847             fiz0             = _mm_add_ps(fiz0,tz);
848
849             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
850             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
851             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
852             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
853             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
854
855             }
856
857             /* Inner loop uses 78 flops */
858         }
859
860         /* End of innermost loop */
861
862         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
863                                               f+i_coord_offset,fshift+i_shift_offset);
864
865         /* Increment number of inner iterations */
866         inneriter                  += j_index_end - j_index_start;
867
868         /* Outer loop uses 7 flops */
869     }
870
871     /* Increment number of outer iterations */
872     outeriter        += nri;
873
874     /* Update outer/inner flops */
875
876     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
877 }