Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102
103     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* Setup water-specific parameters */
109     inr              = nlist->iinr[0];
110     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
111     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
112     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
113
114     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
115     rcutoff_scalar   = fr->rcoulomb;
116     rcutoff          = _mm_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
150                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
151
152         fix1             = _mm_setzero_ps();
153         fiy1             = _mm_setzero_ps();
154         fiz1             = _mm_setzero_ps();
155         fix2             = _mm_setzero_ps();
156         fiy2             = _mm_setzero_ps();
157         fiz2             = _mm_setzero_ps();
158         fix3             = _mm_setzero_ps();
159         fiy3             = _mm_setzero_ps();
160         fiz3             = _mm_setzero_ps();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               x+j_coord_offsetC,x+j_coord_offsetD,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx10             = _mm_sub_ps(ix1,jx0);
186             dy10             = _mm_sub_ps(iy1,jy0);
187             dz10             = _mm_sub_ps(iz1,jz0);
188             dx20             = _mm_sub_ps(ix2,jx0);
189             dy20             = _mm_sub_ps(iy2,jy0);
190             dz20             = _mm_sub_ps(iz2,jz0);
191             dx30             = _mm_sub_ps(ix3,jx0);
192             dy30             = _mm_sub_ps(iy3,jy0);
193             dz30             = _mm_sub_ps(iz3,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
198             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
199
200             rinv10           = gmx_mm_invsqrt_ps(rsq10);
201             rinv20           = gmx_mm_invsqrt_ps(rsq20);
202             rinv30           = gmx_mm_invsqrt_ps(rsq30);
203
204             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
205             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
206             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211
212             fjx0             = _mm_setzero_ps();
213             fjy0             = _mm_setzero_ps();
214             fjz0             = _mm_setzero_ps();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (gmx_mm_any_lt(rsq10,rcutoff2))
221             {
222
223             r10              = _mm_mul_ps(rsq10,rinv10);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq10             = _mm_mul_ps(iq1,jq0);
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231             ewrt             = _mm_mul_ps(r10,ewtabscale);
232             ewitab           = _mm_cvttps_epi32(ewrt);
233             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
234             ewitab           = _mm_slli_epi32(ewitab,2);
235             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
236             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
237             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
238             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
239             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
240             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
241             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
242             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
243             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
244
245             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velec            = _mm_and_ps(velec,cutoff_mask);
249             velecsum         = _mm_add_ps(velecsum,velec);
250
251             fscal            = felec;
252
253             fscal            = _mm_and_ps(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_ps(fscal,dx10);
257             ty               = _mm_mul_ps(fscal,dy10);
258             tz               = _mm_mul_ps(fscal,dz10);
259
260             /* Update vectorial force */
261             fix1             = _mm_add_ps(fix1,tx);
262             fiy1             = _mm_add_ps(fiy1,ty);
263             fiz1             = _mm_add_ps(fiz1,tz);
264
265             fjx0             = _mm_add_ps(fjx0,tx);
266             fjy0             = _mm_add_ps(fjy0,ty);
267             fjz0             = _mm_add_ps(fjz0,tz);
268
269             }
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm_any_lt(rsq20,rcutoff2))
276             {
277
278             r20              = _mm_mul_ps(rsq20,rinv20);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq20             = _mm_mul_ps(iq2,jq0);
282
283             /* EWALD ELECTROSTATICS */
284
285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
286             ewrt             = _mm_mul_ps(r20,ewtabscale);
287             ewitab           = _mm_cvttps_epi32(ewrt);
288             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
289             ewitab           = _mm_slli_epi32(ewitab,2);
290             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
291             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
292             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
293             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
294             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
295             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
296             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
297             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
298             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
299
300             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velec            = _mm_and_ps(velec,cutoff_mask);
304             velecsum         = _mm_add_ps(velecsum,velec);
305
306             fscal            = felec;
307
308             fscal            = _mm_and_ps(fscal,cutoff_mask);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_ps(fscal,dx20);
312             ty               = _mm_mul_ps(fscal,dy20);
313             tz               = _mm_mul_ps(fscal,dz20);
314
315             /* Update vectorial force */
316             fix2             = _mm_add_ps(fix2,tx);
317             fiy2             = _mm_add_ps(fiy2,ty);
318             fiz2             = _mm_add_ps(fiz2,tz);
319
320             fjx0             = _mm_add_ps(fjx0,tx);
321             fjy0             = _mm_add_ps(fjy0,ty);
322             fjz0             = _mm_add_ps(fjz0,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq30,rcutoff2))
331             {
332
333             r30              = _mm_mul_ps(rsq30,rinv30);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq30             = _mm_mul_ps(iq3,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_ps(r30,ewtabscale);
342             ewitab           = _mm_cvttps_epi32(ewrt);
343             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
349             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
351             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
352             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
353             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
354
355             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_ps(velec,cutoff_mask);
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_ps(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx30);
367             ty               = _mm_mul_ps(fscal,dy30);
368             tz               = _mm_mul_ps(fscal,dz30);
369
370             /* Update vectorial force */
371             fix3             = _mm_add_ps(fix3,tx);
372             fiy3             = _mm_add_ps(fiy3,ty);
373             fiz3             = _mm_add_ps(fiz3,tz);
374
375             fjx0             = _mm_add_ps(fjx0,tx);
376             fjy0             = _mm_add_ps(fjy0,ty);
377             fjz0             = _mm_add_ps(fjz0,tz);
378
379             }
380
381             fjptrA             = f+j_coord_offsetA;
382             fjptrB             = f+j_coord_offsetB;
383             fjptrC             = f+j_coord_offsetC;
384             fjptrD             = f+j_coord_offsetD;
385
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
387
388             /* Inner loop uses 138 flops */
389         }
390
391         if(jidx<j_index_end)
392         {
393
394             /* Get j neighbor index, and coordinate index */
395             jnrlistA         = jjnr[jidx];
396             jnrlistB         = jjnr[jidx+1];
397             jnrlistC         = jjnr[jidx+2];
398             jnrlistD         = jjnr[jidx+3];
399             /* Sign of each element will be negative for non-real atoms.
400              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
402              */
403             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
404             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
405             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
406             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
407             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
408             j_coord_offsetA  = DIM*jnrA;
409             j_coord_offsetB  = DIM*jnrB;
410             j_coord_offsetC  = DIM*jnrC;
411             j_coord_offsetD  = DIM*jnrD;
412
413             /* load j atom coordinates */
414             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
415                                               x+j_coord_offsetC,x+j_coord_offsetD,
416                                               &jx0,&jy0,&jz0);
417
418             /* Calculate displacement vector */
419             dx10             = _mm_sub_ps(ix1,jx0);
420             dy10             = _mm_sub_ps(iy1,jy0);
421             dz10             = _mm_sub_ps(iz1,jz0);
422             dx20             = _mm_sub_ps(ix2,jx0);
423             dy20             = _mm_sub_ps(iy2,jy0);
424             dz20             = _mm_sub_ps(iz2,jz0);
425             dx30             = _mm_sub_ps(ix3,jx0);
426             dy30             = _mm_sub_ps(iy3,jy0);
427             dz30             = _mm_sub_ps(iz3,jz0);
428
429             /* Calculate squared distance and things based on it */
430             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
431             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
432             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
433
434             rinv10           = gmx_mm_invsqrt_ps(rsq10);
435             rinv20           = gmx_mm_invsqrt_ps(rsq20);
436             rinv30           = gmx_mm_invsqrt_ps(rsq30);
437
438             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
439             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
440             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444                                                               charge+jnrC+0,charge+jnrD+0);
445
446             fjx0             = _mm_setzero_ps();
447             fjy0             = _mm_setzero_ps();
448             fjz0             = _mm_setzero_ps();
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             if (gmx_mm_any_lt(rsq10,rcutoff2))
455             {
456
457             r10              = _mm_mul_ps(rsq10,rinv10);
458             r10              = _mm_andnot_ps(dummy_mask,r10);
459
460             /* Compute parameters for interactions between i and j atoms */
461             qq10             = _mm_mul_ps(iq1,jq0);
462
463             /* EWALD ELECTROSTATICS */
464
465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
466             ewrt             = _mm_mul_ps(r10,ewtabscale);
467             ewitab           = _mm_cvttps_epi32(ewrt);
468             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
469             ewitab           = _mm_slli_epi32(ewitab,2);
470             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
471             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
472             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
473             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
474             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
475             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
476             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
477             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
478             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
479
480             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm_and_ps(velec,cutoff_mask);
484             velec            = _mm_andnot_ps(dummy_mask,velec);
485             velecsum         = _mm_add_ps(velecsum,velec);
486
487             fscal            = felec;
488
489             fscal            = _mm_and_ps(fscal,cutoff_mask);
490
491             fscal            = _mm_andnot_ps(dummy_mask,fscal);
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm_mul_ps(fscal,dx10);
495             ty               = _mm_mul_ps(fscal,dy10);
496             tz               = _mm_mul_ps(fscal,dz10);
497
498             /* Update vectorial force */
499             fix1             = _mm_add_ps(fix1,tx);
500             fiy1             = _mm_add_ps(fiy1,ty);
501             fiz1             = _mm_add_ps(fiz1,tz);
502
503             fjx0             = _mm_add_ps(fjx0,tx);
504             fjy0             = _mm_add_ps(fjy0,ty);
505             fjz0             = _mm_add_ps(fjz0,tz);
506
507             }
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             if (gmx_mm_any_lt(rsq20,rcutoff2))
514             {
515
516             r20              = _mm_mul_ps(rsq20,rinv20);
517             r20              = _mm_andnot_ps(dummy_mask,r20);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq20             = _mm_mul_ps(iq2,jq0);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm_mul_ps(r20,ewtabscale);
526             ewitab           = _mm_cvttps_epi32(ewrt);
527             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
531             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
532             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
533             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
534             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
535             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
536             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
537             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
538
539             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm_and_ps(velec,cutoff_mask);
543             velec            = _mm_andnot_ps(dummy_mask,velec);
544             velecsum         = _mm_add_ps(velecsum,velec);
545
546             fscal            = felec;
547
548             fscal            = _mm_and_ps(fscal,cutoff_mask);
549
550             fscal            = _mm_andnot_ps(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_ps(fscal,dx20);
554             ty               = _mm_mul_ps(fscal,dy20);
555             tz               = _mm_mul_ps(fscal,dz20);
556
557             /* Update vectorial force */
558             fix2             = _mm_add_ps(fix2,tx);
559             fiy2             = _mm_add_ps(fiy2,ty);
560             fiz2             = _mm_add_ps(fiz2,tz);
561
562             fjx0             = _mm_add_ps(fjx0,tx);
563             fjy0             = _mm_add_ps(fjy0,ty);
564             fjz0             = _mm_add_ps(fjz0,tz);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq30,rcutoff2))
573             {
574
575             r30              = _mm_mul_ps(rsq30,rinv30);
576             r30              = _mm_andnot_ps(dummy_mask,r30);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq30             = _mm_mul_ps(iq3,jq0);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _mm_mul_ps(r30,ewtabscale);
585             ewitab           = _mm_cvttps_epi32(ewrt);
586             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
587             ewitab           = _mm_slli_epi32(ewitab,2);
588             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
589             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
590             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
591             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
592             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
593             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
594             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
595             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
596             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
597
598             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_and_ps(velec,cutoff_mask);
602             velec            = _mm_andnot_ps(dummy_mask,velec);
603             velecsum         = _mm_add_ps(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_and_ps(fscal,cutoff_mask);
608
609             fscal            = _mm_andnot_ps(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_ps(fscal,dx30);
613             ty               = _mm_mul_ps(fscal,dy30);
614             tz               = _mm_mul_ps(fscal,dz30);
615
616             /* Update vectorial force */
617             fix3             = _mm_add_ps(fix3,tx);
618             fiy3             = _mm_add_ps(fiy3,ty);
619             fiz3             = _mm_add_ps(fiz3,tz);
620
621             fjx0             = _mm_add_ps(fjx0,tx);
622             fjy0             = _mm_add_ps(fjy0,ty);
623             fjz0             = _mm_add_ps(fjz0,tz);
624
625             }
626
627             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
628             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
629             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
630             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
631
632             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
633
634             /* Inner loop uses 141 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
640                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
641
642         ggid                        = gid[iidx];
643         /* Update potential energies */
644         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 19 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*141);
658 }
659 /*
660  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_single
661  * Electrostatics interaction: Ewald
662  * VdW interaction:            None
663  * Geometry:                   Water4-Particle
664  * Calculate force/pot:        Force
665  */
666 void
667 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_single
668                     (t_nblist * gmx_restrict                nlist,
669                      rvec * gmx_restrict                    xx,
670                      rvec * gmx_restrict                    ff,
671                      t_forcerec * gmx_restrict              fr,
672                      t_mdatoms * gmx_restrict               mdatoms,
673                      nb_kernel_data_t * gmx_restrict        kernel_data,
674                      t_nrnb * gmx_restrict                  nrnb)
675 {
676     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
677      * just 0 for non-waters.
678      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
679      * jnr indices corresponding to data put in the four positions in the SIMD register.
680      */
681     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
682     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683     int              jnrA,jnrB,jnrC,jnrD;
684     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
685     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
686     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
687     real             rcutoff_scalar;
688     real             *shiftvec,*fshift,*x,*f;
689     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
690     real             scratch[4*DIM];
691     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset1;
693     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694     int              vdwioffset2;
695     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696     int              vdwioffset3;
697     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
698     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
699     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
703     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
704     real             *charge;
705     __m128i          ewitab;
706     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
707     real             *ewtab;
708     __m128           dummy_mask,cutoff_mask;
709     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
710     __m128           one     = _mm_set1_ps(1.0);
711     __m128           two     = _mm_set1_ps(2.0);
712     x                = xx[0];
713     f                = ff[0];
714
715     nri              = nlist->nri;
716     iinr             = nlist->iinr;
717     jindex           = nlist->jindex;
718     jjnr             = nlist->jjnr;
719     shiftidx         = nlist->shift;
720     gid              = nlist->gid;
721     shiftvec         = fr->shift_vec[0];
722     fshift           = fr->fshift[0];
723     facel            = _mm_set1_ps(fr->epsfac);
724     charge           = mdatoms->chargeA;
725
726     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
727     ewtab            = fr->ic->tabq_coul_F;
728     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
729     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
730
731     /* Setup water-specific parameters */
732     inr              = nlist->iinr[0];
733     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
734     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
735     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
736
737     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
738     rcutoff_scalar   = fr->rcoulomb;
739     rcutoff          = _mm_set1_ps(rcutoff_scalar);
740     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
741
742     /* Avoid stupid compiler warnings */
743     jnrA = jnrB = jnrC = jnrD = 0;
744     j_coord_offsetA = 0;
745     j_coord_offsetB = 0;
746     j_coord_offsetC = 0;
747     j_coord_offsetD = 0;
748
749     outeriter        = 0;
750     inneriter        = 0;
751
752     for(iidx=0;iidx<4*DIM;iidx++)
753     {
754         scratch[iidx] = 0.0;
755     }
756
757     /* Start outer loop over neighborlists */
758     for(iidx=0; iidx<nri; iidx++)
759     {
760         /* Load shift vector for this list */
761         i_shift_offset   = DIM*shiftidx[iidx];
762
763         /* Load limits for loop over neighbors */
764         j_index_start    = jindex[iidx];
765         j_index_end      = jindex[iidx+1];
766
767         /* Get outer coordinate index */
768         inr              = iinr[iidx];
769         i_coord_offset   = DIM*inr;
770
771         /* Load i particle coords and add shift vector */
772         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
773                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
774
775         fix1             = _mm_setzero_ps();
776         fiy1             = _mm_setzero_ps();
777         fiz1             = _mm_setzero_ps();
778         fix2             = _mm_setzero_ps();
779         fiy2             = _mm_setzero_ps();
780         fiz2             = _mm_setzero_ps();
781         fix3             = _mm_setzero_ps();
782         fiy3             = _mm_setzero_ps();
783         fiz3             = _mm_setzero_ps();
784
785         /* Start inner kernel loop */
786         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
787         {
788
789             /* Get j neighbor index, and coordinate index */
790             jnrA             = jjnr[jidx];
791             jnrB             = jjnr[jidx+1];
792             jnrC             = jjnr[jidx+2];
793             jnrD             = jjnr[jidx+3];
794             j_coord_offsetA  = DIM*jnrA;
795             j_coord_offsetB  = DIM*jnrB;
796             j_coord_offsetC  = DIM*jnrC;
797             j_coord_offsetD  = DIM*jnrD;
798
799             /* load j atom coordinates */
800             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
801                                               x+j_coord_offsetC,x+j_coord_offsetD,
802                                               &jx0,&jy0,&jz0);
803
804             /* Calculate displacement vector */
805             dx10             = _mm_sub_ps(ix1,jx0);
806             dy10             = _mm_sub_ps(iy1,jy0);
807             dz10             = _mm_sub_ps(iz1,jz0);
808             dx20             = _mm_sub_ps(ix2,jx0);
809             dy20             = _mm_sub_ps(iy2,jy0);
810             dz20             = _mm_sub_ps(iz2,jz0);
811             dx30             = _mm_sub_ps(ix3,jx0);
812             dy30             = _mm_sub_ps(iy3,jy0);
813             dz30             = _mm_sub_ps(iz3,jz0);
814
815             /* Calculate squared distance and things based on it */
816             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
817             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
818             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
819
820             rinv10           = gmx_mm_invsqrt_ps(rsq10);
821             rinv20           = gmx_mm_invsqrt_ps(rsq20);
822             rinv30           = gmx_mm_invsqrt_ps(rsq30);
823
824             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
825             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
826             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
827
828             /* Load parameters for j particles */
829             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
830                                                               charge+jnrC+0,charge+jnrD+0);
831
832             fjx0             = _mm_setzero_ps();
833             fjy0             = _mm_setzero_ps();
834             fjz0             = _mm_setzero_ps();
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             if (gmx_mm_any_lt(rsq10,rcutoff2))
841             {
842
843             r10              = _mm_mul_ps(rsq10,rinv10);
844
845             /* Compute parameters for interactions between i and j atoms */
846             qq10             = _mm_mul_ps(iq1,jq0);
847
848             /* EWALD ELECTROSTATICS */
849
850             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
851             ewrt             = _mm_mul_ps(r10,ewtabscale);
852             ewitab           = _mm_cvttps_epi32(ewrt);
853             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
854             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
855                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
856                                          &ewtabF,&ewtabFn);
857             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
858             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
859
860             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
861
862             fscal            = felec;
863
864             fscal            = _mm_and_ps(fscal,cutoff_mask);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm_mul_ps(fscal,dx10);
868             ty               = _mm_mul_ps(fscal,dy10);
869             tz               = _mm_mul_ps(fscal,dz10);
870
871             /* Update vectorial force */
872             fix1             = _mm_add_ps(fix1,tx);
873             fiy1             = _mm_add_ps(fiy1,ty);
874             fiz1             = _mm_add_ps(fiz1,tz);
875
876             fjx0             = _mm_add_ps(fjx0,tx);
877             fjy0             = _mm_add_ps(fjy0,ty);
878             fjz0             = _mm_add_ps(fjz0,tz);
879
880             }
881
882             /**************************
883              * CALCULATE INTERACTIONS *
884              **************************/
885
886             if (gmx_mm_any_lt(rsq20,rcutoff2))
887             {
888
889             r20              = _mm_mul_ps(rsq20,rinv20);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq20             = _mm_mul_ps(iq2,jq0);
893
894             /* EWALD ELECTROSTATICS */
895
896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
897             ewrt             = _mm_mul_ps(r20,ewtabscale);
898             ewitab           = _mm_cvttps_epi32(ewrt);
899             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
900             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
901                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
902                                          &ewtabF,&ewtabFn);
903             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
904             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
905
906             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
907
908             fscal            = felec;
909
910             fscal            = _mm_and_ps(fscal,cutoff_mask);
911
912             /* Calculate temporary vectorial force */
913             tx               = _mm_mul_ps(fscal,dx20);
914             ty               = _mm_mul_ps(fscal,dy20);
915             tz               = _mm_mul_ps(fscal,dz20);
916
917             /* Update vectorial force */
918             fix2             = _mm_add_ps(fix2,tx);
919             fiy2             = _mm_add_ps(fiy2,ty);
920             fiz2             = _mm_add_ps(fiz2,tz);
921
922             fjx0             = _mm_add_ps(fjx0,tx);
923             fjy0             = _mm_add_ps(fjy0,ty);
924             fjz0             = _mm_add_ps(fjz0,tz);
925
926             }
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             if (gmx_mm_any_lt(rsq30,rcutoff2))
933             {
934
935             r30              = _mm_mul_ps(rsq30,rinv30);
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq30             = _mm_mul_ps(iq3,jq0);
939
940             /* EWALD ELECTROSTATICS */
941
942             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
943             ewrt             = _mm_mul_ps(r30,ewtabscale);
944             ewitab           = _mm_cvttps_epi32(ewrt);
945             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
946             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
947                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
948                                          &ewtabF,&ewtabFn);
949             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
950             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
951
952             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
953
954             fscal            = felec;
955
956             fscal            = _mm_and_ps(fscal,cutoff_mask);
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_ps(fscal,dx30);
960             ty               = _mm_mul_ps(fscal,dy30);
961             tz               = _mm_mul_ps(fscal,dz30);
962
963             /* Update vectorial force */
964             fix3             = _mm_add_ps(fix3,tx);
965             fiy3             = _mm_add_ps(fiy3,ty);
966             fiz3             = _mm_add_ps(fiz3,tz);
967
968             fjx0             = _mm_add_ps(fjx0,tx);
969             fjy0             = _mm_add_ps(fjy0,ty);
970             fjz0             = _mm_add_ps(fjz0,tz);
971
972             }
973
974             fjptrA             = f+j_coord_offsetA;
975             fjptrB             = f+j_coord_offsetB;
976             fjptrC             = f+j_coord_offsetC;
977             fjptrD             = f+j_coord_offsetD;
978
979             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
980
981             /* Inner loop uses 117 flops */
982         }
983
984         if(jidx<j_index_end)
985         {
986
987             /* Get j neighbor index, and coordinate index */
988             jnrlistA         = jjnr[jidx];
989             jnrlistB         = jjnr[jidx+1];
990             jnrlistC         = jjnr[jidx+2];
991             jnrlistD         = jjnr[jidx+3];
992             /* Sign of each element will be negative for non-real atoms.
993              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
994              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
995              */
996             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
997             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
998             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
999             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1000             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1001             j_coord_offsetA  = DIM*jnrA;
1002             j_coord_offsetB  = DIM*jnrB;
1003             j_coord_offsetC  = DIM*jnrC;
1004             j_coord_offsetD  = DIM*jnrD;
1005
1006             /* load j atom coordinates */
1007             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1008                                               x+j_coord_offsetC,x+j_coord_offsetD,
1009                                               &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx10             = _mm_sub_ps(ix1,jx0);
1013             dy10             = _mm_sub_ps(iy1,jy0);
1014             dz10             = _mm_sub_ps(iz1,jz0);
1015             dx20             = _mm_sub_ps(ix2,jx0);
1016             dy20             = _mm_sub_ps(iy2,jy0);
1017             dz20             = _mm_sub_ps(iz2,jz0);
1018             dx30             = _mm_sub_ps(ix3,jx0);
1019             dy30             = _mm_sub_ps(iy3,jy0);
1020             dz30             = _mm_sub_ps(iz3,jz0);
1021
1022             /* Calculate squared distance and things based on it */
1023             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1024             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1025             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1026
1027             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1028             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1029             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1030
1031             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1032             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1033             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1034
1035             /* Load parameters for j particles */
1036             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1037                                                               charge+jnrC+0,charge+jnrD+0);
1038
1039             fjx0             = _mm_setzero_ps();
1040             fjy0             = _mm_setzero_ps();
1041             fjz0             = _mm_setzero_ps();
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             if (gmx_mm_any_lt(rsq10,rcutoff2))
1048             {
1049
1050             r10              = _mm_mul_ps(rsq10,rinv10);
1051             r10              = _mm_andnot_ps(dummy_mask,r10);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq10             = _mm_mul_ps(iq1,jq0);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm_mul_ps(r10,ewtabscale);
1060             ewitab           = _mm_cvttps_epi32(ewrt);
1061             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1062             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1063                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1064                                          &ewtabF,&ewtabFn);
1065             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1066             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1067
1068             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1069
1070             fscal            = felec;
1071
1072             fscal            = _mm_and_ps(fscal,cutoff_mask);
1073
1074             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm_mul_ps(fscal,dx10);
1078             ty               = _mm_mul_ps(fscal,dy10);
1079             tz               = _mm_mul_ps(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm_add_ps(fix1,tx);
1083             fiy1             = _mm_add_ps(fiy1,ty);
1084             fiz1             = _mm_add_ps(fiz1,tz);
1085
1086             fjx0             = _mm_add_ps(fjx0,tx);
1087             fjy0             = _mm_add_ps(fjy0,ty);
1088             fjz0             = _mm_add_ps(fjz0,tz);
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq20,rcutoff2))
1097             {
1098
1099             r20              = _mm_mul_ps(rsq20,rinv20);
1100             r20              = _mm_andnot_ps(dummy_mask,r20);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq20             = _mm_mul_ps(iq2,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm_mul_ps(r20,ewtabscale);
1109             ewitab           = _mm_cvttps_epi32(ewrt);
1110             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1111             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1112                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1113                                          &ewtabF,&ewtabFn);
1114             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1115             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1116
1117             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm_and_ps(fscal,cutoff_mask);
1122
1123             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm_mul_ps(fscal,dx20);
1127             ty               = _mm_mul_ps(fscal,dy20);
1128             tz               = _mm_mul_ps(fscal,dz20);
1129
1130             /* Update vectorial force */
1131             fix2             = _mm_add_ps(fix2,tx);
1132             fiy2             = _mm_add_ps(fiy2,ty);
1133             fiz2             = _mm_add_ps(fiz2,tz);
1134
1135             fjx0             = _mm_add_ps(fjx0,tx);
1136             fjy0             = _mm_add_ps(fjy0,ty);
1137             fjz0             = _mm_add_ps(fjz0,tz);
1138
1139             }
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             if (gmx_mm_any_lt(rsq30,rcutoff2))
1146             {
1147
1148             r30              = _mm_mul_ps(rsq30,rinv30);
1149             r30              = _mm_andnot_ps(dummy_mask,r30);
1150
1151             /* Compute parameters for interactions between i and j atoms */
1152             qq30             = _mm_mul_ps(iq3,jq0);
1153
1154             /* EWALD ELECTROSTATICS */
1155
1156             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1157             ewrt             = _mm_mul_ps(r30,ewtabscale);
1158             ewitab           = _mm_cvttps_epi32(ewrt);
1159             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1160             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1161                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1162                                          &ewtabF,&ewtabFn);
1163             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1164             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1165
1166             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1167
1168             fscal            = felec;
1169
1170             fscal            = _mm_and_ps(fscal,cutoff_mask);
1171
1172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm_mul_ps(fscal,dx30);
1176             ty               = _mm_mul_ps(fscal,dy30);
1177             tz               = _mm_mul_ps(fscal,dz30);
1178
1179             /* Update vectorial force */
1180             fix3             = _mm_add_ps(fix3,tx);
1181             fiy3             = _mm_add_ps(fiy3,ty);
1182             fiz3             = _mm_add_ps(fiz3,tz);
1183
1184             fjx0             = _mm_add_ps(fjx0,tx);
1185             fjy0             = _mm_add_ps(fjy0,ty);
1186             fjz0             = _mm_add_ps(fjz0,tz);
1187
1188             }
1189
1190             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1191             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1192             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1193             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1194
1195             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1196
1197             /* Inner loop uses 120 flops */
1198         }
1199
1200         /* End of innermost loop */
1201
1202         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1203                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1204
1205         /* Increment number of inner iterations */
1206         inneriter                  += j_index_end - j_index_start;
1207
1208         /* Outer loop uses 18 flops */
1209     }
1210
1211     /* Increment number of outer iterations */
1212     outeriter        += nri;
1213
1214     /* Update outer/inner flops */
1215
1216     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1217 }