Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          ewitab;
77     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
78     real             *ewtab;
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96
97     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
98     ewtab            = fr->ic->tabq_coul_FDV0;
99     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
100     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
101
102     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
103     rcutoff_scalar   = fr->rcoulomb;
104     rcutoff          = _mm_set1_ps(rcutoff_scalar);
105     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = jnrC = jnrD = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111     j_coord_offsetC = 0;
112     j_coord_offsetD = 0;
113
114     outeriter        = 0;
115     inneriter        = 0;
116
117     for(iidx=0;iidx<4*DIM;iidx++)
118     {
119         scratch[iidx] = 0.0;
120     }
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_ps();
140         fiy0             = _mm_setzero_ps();
141         fiz0             = _mm_setzero_ps();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_ps();
148
149         /* Start inner kernel loop */
150         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
151         {
152
153             /* Get j neighbor index, and coordinate index */
154             jnrA             = jjnr[jidx];
155             jnrB             = jjnr[jidx+1];
156             jnrC             = jjnr[jidx+2];
157             jnrD             = jjnr[jidx+3];
158             j_coord_offsetA  = DIM*jnrA;
159             j_coord_offsetB  = DIM*jnrB;
160             j_coord_offsetC  = DIM*jnrC;
161             j_coord_offsetD  = DIM*jnrD;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               x+j_coord_offsetC,x+j_coord_offsetD,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_ps(ix0,jx0);
170             dy00             = _mm_sub_ps(iy0,jy0);
171             dz00             = _mm_sub_ps(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_ps(rsq00);
177
178             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
182                                                               charge+jnrC+0,charge+jnrD+0);
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             if (gmx_mm_any_lt(rsq00,rcutoff2))
189             {
190
191             r00              = _mm_mul_ps(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_ps(iq0,jq0);
195
196             /* EWALD ELECTROSTATICS */
197
198             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
199             ewrt             = _mm_mul_ps(r00,ewtabscale);
200             ewitab           = _mm_cvttps_epi32(ewrt);
201             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
202             ewitab           = _mm_slli_epi32(ewitab,2);
203             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
204             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
205             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
206             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
207             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
208             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
209             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
210             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
211             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
212
213             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
214
215             /* Update potential sum for this i atom from the interaction with this j atom. */
216             velec            = _mm_and_ps(velec,cutoff_mask);
217             velecsum         = _mm_add_ps(velecsum,velec);
218
219             fscal            = felec;
220
221             fscal            = _mm_and_ps(fscal,cutoff_mask);
222
223             /* Calculate temporary vectorial force */
224             tx               = _mm_mul_ps(fscal,dx00);
225             ty               = _mm_mul_ps(fscal,dy00);
226             tz               = _mm_mul_ps(fscal,dz00);
227
228             /* Update vectorial force */
229             fix0             = _mm_add_ps(fix0,tx);
230             fiy0             = _mm_add_ps(fiy0,ty);
231             fiz0             = _mm_add_ps(fiz0,tz);
232
233             fjptrA             = f+j_coord_offsetA;
234             fjptrB             = f+j_coord_offsetB;
235             fjptrC             = f+j_coord_offsetC;
236             fjptrD             = f+j_coord_offsetD;
237             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
238
239             }
240
241             /* Inner loop uses 46 flops */
242         }
243
244         if(jidx<j_index_end)
245         {
246
247             /* Get j neighbor index, and coordinate index */
248             jnrlistA         = jjnr[jidx];
249             jnrlistB         = jjnr[jidx+1];
250             jnrlistC         = jjnr[jidx+2];
251             jnrlistD         = jjnr[jidx+3];
252             /* Sign of each element will be negative for non-real atoms.
253              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
254              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
255              */
256             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
257             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
258             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
259             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
260             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
261             j_coord_offsetA  = DIM*jnrA;
262             j_coord_offsetB  = DIM*jnrB;
263             j_coord_offsetC  = DIM*jnrC;
264             j_coord_offsetD  = DIM*jnrD;
265
266             /* load j atom coordinates */
267             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
268                                               x+j_coord_offsetC,x+j_coord_offsetD,
269                                               &jx0,&jy0,&jz0);
270
271             /* Calculate displacement vector */
272             dx00             = _mm_sub_ps(ix0,jx0);
273             dy00             = _mm_sub_ps(iy0,jy0);
274             dz00             = _mm_sub_ps(iz0,jz0);
275
276             /* Calculate squared distance and things based on it */
277             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
278
279             rinv00           = gmx_mm_invsqrt_ps(rsq00);
280
281             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
282
283             /* Load parameters for j particles */
284             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
285                                                               charge+jnrC+0,charge+jnrD+0);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_mm_any_lt(rsq00,rcutoff2))
292             {
293
294             r00              = _mm_mul_ps(rsq00,rinv00);
295             r00              = _mm_andnot_ps(dummy_mask,r00);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq00             = _mm_mul_ps(iq0,jq0);
299
300             /* EWALD ELECTROSTATICS */
301
302             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303             ewrt             = _mm_mul_ps(r00,ewtabscale);
304             ewitab           = _mm_cvttps_epi32(ewrt);
305             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
306             ewitab           = _mm_slli_epi32(ewitab,2);
307             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
308             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
309             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
310             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
311             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
312             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
313             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
314             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
315             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
316
317             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_and_ps(velec,cutoff_mask);
321             velec            = _mm_andnot_ps(dummy_mask,velec);
322             velecsum         = _mm_add_ps(velecsum,velec);
323
324             fscal            = felec;
325
326             fscal            = _mm_and_ps(fscal,cutoff_mask);
327
328             fscal            = _mm_andnot_ps(dummy_mask,fscal);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx00);
332             ty               = _mm_mul_ps(fscal,dy00);
333             tz               = _mm_mul_ps(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm_add_ps(fix0,tx);
337             fiy0             = _mm_add_ps(fiy0,ty);
338             fiz0             = _mm_add_ps(fiz0,tz);
339
340             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
341             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
342             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
343             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
345
346             }
347
348             /* Inner loop uses 47 flops */
349         }
350
351         /* End of innermost loop */
352
353         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
354                                               f+i_coord_offset,fshift+i_shift_offset);
355
356         ggid                        = gid[iidx];
357         /* Update potential energies */
358         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
359
360         /* Increment number of inner iterations */
361         inneriter                  += j_index_end - j_index_start;
362
363         /* Outer loop uses 8 flops */
364     }
365
366     /* Increment number of outer iterations */
367     outeriter        += nri;
368
369     /* Update outer/inner flops */
370
371     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*47);
372 }
373 /*
374  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_single
375  * Electrostatics interaction: Ewald
376  * VdW interaction:            None
377  * Geometry:                   Particle-Particle
378  * Calculate force/pot:        Force
379  */
380 void
381 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_single
382                     (t_nblist * gmx_restrict                nlist,
383                      rvec * gmx_restrict                    xx,
384                      rvec * gmx_restrict                    ff,
385                      t_forcerec * gmx_restrict              fr,
386                      t_mdatoms * gmx_restrict               mdatoms,
387                      nb_kernel_data_t * gmx_restrict        kernel_data,
388                      t_nrnb * gmx_restrict                  nrnb)
389 {
390     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
391      * just 0 for non-waters.
392      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
393      * jnr indices corresponding to data put in the four positions in the SIMD register.
394      */
395     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
396     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
397     int              jnrA,jnrB,jnrC,jnrD;
398     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
399     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
404     real             scratch[4*DIM];
405     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     int              vdwioffset0;
407     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
409     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
412     real             *charge;
413     __m128i          ewitab;
414     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
415     real             *ewtab;
416     __m128           dummy_mask,cutoff_mask;
417     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
418     __m128           one     = _mm_set1_ps(1.0);
419     __m128           two     = _mm_set1_ps(2.0);
420     x                = xx[0];
421     f                = ff[0];
422
423     nri              = nlist->nri;
424     iinr             = nlist->iinr;
425     jindex           = nlist->jindex;
426     jjnr             = nlist->jjnr;
427     shiftidx         = nlist->shift;
428     gid              = nlist->gid;
429     shiftvec         = fr->shift_vec[0];
430     fshift           = fr->fshift[0];
431     facel            = _mm_set1_ps(fr->epsfac);
432     charge           = mdatoms->chargeA;
433
434     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
435     ewtab            = fr->ic->tabq_coul_F;
436     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
437     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
438
439     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
440     rcutoff_scalar   = fr->rcoulomb;
441     rcutoff          = _mm_set1_ps(rcutoff_scalar);
442     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
443
444     /* Avoid stupid compiler warnings */
445     jnrA = jnrB = jnrC = jnrD = 0;
446     j_coord_offsetA = 0;
447     j_coord_offsetB = 0;
448     j_coord_offsetC = 0;
449     j_coord_offsetD = 0;
450
451     outeriter        = 0;
452     inneriter        = 0;
453
454     for(iidx=0;iidx<4*DIM;iidx++)
455     {
456         scratch[iidx] = 0.0;
457     }
458
459     /* Start outer loop over neighborlists */
460     for(iidx=0; iidx<nri; iidx++)
461     {
462         /* Load shift vector for this list */
463         i_shift_offset   = DIM*shiftidx[iidx];
464
465         /* Load limits for loop over neighbors */
466         j_index_start    = jindex[iidx];
467         j_index_end      = jindex[iidx+1];
468
469         /* Get outer coordinate index */
470         inr              = iinr[iidx];
471         i_coord_offset   = DIM*inr;
472
473         /* Load i particle coords and add shift vector */
474         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
475
476         fix0             = _mm_setzero_ps();
477         fiy0             = _mm_setzero_ps();
478         fiz0             = _mm_setzero_ps();
479
480         /* Load parameters for i particles */
481         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
482
483         /* Start inner kernel loop */
484         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
485         {
486
487             /* Get j neighbor index, and coordinate index */
488             jnrA             = jjnr[jidx];
489             jnrB             = jjnr[jidx+1];
490             jnrC             = jjnr[jidx+2];
491             jnrD             = jjnr[jidx+3];
492             j_coord_offsetA  = DIM*jnrA;
493             j_coord_offsetB  = DIM*jnrB;
494             j_coord_offsetC  = DIM*jnrC;
495             j_coord_offsetD  = DIM*jnrD;
496
497             /* load j atom coordinates */
498             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
499                                               x+j_coord_offsetC,x+j_coord_offsetD,
500                                               &jx0,&jy0,&jz0);
501
502             /* Calculate displacement vector */
503             dx00             = _mm_sub_ps(ix0,jx0);
504             dy00             = _mm_sub_ps(iy0,jy0);
505             dz00             = _mm_sub_ps(iz0,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
509
510             rinv00           = gmx_mm_invsqrt_ps(rsq00);
511
512             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
513
514             /* Load parameters for j particles */
515             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
516                                                               charge+jnrC+0,charge+jnrD+0);
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             if (gmx_mm_any_lt(rsq00,rcutoff2))
523             {
524
525             r00              = _mm_mul_ps(rsq00,rinv00);
526
527             /* Compute parameters for interactions between i and j atoms */
528             qq00             = _mm_mul_ps(iq0,jq0);
529
530             /* EWALD ELECTROSTATICS */
531
532             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
533             ewrt             = _mm_mul_ps(r00,ewtabscale);
534             ewitab           = _mm_cvttps_epi32(ewrt);
535             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
536             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
537                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
538                                          &ewtabF,&ewtabFn);
539             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
540             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
541
542             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
543
544             fscal            = felec;
545
546             fscal            = _mm_and_ps(fscal,cutoff_mask);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm_mul_ps(fscal,dx00);
550             ty               = _mm_mul_ps(fscal,dy00);
551             tz               = _mm_mul_ps(fscal,dz00);
552
553             /* Update vectorial force */
554             fix0             = _mm_add_ps(fix0,tx);
555             fiy0             = _mm_add_ps(fiy0,ty);
556             fiz0             = _mm_add_ps(fiz0,tz);
557
558             fjptrA             = f+j_coord_offsetA;
559             fjptrB             = f+j_coord_offsetB;
560             fjptrC             = f+j_coord_offsetC;
561             fjptrD             = f+j_coord_offsetD;
562             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
563
564             }
565
566             /* Inner loop uses 39 flops */
567         }
568
569         if(jidx<j_index_end)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrlistA         = jjnr[jidx];
574             jnrlistB         = jjnr[jidx+1];
575             jnrlistC         = jjnr[jidx+2];
576             jnrlistD         = jjnr[jidx+3];
577             /* Sign of each element will be negative for non-real atoms.
578              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
579              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
580              */
581             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
582             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
583             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
584             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
585             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
586             j_coord_offsetA  = DIM*jnrA;
587             j_coord_offsetB  = DIM*jnrB;
588             j_coord_offsetC  = DIM*jnrC;
589             j_coord_offsetD  = DIM*jnrD;
590
591             /* load j atom coordinates */
592             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
593                                               x+j_coord_offsetC,x+j_coord_offsetD,
594                                               &jx0,&jy0,&jz0);
595
596             /* Calculate displacement vector */
597             dx00             = _mm_sub_ps(ix0,jx0);
598             dy00             = _mm_sub_ps(iy0,jy0);
599             dz00             = _mm_sub_ps(iz0,jz0);
600
601             /* Calculate squared distance and things based on it */
602             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
603
604             rinv00           = gmx_mm_invsqrt_ps(rsq00);
605
606             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
607
608             /* Load parameters for j particles */
609             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
610                                                               charge+jnrC+0,charge+jnrD+0);
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (gmx_mm_any_lt(rsq00,rcutoff2))
617             {
618
619             r00              = _mm_mul_ps(rsq00,rinv00);
620             r00              = _mm_andnot_ps(dummy_mask,r00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm_mul_ps(iq0,jq0);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_ps(r00,ewtabscale);
629             ewitab           = _mm_cvttps_epi32(ewrt);
630             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
631             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
632                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
633                                          &ewtabF,&ewtabFn);
634             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
635             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
636
637             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
638
639             fscal            = felec;
640
641             fscal            = _mm_and_ps(fscal,cutoff_mask);
642
643             fscal            = _mm_andnot_ps(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm_mul_ps(fscal,dx00);
647             ty               = _mm_mul_ps(fscal,dy00);
648             tz               = _mm_mul_ps(fscal,dz00);
649
650             /* Update vectorial force */
651             fix0             = _mm_add_ps(fix0,tx);
652             fiy0             = _mm_add_ps(fiy0,ty);
653             fiz0             = _mm_add_ps(fiz0,tz);
654
655             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
656             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
657             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
658             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
659             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
660
661             }
662
663             /* Inner loop uses 40 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 7 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
683 }