Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
94     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
95     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
96     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
97     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
98     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
99     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
100     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
101     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
102     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
103     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
104     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
105     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
106     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
107     real             *charge;
108     int              nvdwtype;
109     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
110     int              *vdwtype;
111     real             *vdwparam;
112     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
113     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
114     __m128i          ewitab;
115     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
116     real             *ewtab;
117     __m128           dummy_mask,cutoff_mask;
118     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
119     __m128           one     = _mm_set1_ps(1.0);
120     __m128           two     = _mm_set1_ps(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm_set1_ps(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137
138     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
146     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
147     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     jq0              = _mm_set1_ps(charge[inr+0]);
151     jq1              = _mm_set1_ps(charge[inr+1]);
152     jq2              = _mm_set1_ps(charge[inr+2]);
153     vdwjidx0A        = 2*vdwtype[inr+0];
154     qq00             = _mm_mul_ps(iq0,jq0);
155     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
156     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
157     qq01             = _mm_mul_ps(iq0,jq1);
158     qq02             = _mm_mul_ps(iq0,jq2);
159     qq10             = _mm_mul_ps(iq1,jq0);
160     qq11             = _mm_mul_ps(iq1,jq1);
161     qq12             = _mm_mul_ps(iq1,jq2);
162     qq20             = _mm_mul_ps(iq2,jq0);
163     qq21             = _mm_mul_ps(iq2,jq1);
164     qq22             = _mm_mul_ps(iq2,jq2);
165
166     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
167     rcutoff_scalar   = fr->rcoulomb;
168     rcutoff          = _mm_set1_ps(rcutoff_scalar);
169     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
170
171     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
172     rvdw             = _mm_set1_ps(fr->rvdw);
173
174     /* Avoid stupid compiler warnings */
175     jnrA = jnrB = jnrC = jnrD = 0;
176     j_coord_offsetA = 0;
177     j_coord_offsetB = 0;
178     j_coord_offsetC = 0;
179     j_coord_offsetD = 0;
180
181     outeriter        = 0;
182     inneriter        = 0;
183
184     for(iidx=0;iidx<4*DIM;iidx++)
185     {
186         scratch[iidx] = 0.0;
187     }
188
189     /* Start outer loop over neighborlists */
190     for(iidx=0; iidx<nri; iidx++)
191     {
192         /* Load shift vector for this list */
193         i_shift_offset   = DIM*shiftidx[iidx];
194
195         /* Load limits for loop over neighbors */
196         j_index_start    = jindex[iidx];
197         j_index_end      = jindex[iidx+1];
198
199         /* Get outer coordinate index */
200         inr              = iinr[iidx];
201         i_coord_offset   = DIM*inr;
202
203         /* Load i particle coords and add shift vector */
204         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
205                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
206
207         fix0             = _mm_setzero_ps();
208         fiy0             = _mm_setzero_ps();
209         fiz0             = _mm_setzero_ps();
210         fix1             = _mm_setzero_ps();
211         fiy1             = _mm_setzero_ps();
212         fiz1             = _mm_setzero_ps();
213         fix2             = _mm_setzero_ps();
214         fiy2             = _mm_setzero_ps();
215         fiz2             = _mm_setzero_ps();
216
217         /* Reset potential sums */
218         velecsum         = _mm_setzero_ps();
219         vvdwsum          = _mm_setzero_ps();
220
221         /* Start inner kernel loop */
222         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrA             = jjnr[jidx];
227             jnrB             = jjnr[jidx+1];
228             jnrC             = jjnr[jidx+2];
229             jnrD             = jjnr[jidx+3];
230             j_coord_offsetA  = DIM*jnrA;
231             j_coord_offsetB  = DIM*jnrB;
232             j_coord_offsetC  = DIM*jnrC;
233             j_coord_offsetD  = DIM*jnrD;
234
235             /* load j atom coordinates */
236             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
237                                               x+j_coord_offsetC,x+j_coord_offsetD,
238                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
239
240             /* Calculate displacement vector */
241             dx00             = _mm_sub_ps(ix0,jx0);
242             dy00             = _mm_sub_ps(iy0,jy0);
243             dz00             = _mm_sub_ps(iz0,jz0);
244             dx01             = _mm_sub_ps(ix0,jx1);
245             dy01             = _mm_sub_ps(iy0,jy1);
246             dz01             = _mm_sub_ps(iz0,jz1);
247             dx02             = _mm_sub_ps(ix0,jx2);
248             dy02             = _mm_sub_ps(iy0,jy2);
249             dz02             = _mm_sub_ps(iz0,jz2);
250             dx10             = _mm_sub_ps(ix1,jx0);
251             dy10             = _mm_sub_ps(iy1,jy0);
252             dz10             = _mm_sub_ps(iz1,jz0);
253             dx11             = _mm_sub_ps(ix1,jx1);
254             dy11             = _mm_sub_ps(iy1,jy1);
255             dz11             = _mm_sub_ps(iz1,jz1);
256             dx12             = _mm_sub_ps(ix1,jx2);
257             dy12             = _mm_sub_ps(iy1,jy2);
258             dz12             = _mm_sub_ps(iz1,jz2);
259             dx20             = _mm_sub_ps(ix2,jx0);
260             dy20             = _mm_sub_ps(iy2,jy0);
261             dz20             = _mm_sub_ps(iz2,jz0);
262             dx21             = _mm_sub_ps(ix2,jx1);
263             dy21             = _mm_sub_ps(iy2,jy1);
264             dz21             = _mm_sub_ps(iz2,jz1);
265             dx22             = _mm_sub_ps(ix2,jx2);
266             dy22             = _mm_sub_ps(iy2,jy2);
267             dz22             = _mm_sub_ps(iz2,jz2);
268
269             /* Calculate squared distance and things based on it */
270             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
271             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
272             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
273             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
274             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
275             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
276             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
277             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
278             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
279
280             rinv00           = gmx_mm_invsqrt_ps(rsq00);
281             rinv01           = gmx_mm_invsqrt_ps(rsq01);
282             rinv02           = gmx_mm_invsqrt_ps(rsq02);
283             rinv10           = gmx_mm_invsqrt_ps(rsq10);
284             rinv11           = gmx_mm_invsqrt_ps(rsq11);
285             rinv12           = gmx_mm_invsqrt_ps(rsq12);
286             rinv20           = gmx_mm_invsqrt_ps(rsq20);
287             rinv21           = gmx_mm_invsqrt_ps(rsq21);
288             rinv22           = gmx_mm_invsqrt_ps(rsq22);
289
290             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
291             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
292             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
293             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
294             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
295             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
296             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
297             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
298             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
299
300             fjx0             = _mm_setzero_ps();
301             fjy0             = _mm_setzero_ps();
302             fjz0             = _mm_setzero_ps();
303             fjx1             = _mm_setzero_ps();
304             fjy1             = _mm_setzero_ps();
305             fjz1             = _mm_setzero_ps();
306             fjx2             = _mm_setzero_ps();
307             fjy2             = _mm_setzero_ps();
308             fjz2             = _mm_setzero_ps();
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq00,rcutoff2))
315             {
316
317             r00              = _mm_mul_ps(rsq00,rinv00);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _mm_mul_ps(r00,ewtabscale);
323             ewitab           = _mm_cvttps_epi32(ewrt);
324             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
325             ewitab           = _mm_slli_epi32(ewitab,2);
326             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
327             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
328             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
329             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
330             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
331             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
332             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
333             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
334             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
335
336             /* LENNARD-JONES DISPERSION/REPULSION */
337
338             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
339             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
340             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
341             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
342                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
343             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
344
345             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_ps(velec,cutoff_mask);
349             velecsum         = _mm_add_ps(velecsum,velec);
350             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
351             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
352
353             fscal            = _mm_add_ps(felec,fvdw);
354
355             fscal            = _mm_and_ps(fscal,cutoff_mask);
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm_mul_ps(fscal,dx00);
359             ty               = _mm_mul_ps(fscal,dy00);
360             tz               = _mm_mul_ps(fscal,dz00);
361
362             /* Update vectorial force */
363             fix0             = _mm_add_ps(fix0,tx);
364             fiy0             = _mm_add_ps(fiy0,ty);
365             fiz0             = _mm_add_ps(fiz0,tz);
366
367             fjx0             = _mm_add_ps(fjx0,tx);
368             fjy0             = _mm_add_ps(fjy0,ty);
369             fjz0             = _mm_add_ps(fjz0,tz);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm_any_lt(rsq01,rcutoff2))
378             {
379
380             r01              = _mm_mul_ps(rsq01,rinv01);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm_mul_ps(r01,ewtabscale);
386             ewitab           = _mm_cvttps_epi32(ewrt);
387             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
391             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
392             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
393             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
394             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
395             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
396             velec            = _mm_mul_ps(qq01,_mm_sub_ps(_mm_sub_ps(rinv01,sh_ewald),velec));
397             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
398
399             cutoff_mask      = _mm_cmplt_ps(rsq01,rcutoff2);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm_and_ps(velec,cutoff_mask);
403             velecsum         = _mm_add_ps(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm_and_ps(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_ps(fscal,dx01);
411             ty               = _mm_mul_ps(fscal,dy01);
412             tz               = _mm_mul_ps(fscal,dz01);
413
414             /* Update vectorial force */
415             fix0             = _mm_add_ps(fix0,tx);
416             fiy0             = _mm_add_ps(fiy0,ty);
417             fiz0             = _mm_add_ps(fiz0,tz);
418
419             fjx1             = _mm_add_ps(fjx1,tx);
420             fjy1             = _mm_add_ps(fjy1,ty);
421             fjz1             = _mm_add_ps(fjz1,tz);
422
423             }
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             if (gmx_mm_any_lt(rsq02,rcutoff2))
430             {
431
432             r02              = _mm_mul_ps(rsq02,rinv02);
433
434             /* EWALD ELECTROSTATICS */
435
436             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437             ewrt             = _mm_mul_ps(r02,ewtabscale);
438             ewitab           = _mm_cvttps_epi32(ewrt);
439             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
440             ewitab           = _mm_slli_epi32(ewitab,2);
441             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
442             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
443             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
444             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
445             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
446             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
447             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
448             velec            = _mm_mul_ps(qq02,_mm_sub_ps(_mm_sub_ps(rinv02,sh_ewald),velec));
449             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
450
451             cutoff_mask      = _mm_cmplt_ps(rsq02,rcutoff2);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_and_ps(velec,cutoff_mask);
455             velecsum         = _mm_add_ps(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_and_ps(fscal,cutoff_mask);
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_ps(fscal,dx02);
463             ty               = _mm_mul_ps(fscal,dy02);
464             tz               = _mm_mul_ps(fscal,dz02);
465
466             /* Update vectorial force */
467             fix0             = _mm_add_ps(fix0,tx);
468             fiy0             = _mm_add_ps(fiy0,ty);
469             fiz0             = _mm_add_ps(fiz0,tz);
470
471             fjx2             = _mm_add_ps(fjx2,tx);
472             fjy2             = _mm_add_ps(fjy2,ty);
473             fjz2             = _mm_add_ps(fjz2,tz);
474
475             }
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq10,rcutoff2))
482             {
483
484             r10              = _mm_mul_ps(rsq10,rinv10);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm_mul_ps(r10,ewtabscale);
490             ewitab           = _mm_cvttps_epi32(ewrt);
491             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
492             ewitab           = _mm_slli_epi32(ewitab,2);
493             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
494             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
495             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
496             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
497             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
498             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
499             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
500             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
501             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
502
503             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_and_ps(velec,cutoff_mask);
507             velecsum         = _mm_add_ps(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_and_ps(fscal,cutoff_mask);
512
513             /* Calculate temporary vectorial force */
514             tx               = _mm_mul_ps(fscal,dx10);
515             ty               = _mm_mul_ps(fscal,dy10);
516             tz               = _mm_mul_ps(fscal,dz10);
517
518             /* Update vectorial force */
519             fix1             = _mm_add_ps(fix1,tx);
520             fiy1             = _mm_add_ps(fiy1,ty);
521             fiz1             = _mm_add_ps(fiz1,tz);
522
523             fjx0             = _mm_add_ps(fjx0,tx);
524             fjy0             = _mm_add_ps(fjy0,ty);
525             fjz0             = _mm_add_ps(fjz0,tz);
526
527             }
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             if (gmx_mm_any_lt(rsq11,rcutoff2))
534             {
535
536             r11              = _mm_mul_ps(rsq11,rinv11);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _mm_mul_ps(r11,ewtabscale);
542             ewitab           = _mm_cvttps_epi32(ewrt);
543             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
544             ewitab           = _mm_slli_epi32(ewitab,2);
545             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
546             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
547             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
548             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
549             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
550             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
551             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
552             velec            = _mm_mul_ps(qq11,_mm_sub_ps(_mm_sub_ps(rinv11,sh_ewald),velec));
553             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
554
555             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_and_ps(velec,cutoff_mask);
559             velecsum         = _mm_add_ps(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_and_ps(fscal,cutoff_mask);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_ps(fscal,dx11);
567             ty               = _mm_mul_ps(fscal,dy11);
568             tz               = _mm_mul_ps(fscal,dz11);
569
570             /* Update vectorial force */
571             fix1             = _mm_add_ps(fix1,tx);
572             fiy1             = _mm_add_ps(fiy1,ty);
573             fiz1             = _mm_add_ps(fiz1,tz);
574
575             fjx1             = _mm_add_ps(fjx1,tx);
576             fjy1             = _mm_add_ps(fjy1,ty);
577             fjz1             = _mm_add_ps(fjz1,tz);
578
579             }
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             if (gmx_mm_any_lt(rsq12,rcutoff2))
586             {
587
588             r12              = _mm_mul_ps(rsq12,rinv12);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
593             ewrt             = _mm_mul_ps(r12,ewtabscale);
594             ewitab           = _mm_cvttps_epi32(ewrt);
595             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
596             ewitab           = _mm_slli_epi32(ewitab,2);
597             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
598             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
599             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
600             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
601             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
602             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
603             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
604             velec            = _mm_mul_ps(qq12,_mm_sub_ps(_mm_sub_ps(rinv12,sh_ewald),velec));
605             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
606
607             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_and_ps(velec,cutoff_mask);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_and_ps(fscal,cutoff_mask);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_ps(fscal,dx12);
619             ty               = _mm_mul_ps(fscal,dy12);
620             tz               = _mm_mul_ps(fscal,dz12);
621
622             /* Update vectorial force */
623             fix1             = _mm_add_ps(fix1,tx);
624             fiy1             = _mm_add_ps(fiy1,ty);
625             fiz1             = _mm_add_ps(fiz1,tz);
626
627             fjx2             = _mm_add_ps(fjx2,tx);
628             fjy2             = _mm_add_ps(fjy2,ty);
629             fjz2             = _mm_add_ps(fjz2,tz);
630
631             }
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             if (gmx_mm_any_lt(rsq20,rcutoff2))
638             {
639
640             r20              = _mm_mul_ps(rsq20,rinv20);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm_mul_ps(r20,ewtabscale);
646             ewitab           = _mm_cvttps_epi32(ewrt);
647             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
648             ewitab           = _mm_slli_epi32(ewitab,2);
649             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
650             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
651             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
652             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
653             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
654             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
655             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
656             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
657             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
658
659             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velec            = _mm_and_ps(velec,cutoff_mask);
663             velecsum         = _mm_add_ps(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _mm_and_ps(fscal,cutoff_mask);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm_mul_ps(fscal,dx20);
671             ty               = _mm_mul_ps(fscal,dy20);
672             tz               = _mm_mul_ps(fscal,dz20);
673
674             /* Update vectorial force */
675             fix2             = _mm_add_ps(fix2,tx);
676             fiy2             = _mm_add_ps(fiy2,ty);
677             fiz2             = _mm_add_ps(fiz2,tz);
678
679             fjx0             = _mm_add_ps(fjx0,tx);
680             fjy0             = _mm_add_ps(fjy0,ty);
681             fjz0             = _mm_add_ps(fjz0,tz);
682
683             }
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             if (gmx_mm_any_lt(rsq21,rcutoff2))
690             {
691
692             r21              = _mm_mul_ps(rsq21,rinv21);
693
694             /* EWALD ELECTROSTATICS */
695
696             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
697             ewrt             = _mm_mul_ps(r21,ewtabscale);
698             ewitab           = _mm_cvttps_epi32(ewrt);
699             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
700             ewitab           = _mm_slli_epi32(ewitab,2);
701             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
702             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
703             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
704             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
705             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
706             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
707             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
708             velec            = _mm_mul_ps(qq21,_mm_sub_ps(_mm_sub_ps(rinv21,sh_ewald),velec));
709             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
710
711             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
712
713             /* Update potential sum for this i atom from the interaction with this j atom. */
714             velec            = _mm_and_ps(velec,cutoff_mask);
715             velecsum         = _mm_add_ps(velecsum,velec);
716
717             fscal            = felec;
718
719             fscal            = _mm_and_ps(fscal,cutoff_mask);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm_mul_ps(fscal,dx21);
723             ty               = _mm_mul_ps(fscal,dy21);
724             tz               = _mm_mul_ps(fscal,dz21);
725
726             /* Update vectorial force */
727             fix2             = _mm_add_ps(fix2,tx);
728             fiy2             = _mm_add_ps(fiy2,ty);
729             fiz2             = _mm_add_ps(fiz2,tz);
730
731             fjx1             = _mm_add_ps(fjx1,tx);
732             fjy1             = _mm_add_ps(fjy1,ty);
733             fjz1             = _mm_add_ps(fjz1,tz);
734
735             }
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             if (gmx_mm_any_lt(rsq22,rcutoff2))
742             {
743
744             r22              = _mm_mul_ps(rsq22,rinv22);
745
746             /* EWALD ELECTROSTATICS */
747
748             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
749             ewrt             = _mm_mul_ps(r22,ewtabscale);
750             ewitab           = _mm_cvttps_epi32(ewrt);
751             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
752             ewitab           = _mm_slli_epi32(ewitab,2);
753             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
754             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
755             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
756             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
757             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
758             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
759             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
760             velec            = _mm_mul_ps(qq22,_mm_sub_ps(_mm_sub_ps(rinv22,sh_ewald),velec));
761             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
762
763             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
764
765             /* Update potential sum for this i atom from the interaction with this j atom. */
766             velec            = _mm_and_ps(velec,cutoff_mask);
767             velecsum         = _mm_add_ps(velecsum,velec);
768
769             fscal            = felec;
770
771             fscal            = _mm_and_ps(fscal,cutoff_mask);
772
773             /* Calculate temporary vectorial force */
774             tx               = _mm_mul_ps(fscal,dx22);
775             ty               = _mm_mul_ps(fscal,dy22);
776             tz               = _mm_mul_ps(fscal,dz22);
777
778             /* Update vectorial force */
779             fix2             = _mm_add_ps(fix2,tx);
780             fiy2             = _mm_add_ps(fiy2,ty);
781             fiz2             = _mm_add_ps(fiz2,tz);
782
783             fjx2             = _mm_add_ps(fjx2,tx);
784             fjy2             = _mm_add_ps(fjy2,ty);
785             fjz2             = _mm_add_ps(fjz2,tz);
786
787             }
788
789             fjptrA             = f+j_coord_offsetA;
790             fjptrB             = f+j_coord_offsetB;
791             fjptrC             = f+j_coord_offsetC;
792             fjptrD             = f+j_coord_offsetD;
793
794             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
795                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
796
797             /* Inner loop uses 432 flops */
798         }
799
800         if(jidx<j_index_end)
801         {
802
803             /* Get j neighbor index, and coordinate index */
804             jnrlistA         = jjnr[jidx];
805             jnrlistB         = jjnr[jidx+1];
806             jnrlistC         = jjnr[jidx+2];
807             jnrlistD         = jjnr[jidx+3];
808             /* Sign of each element will be negative for non-real atoms.
809              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
810              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
811              */
812             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
813             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
814             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
815             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
816             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
817             j_coord_offsetA  = DIM*jnrA;
818             j_coord_offsetB  = DIM*jnrB;
819             j_coord_offsetC  = DIM*jnrC;
820             j_coord_offsetD  = DIM*jnrD;
821
822             /* load j atom coordinates */
823             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
824                                               x+j_coord_offsetC,x+j_coord_offsetD,
825                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
826
827             /* Calculate displacement vector */
828             dx00             = _mm_sub_ps(ix0,jx0);
829             dy00             = _mm_sub_ps(iy0,jy0);
830             dz00             = _mm_sub_ps(iz0,jz0);
831             dx01             = _mm_sub_ps(ix0,jx1);
832             dy01             = _mm_sub_ps(iy0,jy1);
833             dz01             = _mm_sub_ps(iz0,jz1);
834             dx02             = _mm_sub_ps(ix0,jx2);
835             dy02             = _mm_sub_ps(iy0,jy2);
836             dz02             = _mm_sub_ps(iz0,jz2);
837             dx10             = _mm_sub_ps(ix1,jx0);
838             dy10             = _mm_sub_ps(iy1,jy0);
839             dz10             = _mm_sub_ps(iz1,jz0);
840             dx11             = _mm_sub_ps(ix1,jx1);
841             dy11             = _mm_sub_ps(iy1,jy1);
842             dz11             = _mm_sub_ps(iz1,jz1);
843             dx12             = _mm_sub_ps(ix1,jx2);
844             dy12             = _mm_sub_ps(iy1,jy2);
845             dz12             = _mm_sub_ps(iz1,jz2);
846             dx20             = _mm_sub_ps(ix2,jx0);
847             dy20             = _mm_sub_ps(iy2,jy0);
848             dz20             = _mm_sub_ps(iz2,jz0);
849             dx21             = _mm_sub_ps(ix2,jx1);
850             dy21             = _mm_sub_ps(iy2,jy1);
851             dz21             = _mm_sub_ps(iz2,jz1);
852             dx22             = _mm_sub_ps(ix2,jx2);
853             dy22             = _mm_sub_ps(iy2,jy2);
854             dz22             = _mm_sub_ps(iz2,jz2);
855
856             /* Calculate squared distance and things based on it */
857             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
858             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
859             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
860             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
861             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
862             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
863             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
864             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
865             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
866
867             rinv00           = gmx_mm_invsqrt_ps(rsq00);
868             rinv01           = gmx_mm_invsqrt_ps(rsq01);
869             rinv02           = gmx_mm_invsqrt_ps(rsq02);
870             rinv10           = gmx_mm_invsqrt_ps(rsq10);
871             rinv11           = gmx_mm_invsqrt_ps(rsq11);
872             rinv12           = gmx_mm_invsqrt_ps(rsq12);
873             rinv20           = gmx_mm_invsqrt_ps(rsq20);
874             rinv21           = gmx_mm_invsqrt_ps(rsq21);
875             rinv22           = gmx_mm_invsqrt_ps(rsq22);
876
877             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
878             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
879             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
880             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
881             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
882             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
883             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
884             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
885             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
886
887             fjx0             = _mm_setzero_ps();
888             fjy0             = _mm_setzero_ps();
889             fjz0             = _mm_setzero_ps();
890             fjx1             = _mm_setzero_ps();
891             fjy1             = _mm_setzero_ps();
892             fjz1             = _mm_setzero_ps();
893             fjx2             = _mm_setzero_ps();
894             fjy2             = _mm_setzero_ps();
895             fjz2             = _mm_setzero_ps();
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             if (gmx_mm_any_lt(rsq00,rcutoff2))
902             {
903
904             r00              = _mm_mul_ps(rsq00,rinv00);
905             r00              = _mm_andnot_ps(dummy_mask,r00);
906
907             /* EWALD ELECTROSTATICS */
908
909             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
910             ewrt             = _mm_mul_ps(r00,ewtabscale);
911             ewitab           = _mm_cvttps_epi32(ewrt);
912             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
913             ewitab           = _mm_slli_epi32(ewitab,2);
914             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
915             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
916             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
917             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
918             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
919             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
920             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
921             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
922             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
923
924             /* LENNARD-JONES DISPERSION/REPULSION */
925
926             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
927             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
928             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
929             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
930                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
931             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
932
933             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
934
935             /* Update potential sum for this i atom from the interaction with this j atom. */
936             velec            = _mm_and_ps(velec,cutoff_mask);
937             velec            = _mm_andnot_ps(dummy_mask,velec);
938             velecsum         = _mm_add_ps(velecsum,velec);
939             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
940             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
941             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
942
943             fscal            = _mm_add_ps(felec,fvdw);
944
945             fscal            = _mm_and_ps(fscal,cutoff_mask);
946
947             fscal            = _mm_andnot_ps(dummy_mask,fscal);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_ps(fscal,dx00);
951             ty               = _mm_mul_ps(fscal,dy00);
952             tz               = _mm_mul_ps(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm_add_ps(fix0,tx);
956             fiy0             = _mm_add_ps(fiy0,ty);
957             fiz0             = _mm_add_ps(fiz0,tz);
958
959             fjx0             = _mm_add_ps(fjx0,tx);
960             fjy0             = _mm_add_ps(fjy0,ty);
961             fjz0             = _mm_add_ps(fjz0,tz);
962
963             }
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq01,rcutoff2))
970             {
971
972             r01              = _mm_mul_ps(rsq01,rinv01);
973             r01              = _mm_andnot_ps(dummy_mask,r01);
974
975             /* EWALD ELECTROSTATICS */
976
977             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
978             ewrt             = _mm_mul_ps(r01,ewtabscale);
979             ewitab           = _mm_cvttps_epi32(ewrt);
980             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
981             ewitab           = _mm_slli_epi32(ewitab,2);
982             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
983             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
984             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
985             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
986             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
987             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
988             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
989             velec            = _mm_mul_ps(qq01,_mm_sub_ps(_mm_sub_ps(rinv01,sh_ewald),velec));
990             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
991
992             cutoff_mask      = _mm_cmplt_ps(rsq01,rcutoff2);
993
994             /* Update potential sum for this i atom from the interaction with this j atom. */
995             velec            = _mm_and_ps(velec,cutoff_mask);
996             velec            = _mm_andnot_ps(dummy_mask,velec);
997             velecsum         = _mm_add_ps(velecsum,velec);
998
999             fscal            = felec;
1000
1001             fscal            = _mm_and_ps(fscal,cutoff_mask);
1002
1003             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx01);
1007             ty               = _mm_mul_ps(fscal,dy01);
1008             tz               = _mm_mul_ps(fscal,dz01);
1009
1010             /* Update vectorial force */
1011             fix0             = _mm_add_ps(fix0,tx);
1012             fiy0             = _mm_add_ps(fiy0,ty);
1013             fiz0             = _mm_add_ps(fiz0,tz);
1014
1015             fjx1             = _mm_add_ps(fjx1,tx);
1016             fjy1             = _mm_add_ps(fjy1,ty);
1017             fjz1             = _mm_add_ps(fjz1,tz);
1018
1019             }
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             if (gmx_mm_any_lt(rsq02,rcutoff2))
1026             {
1027
1028             r02              = _mm_mul_ps(rsq02,rinv02);
1029             r02              = _mm_andnot_ps(dummy_mask,r02);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_ps(r02,ewtabscale);
1035             ewitab           = _mm_cvttps_epi32(ewrt);
1036             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1037             ewitab           = _mm_slli_epi32(ewitab,2);
1038             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1039             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1040             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1041             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1042             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1043             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1044             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1045             velec            = _mm_mul_ps(qq02,_mm_sub_ps(_mm_sub_ps(rinv02,sh_ewald),velec));
1046             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
1047
1048             cutoff_mask      = _mm_cmplt_ps(rsq02,rcutoff2);
1049
1050             /* Update potential sum for this i atom from the interaction with this j atom. */
1051             velec            = _mm_and_ps(velec,cutoff_mask);
1052             velec            = _mm_andnot_ps(dummy_mask,velec);
1053             velecsum         = _mm_add_ps(velecsum,velec);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_and_ps(fscal,cutoff_mask);
1058
1059             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm_mul_ps(fscal,dx02);
1063             ty               = _mm_mul_ps(fscal,dy02);
1064             tz               = _mm_mul_ps(fscal,dz02);
1065
1066             /* Update vectorial force */
1067             fix0             = _mm_add_ps(fix0,tx);
1068             fiy0             = _mm_add_ps(fiy0,ty);
1069             fiz0             = _mm_add_ps(fiz0,tz);
1070
1071             fjx2             = _mm_add_ps(fjx2,tx);
1072             fjy2             = _mm_add_ps(fjy2,ty);
1073             fjz2             = _mm_add_ps(fjz2,tz);
1074
1075             }
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             if (gmx_mm_any_lt(rsq10,rcutoff2))
1082             {
1083
1084             r10              = _mm_mul_ps(rsq10,rinv10);
1085             r10              = _mm_andnot_ps(dummy_mask,r10);
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1090             ewrt             = _mm_mul_ps(r10,ewtabscale);
1091             ewitab           = _mm_cvttps_epi32(ewrt);
1092             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1093             ewitab           = _mm_slli_epi32(ewitab,2);
1094             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1095             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1096             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1097             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1098             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1099             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1100             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1101             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
1102             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1105
1106             /* Update potential sum for this i atom from the interaction with this j atom. */
1107             velec            = _mm_and_ps(velec,cutoff_mask);
1108             velec            = _mm_andnot_ps(dummy_mask,velec);
1109             velecsum         = _mm_add_ps(velecsum,velec);
1110
1111             fscal            = felec;
1112
1113             fscal            = _mm_and_ps(fscal,cutoff_mask);
1114
1115             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm_mul_ps(fscal,dx10);
1119             ty               = _mm_mul_ps(fscal,dy10);
1120             tz               = _mm_mul_ps(fscal,dz10);
1121
1122             /* Update vectorial force */
1123             fix1             = _mm_add_ps(fix1,tx);
1124             fiy1             = _mm_add_ps(fiy1,ty);
1125             fiz1             = _mm_add_ps(fiz1,tz);
1126
1127             fjx0             = _mm_add_ps(fjx0,tx);
1128             fjy0             = _mm_add_ps(fjy0,ty);
1129             fjz0             = _mm_add_ps(fjz0,tz);
1130
1131             }
1132
1133             /**************************
1134              * CALCULATE INTERACTIONS *
1135              **************************/
1136
1137             if (gmx_mm_any_lt(rsq11,rcutoff2))
1138             {
1139
1140             r11              = _mm_mul_ps(rsq11,rinv11);
1141             r11              = _mm_andnot_ps(dummy_mask,r11);
1142
1143             /* EWALD ELECTROSTATICS */
1144
1145             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1146             ewrt             = _mm_mul_ps(r11,ewtabscale);
1147             ewitab           = _mm_cvttps_epi32(ewrt);
1148             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1149             ewitab           = _mm_slli_epi32(ewitab,2);
1150             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1151             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1152             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1153             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1154             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1155             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1156             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1157             velec            = _mm_mul_ps(qq11,_mm_sub_ps(_mm_sub_ps(rinv11,sh_ewald),velec));
1158             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1159
1160             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
1161
1162             /* Update potential sum for this i atom from the interaction with this j atom. */
1163             velec            = _mm_and_ps(velec,cutoff_mask);
1164             velec            = _mm_andnot_ps(dummy_mask,velec);
1165             velecsum         = _mm_add_ps(velecsum,velec);
1166
1167             fscal            = felec;
1168
1169             fscal            = _mm_and_ps(fscal,cutoff_mask);
1170
1171             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1172
1173             /* Calculate temporary vectorial force */
1174             tx               = _mm_mul_ps(fscal,dx11);
1175             ty               = _mm_mul_ps(fscal,dy11);
1176             tz               = _mm_mul_ps(fscal,dz11);
1177
1178             /* Update vectorial force */
1179             fix1             = _mm_add_ps(fix1,tx);
1180             fiy1             = _mm_add_ps(fiy1,ty);
1181             fiz1             = _mm_add_ps(fiz1,tz);
1182
1183             fjx1             = _mm_add_ps(fjx1,tx);
1184             fjy1             = _mm_add_ps(fjy1,ty);
1185             fjz1             = _mm_add_ps(fjz1,tz);
1186
1187             }
1188
1189             /**************************
1190              * CALCULATE INTERACTIONS *
1191              **************************/
1192
1193             if (gmx_mm_any_lt(rsq12,rcutoff2))
1194             {
1195
1196             r12              = _mm_mul_ps(rsq12,rinv12);
1197             r12              = _mm_andnot_ps(dummy_mask,r12);
1198
1199             /* EWALD ELECTROSTATICS */
1200
1201             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1202             ewrt             = _mm_mul_ps(r12,ewtabscale);
1203             ewitab           = _mm_cvttps_epi32(ewrt);
1204             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1205             ewitab           = _mm_slli_epi32(ewitab,2);
1206             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1207             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1208             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1209             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1210             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1211             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1212             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1213             velec            = _mm_mul_ps(qq12,_mm_sub_ps(_mm_sub_ps(rinv12,sh_ewald),velec));
1214             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1215
1216             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
1217
1218             /* Update potential sum for this i atom from the interaction with this j atom. */
1219             velec            = _mm_and_ps(velec,cutoff_mask);
1220             velec            = _mm_andnot_ps(dummy_mask,velec);
1221             velecsum         = _mm_add_ps(velecsum,velec);
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_and_ps(fscal,cutoff_mask);
1226
1227             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1228
1229             /* Calculate temporary vectorial force */
1230             tx               = _mm_mul_ps(fscal,dx12);
1231             ty               = _mm_mul_ps(fscal,dy12);
1232             tz               = _mm_mul_ps(fscal,dz12);
1233
1234             /* Update vectorial force */
1235             fix1             = _mm_add_ps(fix1,tx);
1236             fiy1             = _mm_add_ps(fiy1,ty);
1237             fiz1             = _mm_add_ps(fiz1,tz);
1238
1239             fjx2             = _mm_add_ps(fjx2,tx);
1240             fjy2             = _mm_add_ps(fjy2,ty);
1241             fjz2             = _mm_add_ps(fjz2,tz);
1242
1243             }
1244
1245             /**************************
1246              * CALCULATE INTERACTIONS *
1247              **************************/
1248
1249             if (gmx_mm_any_lt(rsq20,rcutoff2))
1250             {
1251
1252             r20              = _mm_mul_ps(rsq20,rinv20);
1253             r20              = _mm_andnot_ps(dummy_mask,r20);
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = _mm_mul_ps(r20,ewtabscale);
1259             ewitab           = _mm_cvttps_epi32(ewrt);
1260             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1261             ewitab           = _mm_slli_epi32(ewitab,2);
1262             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1263             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1264             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1265             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1266             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1267             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1268             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1269             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
1270             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1271
1272             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1273
1274             /* Update potential sum for this i atom from the interaction with this j atom. */
1275             velec            = _mm_and_ps(velec,cutoff_mask);
1276             velec            = _mm_andnot_ps(dummy_mask,velec);
1277             velecsum         = _mm_add_ps(velecsum,velec);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm_and_ps(fscal,cutoff_mask);
1282
1283             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_ps(fscal,dx20);
1287             ty               = _mm_mul_ps(fscal,dy20);
1288             tz               = _mm_mul_ps(fscal,dz20);
1289
1290             /* Update vectorial force */
1291             fix2             = _mm_add_ps(fix2,tx);
1292             fiy2             = _mm_add_ps(fiy2,ty);
1293             fiz2             = _mm_add_ps(fiz2,tz);
1294
1295             fjx0             = _mm_add_ps(fjx0,tx);
1296             fjy0             = _mm_add_ps(fjy0,ty);
1297             fjz0             = _mm_add_ps(fjz0,tz);
1298
1299             }
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm_any_lt(rsq21,rcutoff2))
1306             {
1307
1308             r21              = _mm_mul_ps(rsq21,rinv21);
1309             r21              = _mm_andnot_ps(dummy_mask,r21);
1310
1311             /* EWALD ELECTROSTATICS */
1312
1313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1314             ewrt             = _mm_mul_ps(r21,ewtabscale);
1315             ewitab           = _mm_cvttps_epi32(ewrt);
1316             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1317             ewitab           = _mm_slli_epi32(ewitab,2);
1318             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1319             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1320             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1321             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1322             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1323             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1324             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1325             velec            = _mm_mul_ps(qq21,_mm_sub_ps(_mm_sub_ps(rinv21,sh_ewald),velec));
1326             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1327
1328             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
1329
1330             /* Update potential sum for this i atom from the interaction with this j atom. */
1331             velec            = _mm_and_ps(velec,cutoff_mask);
1332             velec            = _mm_andnot_ps(dummy_mask,velec);
1333             velecsum         = _mm_add_ps(velecsum,velec);
1334
1335             fscal            = felec;
1336
1337             fscal            = _mm_and_ps(fscal,cutoff_mask);
1338
1339             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1340
1341             /* Calculate temporary vectorial force */
1342             tx               = _mm_mul_ps(fscal,dx21);
1343             ty               = _mm_mul_ps(fscal,dy21);
1344             tz               = _mm_mul_ps(fscal,dz21);
1345
1346             /* Update vectorial force */
1347             fix2             = _mm_add_ps(fix2,tx);
1348             fiy2             = _mm_add_ps(fiy2,ty);
1349             fiz2             = _mm_add_ps(fiz2,tz);
1350
1351             fjx1             = _mm_add_ps(fjx1,tx);
1352             fjy1             = _mm_add_ps(fjy1,ty);
1353             fjz1             = _mm_add_ps(fjz1,tz);
1354
1355             }
1356
1357             /**************************
1358              * CALCULATE INTERACTIONS *
1359              **************************/
1360
1361             if (gmx_mm_any_lt(rsq22,rcutoff2))
1362             {
1363
1364             r22              = _mm_mul_ps(rsq22,rinv22);
1365             r22              = _mm_andnot_ps(dummy_mask,r22);
1366
1367             /* EWALD ELECTROSTATICS */
1368
1369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1370             ewrt             = _mm_mul_ps(r22,ewtabscale);
1371             ewitab           = _mm_cvttps_epi32(ewrt);
1372             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1373             ewitab           = _mm_slli_epi32(ewitab,2);
1374             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1375             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1376             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1377             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1378             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1379             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1380             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1381             velec            = _mm_mul_ps(qq22,_mm_sub_ps(_mm_sub_ps(rinv22,sh_ewald),velec));
1382             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1383
1384             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
1385
1386             /* Update potential sum for this i atom from the interaction with this j atom. */
1387             velec            = _mm_and_ps(velec,cutoff_mask);
1388             velec            = _mm_andnot_ps(dummy_mask,velec);
1389             velecsum         = _mm_add_ps(velecsum,velec);
1390
1391             fscal            = felec;
1392
1393             fscal            = _mm_and_ps(fscal,cutoff_mask);
1394
1395             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1396
1397             /* Calculate temporary vectorial force */
1398             tx               = _mm_mul_ps(fscal,dx22);
1399             ty               = _mm_mul_ps(fscal,dy22);
1400             tz               = _mm_mul_ps(fscal,dz22);
1401
1402             /* Update vectorial force */
1403             fix2             = _mm_add_ps(fix2,tx);
1404             fiy2             = _mm_add_ps(fiy2,ty);
1405             fiz2             = _mm_add_ps(fiz2,tz);
1406
1407             fjx2             = _mm_add_ps(fjx2,tx);
1408             fjy2             = _mm_add_ps(fjy2,ty);
1409             fjz2             = _mm_add_ps(fjz2,tz);
1410
1411             }
1412
1413             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1414             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1415             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1416             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1417
1418             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1419                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1420
1421             /* Inner loop uses 441 flops */
1422         }
1423
1424         /* End of innermost loop */
1425
1426         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1427                                               f+i_coord_offset,fshift+i_shift_offset);
1428
1429         ggid                        = gid[iidx];
1430         /* Update potential energies */
1431         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1432         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1433
1434         /* Increment number of inner iterations */
1435         inneriter                  += j_index_end - j_index_start;
1436
1437         /* Outer loop uses 20 flops */
1438     }
1439
1440     /* Increment number of outer iterations */
1441     outeriter        += nri;
1442
1443     /* Update outer/inner flops */
1444
1445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*441);
1446 }
1447 /*
1448  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse4_1_single
1449  * Electrostatics interaction: Ewald
1450  * VdW interaction:            LennardJones
1451  * Geometry:                   Water3-Water3
1452  * Calculate force/pot:        Force
1453  */
1454 void
1455 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse4_1_single
1456                     (t_nblist                    * gmx_restrict       nlist,
1457                      rvec                        * gmx_restrict          xx,
1458                      rvec                        * gmx_restrict          ff,
1459                      t_forcerec                  * gmx_restrict          fr,
1460                      t_mdatoms                   * gmx_restrict     mdatoms,
1461                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1462                      t_nrnb                      * gmx_restrict        nrnb)
1463 {
1464     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1465      * just 0 for non-waters.
1466      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1467      * jnr indices corresponding to data put in the four positions in the SIMD register.
1468      */
1469     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1470     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1471     int              jnrA,jnrB,jnrC,jnrD;
1472     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1473     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1474     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1475     real             rcutoff_scalar;
1476     real             *shiftvec,*fshift,*x,*f;
1477     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1478     real             scratch[4*DIM];
1479     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1480     int              vdwioffset0;
1481     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1482     int              vdwioffset1;
1483     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1484     int              vdwioffset2;
1485     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1486     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1487     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1488     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1489     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1490     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1491     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1492     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1493     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1494     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1495     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1496     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1497     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1498     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1499     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1500     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1501     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1502     real             *charge;
1503     int              nvdwtype;
1504     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1505     int              *vdwtype;
1506     real             *vdwparam;
1507     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1508     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1509     __m128i          ewitab;
1510     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1511     real             *ewtab;
1512     __m128           dummy_mask,cutoff_mask;
1513     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1514     __m128           one     = _mm_set1_ps(1.0);
1515     __m128           two     = _mm_set1_ps(2.0);
1516     x                = xx[0];
1517     f                = ff[0];
1518
1519     nri              = nlist->nri;
1520     iinr             = nlist->iinr;
1521     jindex           = nlist->jindex;
1522     jjnr             = nlist->jjnr;
1523     shiftidx         = nlist->shift;
1524     gid              = nlist->gid;
1525     shiftvec         = fr->shift_vec[0];
1526     fshift           = fr->fshift[0];
1527     facel            = _mm_set1_ps(fr->epsfac);
1528     charge           = mdatoms->chargeA;
1529     nvdwtype         = fr->ntype;
1530     vdwparam         = fr->nbfp;
1531     vdwtype          = mdatoms->typeA;
1532
1533     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1534     ewtab            = fr->ic->tabq_coul_F;
1535     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1536     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1537
1538     /* Setup water-specific parameters */
1539     inr              = nlist->iinr[0];
1540     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
1541     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1542     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1543     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1544
1545     jq0              = _mm_set1_ps(charge[inr+0]);
1546     jq1              = _mm_set1_ps(charge[inr+1]);
1547     jq2              = _mm_set1_ps(charge[inr+2]);
1548     vdwjidx0A        = 2*vdwtype[inr+0];
1549     qq00             = _mm_mul_ps(iq0,jq0);
1550     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1551     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1552     qq01             = _mm_mul_ps(iq0,jq1);
1553     qq02             = _mm_mul_ps(iq0,jq2);
1554     qq10             = _mm_mul_ps(iq1,jq0);
1555     qq11             = _mm_mul_ps(iq1,jq1);
1556     qq12             = _mm_mul_ps(iq1,jq2);
1557     qq20             = _mm_mul_ps(iq2,jq0);
1558     qq21             = _mm_mul_ps(iq2,jq1);
1559     qq22             = _mm_mul_ps(iq2,jq2);
1560
1561     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1562     rcutoff_scalar   = fr->rcoulomb;
1563     rcutoff          = _mm_set1_ps(rcutoff_scalar);
1564     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
1565
1566     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
1567     rvdw             = _mm_set1_ps(fr->rvdw);
1568
1569     /* Avoid stupid compiler warnings */
1570     jnrA = jnrB = jnrC = jnrD = 0;
1571     j_coord_offsetA = 0;
1572     j_coord_offsetB = 0;
1573     j_coord_offsetC = 0;
1574     j_coord_offsetD = 0;
1575
1576     outeriter        = 0;
1577     inneriter        = 0;
1578
1579     for(iidx=0;iidx<4*DIM;iidx++)
1580     {
1581         scratch[iidx] = 0.0;
1582     }
1583
1584     /* Start outer loop over neighborlists */
1585     for(iidx=0; iidx<nri; iidx++)
1586     {
1587         /* Load shift vector for this list */
1588         i_shift_offset   = DIM*shiftidx[iidx];
1589
1590         /* Load limits for loop over neighbors */
1591         j_index_start    = jindex[iidx];
1592         j_index_end      = jindex[iidx+1];
1593
1594         /* Get outer coordinate index */
1595         inr              = iinr[iidx];
1596         i_coord_offset   = DIM*inr;
1597
1598         /* Load i particle coords and add shift vector */
1599         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1600                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1601
1602         fix0             = _mm_setzero_ps();
1603         fiy0             = _mm_setzero_ps();
1604         fiz0             = _mm_setzero_ps();
1605         fix1             = _mm_setzero_ps();
1606         fiy1             = _mm_setzero_ps();
1607         fiz1             = _mm_setzero_ps();
1608         fix2             = _mm_setzero_ps();
1609         fiy2             = _mm_setzero_ps();
1610         fiz2             = _mm_setzero_ps();
1611
1612         /* Start inner kernel loop */
1613         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1614         {
1615
1616             /* Get j neighbor index, and coordinate index */
1617             jnrA             = jjnr[jidx];
1618             jnrB             = jjnr[jidx+1];
1619             jnrC             = jjnr[jidx+2];
1620             jnrD             = jjnr[jidx+3];
1621             j_coord_offsetA  = DIM*jnrA;
1622             j_coord_offsetB  = DIM*jnrB;
1623             j_coord_offsetC  = DIM*jnrC;
1624             j_coord_offsetD  = DIM*jnrD;
1625
1626             /* load j atom coordinates */
1627             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1628                                               x+j_coord_offsetC,x+j_coord_offsetD,
1629                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1630
1631             /* Calculate displacement vector */
1632             dx00             = _mm_sub_ps(ix0,jx0);
1633             dy00             = _mm_sub_ps(iy0,jy0);
1634             dz00             = _mm_sub_ps(iz0,jz0);
1635             dx01             = _mm_sub_ps(ix0,jx1);
1636             dy01             = _mm_sub_ps(iy0,jy1);
1637             dz01             = _mm_sub_ps(iz0,jz1);
1638             dx02             = _mm_sub_ps(ix0,jx2);
1639             dy02             = _mm_sub_ps(iy0,jy2);
1640             dz02             = _mm_sub_ps(iz0,jz2);
1641             dx10             = _mm_sub_ps(ix1,jx0);
1642             dy10             = _mm_sub_ps(iy1,jy0);
1643             dz10             = _mm_sub_ps(iz1,jz0);
1644             dx11             = _mm_sub_ps(ix1,jx1);
1645             dy11             = _mm_sub_ps(iy1,jy1);
1646             dz11             = _mm_sub_ps(iz1,jz1);
1647             dx12             = _mm_sub_ps(ix1,jx2);
1648             dy12             = _mm_sub_ps(iy1,jy2);
1649             dz12             = _mm_sub_ps(iz1,jz2);
1650             dx20             = _mm_sub_ps(ix2,jx0);
1651             dy20             = _mm_sub_ps(iy2,jy0);
1652             dz20             = _mm_sub_ps(iz2,jz0);
1653             dx21             = _mm_sub_ps(ix2,jx1);
1654             dy21             = _mm_sub_ps(iy2,jy1);
1655             dz21             = _mm_sub_ps(iz2,jz1);
1656             dx22             = _mm_sub_ps(ix2,jx2);
1657             dy22             = _mm_sub_ps(iy2,jy2);
1658             dz22             = _mm_sub_ps(iz2,jz2);
1659
1660             /* Calculate squared distance and things based on it */
1661             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1662             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1663             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1664             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1665             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1666             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1667             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1668             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1669             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1670
1671             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1672             rinv01           = gmx_mm_invsqrt_ps(rsq01);
1673             rinv02           = gmx_mm_invsqrt_ps(rsq02);
1674             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1675             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1676             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1677             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1678             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1679             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1680
1681             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1682             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
1683             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
1684             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1685             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1686             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1687             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1688             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1689             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1690
1691             fjx0             = _mm_setzero_ps();
1692             fjy0             = _mm_setzero_ps();
1693             fjz0             = _mm_setzero_ps();
1694             fjx1             = _mm_setzero_ps();
1695             fjy1             = _mm_setzero_ps();
1696             fjz1             = _mm_setzero_ps();
1697             fjx2             = _mm_setzero_ps();
1698             fjy2             = _mm_setzero_ps();
1699             fjz2             = _mm_setzero_ps();
1700
1701             /**************************
1702              * CALCULATE INTERACTIONS *
1703              **************************/
1704
1705             if (gmx_mm_any_lt(rsq00,rcutoff2))
1706             {
1707
1708             r00              = _mm_mul_ps(rsq00,rinv00);
1709
1710             /* EWALD ELECTROSTATICS */
1711
1712             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1713             ewrt             = _mm_mul_ps(r00,ewtabscale);
1714             ewitab           = _mm_cvttps_epi32(ewrt);
1715             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1716             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1717                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1718                                          &ewtabF,&ewtabFn);
1719             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1720             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1721
1722             /* LENNARD-JONES DISPERSION/REPULSION */
1723
1724             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1725             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1726
1727             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1728
1729             fscal            = _mm_add_ps(felec,fvdw);
1730
1731             fscal            = _mm_and_ps(fscal,cutoff_mask);
1732
1733             /* Calculate temporary vectorial force */
1734             tx               = _mm_mul_ps(fscal,dx00);
1735             ty               = _mm_mul_ps(fscal,dy00);
1736             tz               = _mm_mul_ps(fscal,dz00);
1737
1738             /* Update vectorial force */
1739             fix0             = _mm_add_ps(fix0,tx);
1740             fiy0             = _mm_add_ps(fiy0,ty);
1741             fiz0             = _mm_add_ps(fiz0,tz);
1742
1743             fjx0             = _mm_add_ps(fjx0,tx);
1744             fjy0             = _mm_add_ps(fjy0,ty);
1745             fjz0             = _mm_add_ps(fjz0,tz);
1746
1747             }
1748
1749             /**************************
1750              * CALCULATE INTERACTIONS *
1751              **************************/
1752
1753             if (gmx_mm_any_lt(rsq01,rcutoff2))
1754             {
1755
1756             r01              = _mm_mul_ps(rsq01,rinv01);
1757
1758             /* EWALD ELECTROSTATICS */
1759
1760             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1761             ewrt             = _mm_mul_ps(r01,ewtabscale);
1762             ewitab           = _mm_cvttps_epi32(ewrt);
1763             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1764             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1765                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1766                                          &ewtabF,&ewtabFn);
1767             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1768             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
1769
1770             cutoff_mask      = _mm_cmplt_ps(rsq01,rcutoff2);
1771
1772             fscal            = felec;
1773
1774             fscal            = _mm_and_ps(fscal,cutoff_mask);
1775
1776             /* Calculate temporary vectorial force */
1777             tx               = _mm_mul_ps(fscal,dx01);
1778             ty               = _mm_mul_ps(fscal,dy01);
1779             tz               = _mm_mul_ps(fscal,dz01);
1780
1781             /* Update vectorial force */
1782             fix0             = _mm_add_ps(fix0,tx);
1783             fiy0             = _mm_add_ps(fiy0,ty);
1784             fiz0             = _mm_add_ps(fiz0,tz);
1785
1786             fjx1             = _mm_add_ps(fjx1,tx);
1787             fjy1             = _mm_add_ps(fjy1,ty);
1788             fjz1             = _mm_add_ps(fjz1,tz);
1789
1790             }
1791
1792             /**************************
1793              * CALCULATE INTERACTIONS *
1794              **************************/
1795
1796             if (gmx_mm_any_lt(rsq02,rcutoff2))
1797             {
1798
1799             r02              = _mm_mul_ps(rsq02,rinv02);
1800
1801             /* EWALD ELECTROSTATICS */
1802
1803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1804             ewrt             = _mm_mul_ps(r02,ewtabscale);
1805             ewitab           = _mm_cvttps_epi32(ewrt);
1806             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1807             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1808                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1809                                          &ewtabF,&ewtabFn);
1810             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1811             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
1812
1813             cutoff_mask      = _mm_cmplt_ps(rsq02,rcutoff2);
1814
1815             fscal            = felec;
1816
1817             fscal            = _mm_and_ps(fscal,cutoff_mask);
1818
1819             /* Calculate temporary vectorial force */
1820             tx               = _mm_mul_ps(fscal,dx02);
1821             ty               = _mm_mul_ps(fscal,dy02);
1822             tz               = _mm_mul_ps(fscal,dz02);
1823
1824             /* Update vectorial force */
1825             fix0             = _mm_add_ps(fix0,tx);
1826             fiy0             = _mm_add_ps(fiy0,ty);
1827             fiz0             = _mm_add_ps(fiz0,tz);
1828
1829             fjx2             = _mm_add_ps(fjx2,tx);
1830             fjy2             = _mm_add_ps(fjy2,ty);
1831             fjz2             = _mm_add_ps(fjz2,tz);
1832
1833             }
1834
1835             /**************************
1836              * CALCULATE INTERACTIONS *
1837              **************************/
1838
1839             if (gmx_mm_any_lt(rsq10,rcutoff2))
1840             {
1841
1842             r10              = _mm_mul_ps(rsq10,rinv10);
1843
1844             /* EWALD ELECTROSTATICS */
1845
1846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1847             ewrt             = _mm_mul_ps(r10,ewtabscale);
1848             ewitab           = _mm_cvttps_epi32(ewrt);
1849             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1850             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1851                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1852                                          &ewtabF,&ewtabFn);
1853             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1854             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1855
1856             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1857
1858             fscal            = felec;
1859
1860             fscal            = _mm_and_ps(fscal,cutoff_mask);
1861
1862             /* Calculate temporary vectorial force */
1863             tx               = _mm_mul_ps(fscal,dx10);
1864             ty               = _mm_mul_ps(fscal,dy10);
1865             tz               = _mm_mul_ps(fscal,dz10);
1866
1867             /* Update vectorial force */
1868             fix1             = _mm_add_ps(fix1,tx);
1869             fiy1             = _mm_add_ps(fiy1,ty);
1870             fiz1             = _mm_add_ps(fiz1,tz);
1871
1872             fjx0             = _mm_add_ps(fjx0,tx);
1873             fjy0             = _mm_add_ps(fjy0,ty);
1874             fjz0             = _mm_add_ps(fjz0,tz);
1875
1876             }
1877
1878             /**************************
1879              * CALCULATE INTERACTIONS *
1880              **************************/
1881
1882             if (gmx_mm_any_lt(rsq11,rcutoff2))
1883             {
1884
1885             r11              = _mm_mul_ps(rsq11,rinv11);
1886
1887             /* EWALD ELECTROSTATICS */
1888
1889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1890             ewrt             = _mm_mul_ps(r11,ewtabscale);
1891             ewitab           = _mm_cvttps_epi32(ewrt);
1892             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1893             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1894                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1895                                          &ewtabF,&ewtabFn);
1896             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1897             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1898
1899             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
1900
1901             fscal            = felec;
1902
1903             fscal            = _mm_and_ps(fscal,cutoff_mask);
1904
1905             /* Calculate temporary vectorial force */
1906             tx               = _mm_mul_ps(fscal,dx11);
1907             ty               = _mm_mul_ps(fscal,dy11);
1908             tz               = _mm_mul_ps(fscal,dz11);
1909
1910             /* Update vectorial force */
1911             fix1             = _mm_add_ps(fix1,tx);
1912             fiy1             = _mm_add_ps(fiy1,ty);
1913             fiz1             = _mm_add_ps(fiz1,tz);
1914
1915             fjx1             = _mm_add_ps(fjx1,tx);
1916             fjy1             = _mm_add_ps(fjy1,ty);
1917             fjz1             = _mm_add_ps(fjz1,tz);
1918
1919             }
1920
1921             /**************************
1922              * CALCULATE INTERACTIONS *
1923              **************************/
1924
1925             if (gmx_mm_any_lt(rsq12,rcutoff2))
1926             {
1927
1928             r12              = _mm_mul_ps(rsq12,rinv12);
1929
1930             /* EWALD ELECTROSTATICS */
1931
1932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1933             ewrt             = _mm_mul_ps(r12,ewtabscale);
1934             ewitab           = _mm_cvttps_epi32(ewrt);
1935             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1936             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1937                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1938                                          &ewtabF,&ewtabFn);
1939             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1940             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1941
1942             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
1943
1944             fscal            = felec;
1945
1946             fscal            = _mm_and_ps(fscal,cutoff_mask);
1947
1948             /* Calculate temporary vectorial force */
1949             tx               = _mm_mul_ps(fscal,dx12);
1950             ty               = _mm_mul_ps(fscal,dy12);
1951             tz               = _mm_mul_ps(fscal,dz12);
1952
1953             /* Update vectorial force */
1954             fix1             = _mm_add_ps(fix1,tx);
1955             fiy1             = _mm_add_ps(fiy1,ty);
1956             fiz1             = _mm_add_ps(fiz1,tz);
1957
1958             fjx2             = _mm_add_ps(fjx2,tx);
1959             fjy2             = _mm_add_ps(fjy2,ty);
1960             fjz2             = _mm_add_ps(fjz2,tz);
1961
1962             }
1963
1964             /**************************
1965              * CALCULATE INTERACTIONS *
1966              **************************/
1967
1968             if (gmx_mm_any_lt(rsq20,rcutoff2))
1969             {
1970
1971             r20              = _mm_mul_ps(rsq20,rinv20);
1972
1973             /* EWALD ELECTROSTATICS */
1974
1975             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1976             ewrt             = _mm_mul_ps(r20,ewtabscale);
1977             ewitab           = _mm_cvttps_epi32(ewrt);
1978             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1979             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1980                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1981                                          &ewtabF,&ewtabFn);
1982             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1983             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1984
1985             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1986
1987             fscal            = felec;
1988
1989             fscal            = _mm_and_ps(fscal,cutoff_mask);
1990
1991             /* Calculate temporary vectorial force */
1992             tx               = _mm_mul_ps(fscal,dx20);
1993             ty               = _mm_mul_ps(fscal,dy20);
1994             tz               = _mm_mul_ps(fscal,dz20);
1995
1996             /* Update vectorial force */
1997             fix2             = _mm_add_ps(fix2,tx);
1998             fiy2             = _mm_add_ps(fiy2,ty);
1999             fiz2             = _mm_add_ps(fiz2,tz);
2000
2001             fjx0             = _mm_add_ps(fjx0,tx);
2002             fjy0             = _mm_add_ps(fjy0,ty);
2003             fjz0             = _mm_add_ps(fjz0,tz);
2004
2005             }
2006
2007             /**************************
2008              * CALCULATE INTERACTIONS *
2009              **************************/
2010
2011             if (gmx_mm_any_lt(rsq21,rcutoff2))
2012             {
2013
2014             r21              = _mm_mul_ps(rsq21,rinv21);
2015
2016             /* EWALD ELECTROSTATICS */
2017
2018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2019             ewrt             = _mm_mul_ps(r21,ewtabscale);
2020             ewitab           = _mm_cvttps_epi32(ewrt);
2021             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2022             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2023                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2024                                          &ewtabF,&ewtabFn);
2025             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2026             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2027
2028             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
2029
2030             fscal            = felec;
2031
2032             fscal            = _mm_and_ps(fscal,cutoff_mask);
2033
2034             /* Calculate temporary vectorial force */
2035             tx               = _mm_mul_ps(fscal,dx21);
2036             ty               = _mm_mul_ps(fscal,dy21);
2037             tz               = _mm_mul_ps(fscal,dz21);
2038
2039             /* Update vectorial force */
2040             fix2             = _mm_add_ps(fix2,tx);
2041             fiy2             = _mm_add_ps(fiy2,ty);
2042             fiz2             = _mm_add_ps(fiz2,tz);
2043
2044             fjx1             = _mm_add_ps(fjx1,tx);
2045             fjy1             = _mm_add_ps(fjy1,ty);
2046             fjz1             = _mm_add_ps(fjz1,tz);
2047
2048             }
2049
2050             /**************************
2051              * CALCULATE INTERACTIONS *
2052              **************************/
2053
2054             if (gmx_mm_any_lt(rsq22,rcutoff2))
2055             {
2056
2057             r22              = _mm_mul_ps(rsq22,rinv22);
2058
2059             /* EWALD ELECTROSTATICS */
2060
2061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2062             ewrt             = _mm_mul_ps(r22,ewtabscale);
2063             ewitab           = _mm_cvttps_epi32(ewrt);
2064             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2065             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2066                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2067                                          &ewtabF,&ewtabFn);
2068             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2069             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2070
2071             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
2072
2073             fscal            = felec;
2074
2075             fscal            = _mm_and_ps(fscal,cutoff_mask);
2076
2077             /* Calculate temporary vectorial force */
2078             tx               = _mm_mul_ps(fscal,dx22);
2079             ty               = _mm_mul_ps(fscal,dy22);
2080             tz               = _mm_mul_ps(fscal,dz22);
2081
2082             /* Update vectorial force */
2083             fix2             = _mm_add_ps(fix2,tx);
2084             fiy2             = _mm_add_ps(fiy2,ty);
2085             fiz2             = _mm_add_ps(fiz2,tz);
2086
2087             fjx2             = _mm_add_ps(fjx2,tx);
2088             fjy2             = _mm_add_ps(fjy2,ty);
2089             fjz2             = _mm_add_ps(fjz2,tz);
2090
2091             }
2092
2093             fjptrA             = f+j_coord_offsetA;
2094             fjptrB             = f+j_coord_offsetB;
2095             fjptrC             = f+j_coord_offsetC;
2096             fjptrD             = f+j_coord_offsetD;
2097
2098             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2099                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2100
2101             /* Inner loop uses 358 flops */
2102         }
2103
2104         if(jidx<j_index_end)
2105         {
2106
2107             /* Get j neighbor index, and coordinate index */
2108             jnrlistA         = jjnr[jidx];
2109             jnrlistB         = jjnr[jidx+1];
2110             jnrlistC         = jjnr[jidx+2];
2111             jnrlistD         = jjnr[jidx+3];
2112             /* Sign of each element will be negative for non-real atoms.
2113              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2114              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
2115              */
2116             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2117             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2118             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2119             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2120             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2121             j_coord_offsetA  = DIM*jnrA;
2122             j_coord_offsetB  = DIM*jnrB;
2123             j_coord_offsetC  = DIM*jnrC;
2124             j_coord_offsetD  = DIM*jnrD;
2125
2126             /* load j atom coordinates */
2127             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
2128                                               x+j_coord_offsetC,x+j_coord_offsetD,
2129                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2130
2131             /* Calculate displacement vector */
2132             dx00             = _mm_sub_ps(ix0,jx0);
2133             dy00             = _mm_sub_ps(iy0,jy0);
2134             dz00             = _mm_sub_ps(iz0,jz0);
2135             dx01             = _mm_sub_ps(ix0,jx1);
2136             dy01             = _mm_sub_ps(iy0,jy1);
2137             dz01             = _mm_sub_ps(iz0,jz1);
2138             dx02             = _mm_sub_ps(ix0,jx2);
2139             dy02             = _mm_sub_ps(iy0,jy2);
2140             dz02             = _mm_sub_ps(iz0,jz2);
2141             dx10             = _mm_sub_ps(ix1,jx0);
2142             dy10             = _mm_sub_ps(iy1,jy0);
2143             dz10             = _mm_sub_ps(iz1,jz0);
2144             dx11             = _mm_sub_ps(ix1,jx1);
2145             dy11             = _mm_sub_ps(iy1,jy1);
2146             dz11             = _mm_sub_ps(iz1,jz1);
2147             dx12             = _mm_sub_ps(ix1,jx2);
2148             dy12             = _mm_sub_ps(iy1,jy2);
2149             dz12             = _mm_sub_ps(iz1,jz2);
2150             dx20             = _mm_sub_ps(ix2,jx0);
2151             dy20             = _mm_sub_ps(iy2,jy0);
2152             dz20             = _mm_sub_ps(iz2,jz0);
2153             dx21             = _mm_sub_ps(ix2,jx1);
2154             dy21             = _mm_sub_ps(iy2,jy1);
2155             dz21             = _mm_sub_ps(iz2,jz1);
2156             dx22             = _mm_sub_ps(ix2,jx2);
2157             dy22             = _mm_sub_ps(iy2,jy2);
2158             dz22             = _mm_sub_ps(iz2,jz2);
2159
2160             /* Calculate squared distance and things based on it */
2161             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
2162             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
2163             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
2164             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
2165             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
2166             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
2167             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
2168             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
2169             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
2170
2171             rinv00           = gmx_mm_invsqrt_ps(rsq00);
2172             rinv01           = gmx_mm_invsqrt_ps(rsq01);
2173             rinv02           = gmx_mm_invsqrt_ps(rsq02);
2174             rinv10           = gmx_mm_invsqrt_ps(rsq10);
2175             rinv11           = gmx_mm_invsqrt_ps(rsq11);
2176             rinv12           = gmx_mm_invsqrt_ps(rsq12);
2177             rinv20           = gmx_mm_invsqrt_ps(rsq20);
2178             rinv21           = gmx_mm_invsqrt_ps(rsq21);
2179             rinv22           = gmx_mm_invsqrt_ps(rsq22);
2180
2181             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
2182             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
2183             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
2184             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
2185             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
2186             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
2187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
2188             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
2189             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
2190
2191             fjx0             = _mm_setzero_ps();
2192             fjy0             = _mm_setzero_ps();
2193             fjz0             = _mm_setzero_ps();
2194             fjx1             = _mm_setzero_ps();
2195             fjy1             = _mm_setzero_ps();
2196             fjz1             = _mm_setzero_ps();
2197             fjx2             = _mm_setzero_ps();
2198             fjy2             = _mm_setzero_ps();
2199             fjz2             = _mm_setzero_ps();
2200
2201             /**************************
2202              * CALCULATE INTERACTIONS *
2203              **************************/
2204
2205             if (gmx_mm_any_lt(rsq00,rcutoff2))
2206             {
2207
2208             r00              = _mm_mul_ps(rsq00,rinv00);
2209             r00              = _mm_andnot_ps(dummy_mask,r00);
2210
2211             /* EWALD ELECTROSTATICS */
2212
2213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2214             ewrt             = _mm_mul_ps(r00,ewtabscale);
2215             ewitab           = _mm_cvttps_epi32(ewrt);
2216             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2217             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2218                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2219                                          &ewtabF,&ewtabFn);
2220             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2221             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
2222
2223             /* LENNARD-JONES DISPERSION/REPULSION */
2224
2225             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
2226             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
2227
2228             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
2229
2230             fscal            = _mm_add_ps(felec,fvdw);
2231
2232             fscal            = _mm_and_ps(fscal,cutoff_mask);
2233
2234             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2235
2236             /* Calculate temporary vectorial force */
2237             tx               = _mm_mul_ps(fscal,dx00);
2238             ty               = _mm_mul_ps(fscal,dy00);
2239             tz               = _mm_mul_ps(fscal,dz00);
2240
2241             /* Update vectorial force */
2242             fix0             = _mm_add_ps(fix0,tx);
2243             fiy0             = _mm_add_ps(fiy0,ty);
2244             fiz0             = _mm_add_ps(fiz0,tz);
2245
2246             fjx0             = _mm_add_ps(fjx0,tx);
2247             fjy0             = _mm_add_ps(fjy0,ty);
2248             fjz0             = _mm_add_ps(fjz0,tz);
2249
2250             }
2251
2252             /**************************
2253              * CALCULATE INTERACTIONS *
2254              **************************/
2255
2256             if (gmx_mm_any_lt(rsq01,rcutoff2))
2257             {
2258
2259             r01              = _mm_mul_ps(rsq01,rinv01);
2260             r01              = _mm_andnot_ps(dummy_mask,r01);
2261
2262             /* EWALD ELECTROSTATICS */
2263
2264             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2265             ewrt             = _mm_mul_ps(r01,ewtabscale);
2266             ewitab           = _mm_cvttps_epi32(ewrt);
2267             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2268             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2269                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2270                                          &ewtabF,&ewtabFn);
2271             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2272             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
2273
2274             cutoff_mask      = _mm_cmplt_ps(rsq01,rcutoff2);
2275
2276             fscal            = felec;
2277
2278             fscal            = _mm_and_ps(fscal,cutoff_mask);
2279
2280             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2281
2282             /* Calculate temporary vectorial force */
2283             tx               = _mm_mul_ps(fscal,dx01);
2284             ty               = _mm_mul_ps(fscal,dy01);
2285             tz               = _mm_mul_ps(fscal,dz01);
2286
2287             /* Update vectorial force */
2288             fix0             = _mm_add_ps(fix0,tx);
2289             fiy0             = _mm_add_ps(fiy0,ty);
2290             fiz0             = _mm_add_ps(fiz0,tz);
2291
2292             fjx1             = _mm_add_ps(fjx1,tx);
2293             fjy1             = _mm_add_ps(fjy1,ty);
2294             fjz1             = _mm_add_ps(fjz1,tz);
2295
2296             }
2297
2298             /**************************
2299              * CALCULATE INTERACTIONS *
2300              **************************/
2301
2302             if (gmx_mm_any_lt(rsq02,rcutoff2))
2303             {
2304
2305             r02              = _mm_mul_ps(rsq02,rinv02);
2306             r02              = _mm_andnot_ps(dummy_mask,r02);
2307
2308             /* EWALD ELECTROSTATICS */
2309
2310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2311             ewrt             = _mm_mul_ps(r02,ewtabscale);
2312             ewitab           = _mm_cvttps_epi32(ewrt);
2313             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2314             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2315                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2316                                          &ewtabF,&ewtabFn);
2317             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2318             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
2319
2320             cutoff_mask      = _mm_cmplt_ps(rsq02,rcutoff2);
2321
2322             fscal            = felec;
2323
2324             fscal            = _mm_and_ps(fscal,cutoff_mask);
2325
2326             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2327
2328             /* Calculate temporary vectorial force */
2329             tx               = _mm_mul_ps(fscal,dx02);
2330             ty               = _mm_mul_ps(fscal,dy02);
2331             tz               = _mm_mul_ps(fscal,dz02);
2332
2333             /* Update vectorial force */
2334             fix0             = _mm_add_ps(fix0,tx);
2335             fiy0             = _mm_add_ps(fiy0,ty);
2336             fiz0             = _mm_add_ps(fiz0,tz);
2337
2338             fjx2             = _mm_add_ps(fjx2,tx);
2339             fjy2             = _mm_add_ps(fjy2,ty);
2340             fjz2             = _mm_add_ps(fjz2,tz);
2341
2342             }
2343
2344             /**************************
2345              * CALCULATE INTERACTIONS *
2346              **************************/
2347
2348             if (gmx_mm_any_lt(rsq10,rcutoff2))
2349             {
2350
2351             r10              = _mm_mul_ps(rsq10,rinv10);
2352             r10              = _mm_andnot_ps(dummy_mask,r10);
2353
2354             /* EWALD ELECTROSTATICS */
2355
2356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2357             ewrt             = _mm_mul_ps(r10,ewtabscale);
2358             ewitab           = _mm_cvttps_epi32(ewrt);
2359             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2360             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2361                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2362                                          &ewtabF,&ewtabFn);
2363             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2364             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
2365
2366             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
2367
2368             fscal            = felec;
2369
2370             fscal            = _mm_and_ps(fscal,cutoff_mask);
2371
2372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2373
2374             /* Calculate temporary vectorial force */
2375             tx               = _mm_mul_ps(fscal,dx10);
2376             ty               = _mm_mul_ps(fscal,dy10);
2377             tz               = _mm_mul_ps(fscal,dz10);
2378
2379             /* Update vectorial force */
2380             fix1             = _mm_add_ps(fix1,tx);
2381             fiy1             = _mm_add_ps(fiy1,ty);
2382             fiz1             = _mm_add_ps(fiz1,tz);
2383
2384             fjx0             = _mm_add_ps(fjx0,tx);
2385             fjy0             = _mm_add_ps(fjy0,ty);
2386             fjz0             = _mm_add_ps(fjz0,tz);
2387
2388             }
2389
2390             /**************************
2391              * CALCULATE INTERACTIONS *
2392              **************************/
2393
2394             if (gmx_mm_any_lt(rsq11,rcutoff2))
2395             {
2396
2397             r11              = _mm_mul_ps(rsq11,rinv11);
2398             r11              = _mm_andnot_ps(dummy_mask,r11);
2399
2400             /* EWALD ELECTROSTATICS */
2401
2402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2403             ewrt             = _mm_mul_ps(r11,ewtabscale);
2404             ewitab           = _mm_cvttps_epi32(ewrt);
2405             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2406             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2407                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2408                                          &ewtabF,&ewtabFn);
2409             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2410             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2411
2412             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
2413
2414             fscal            = felec;
2415
2416             fscal            = _mm_and_ps(fscal,cutoff_mask);
2417
2418             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2419
2420             /* Calculate temporary vectorial force */
2421             tx               = _mm_mul_ps(fscal,dx11);
2422             ty               = _mm_mul_ps(fscal,dy11);
2423             tz               = _mm_mul_ps(fscal,dz11);
2424
2425             /* Update vectorial force */
2426             fix1             = _mm_add_ps(fix1,tx);
2427             fiy1             = _mm_add_ps(fiy1,ty);
2428             fiz1             = _mm_add_ps(fiz1,tz);
2429
2430             fjx1             = _mm_add_ps(fjx1,tx);
2431             fjy1             = _mm_add_ps(fjy1,ty);
2432             fjz1             = _mm_add_ps(fjz1,tz);
2433
2434             }
2435
2436             /**************************
2437              * CALCULATE INTERACTIONS *
2438              **************************/
2439
2440             if (gmx_mm_any_lt(rsq12,rcutoff2))
2441             {
2442
2443             r12              = _mm_mul_ps(rsq12,rinv12);
2444             r12              = _mm_andnot_ps(dummy_mask,r12);
2445
2446             /* EWALD ELECTROSTATICS */
2447
2448             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2449             ewrt             = _mm_mul_ps(r12,ewtabscale);
2450             ewitab           = _mm_cvttps_epi32(ewrt);
2451             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2452             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2453                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2454                                          &ewtabF,&ewtabFn);
2455             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2456             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2457
2458             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
2459
2460             fscal            = felec;
2461
2462             fscal            = _mm_and_ps(fscal,cutoff_mask);
2463
2464             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2465
2466             /* Calculate temporary vectorial force */
2467             tx               = _mm_mul_ps(fscal,dx12);
2468             ty               = _mm_mul_ps(fscal,dy12);
2469             tz               = _mm_mul_ps(fscal,dz12);
2470
2471             /* Update vectorial force */
2472             fix1             = _mm_add_ps(fix1,tx);
2473             fiy1             = _mm_add_ps(fiy1,ty);
2474             fiz1             = _mm_add_ps(fiz1,tz);
2475
2476             fjx2             = _mm_add_ps(fjx2,tx);
2477             fjy2             = _mm_add_ps(fjy2,ty);
2478             fjz2             = _mm_add_ps(fjz2,tz);
2479
2480             }
2481
2482             /**************************
2483              * CALCULATE INTERACTIONS *
2484              **************************/
2485
2486             if (gmx_mm_any_lt(rsq20,rcutoff2))
2487             {
2488
2489             r20              = _mm_mul_ps(rsq20,rinv20);
2490             r20              = _mm_andnot_ps(dummy_mask,r20);
2491
2492             /* EWALD ELECTROSTATICS */
2493
2494             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2495             ewrt             = _mm_mul_ps(r20,ewtabscale);
2496             ewitab           = _mm_cvttps_epi32(ewrt);
2497             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2498             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2499                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2500                                          &ewtabF,&ewtabFn);
2501             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2502             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
2503
2504             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
2505
2506             fscal            = felec;
2507
2508             fscal            = _mm_and_ps(fscal,cutoff_mask);
2509
2510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2511
2512             /* Calculate temporary vectorial force */
2513             tx               = _mm_mul_ps(fscal,dx20);
2514             ty               = _mm_mul_ps(fscal,dy20);
2515             tz               = _mm_mul_ps(fscal,dz20);
2516
2517             /* Update vectorial force */
2518             fix2             = _mm_add_ps(fix2,tx);
2519             fiy2             = _mm_add_ps(fiy2,ty);
2520             fiz2             = _mm_add_ps(fiz2,tz);
2521
2522             fjx0             = _mm_add_ps(fjx0,tx);
2523             fjy0             = _mm_add_ps(fjy0,ty);
2524             fjz0             = _mm_add_ps(fjz0,tz);
2525
2526             }
2527
2528             /**************************
2529              * CALCULATE INTERACTIONS *
2530              **************************/
2531
2532             if (gmx_mm_any_lt(rsq21,rcutoff2))
2533             {
2534
2535             r21              = _mm_mul_ps(rsq21,rinv21);
2536             r21              = _mm_andnot_ps(dummy_mask,r21);
2537
2538             /* EWALD ELECTROSTATICS */
2539
2540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2541             ewrt             = _mm_mul_ps(r21,ewtabscale);
2542             ewitab           = _mm_cvttps_epi32(ewrt);
2543             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2544             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2545                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2546                                          &ewtabF,&ewtabFn);
2547             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2548             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2549
2550             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
2551
2552             fscal            = felec;
2553
2554             fscal            = _mm_and_ps(fscal,cutoff_mask);
2555
2556             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2557
2558             /* Calculate temporary vectorial force */
2559             tx               = _mm_mul_ps(fscal,dx21);
2560             ty               = _mm_mul_ps(fscal,dy21);
2561             tz               = _mm_mul_ps(fscal,dz21);
2562
2563             /* Update vectorial force */
2564             fix2             = _mm_add_ps(fix2,tx);
2565             fiy2             = _mm_add_ps(fiy2,ty);
2566             fiz2             = _mm_add_ps(fiz2,tz);
2567
2568             fjx1             = _mm_add_ps(fjx1,tx);
2569             fjy1             = _mm_add_ps(fjy1,ty);
2570             fjz1             = _mm_add_ps(fjz1,tz);
2571
2572             }
2573
2574             /**************************
2575              * CALCULATE INTERACTIONS *
2576              **************************/
2577
2578             if (gmx_mm_any_lt(rsq22,rcutoff2))
2579             {
2580
2581             r22              = _mm_mul_ps(rsq22,rinv22);
2582             r22              = _mm_andnot_ps(dummy_mask,r22);
2583
2584             /* EWALD ELECTROSTATICS */
2585
2586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2587             ewrt             = _mm_mul_ps(r22,ewtabscale);
2588             ewitab           = _mm_cvttps_epi32(ewrt);
2589             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2590             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2591                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2592                                          &ewtabF,&ewtabFn);
2593             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2594             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2595
2596             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
2597
2598             fscal            = felec;
2599
2600             fscal            = _mm_and_ps(fscal,cutoff_mask);
2601
2602             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2603
2604             /* Calculate temporary vectorial force */
2605             tx               = _mm_mul_ps(fscal,dx22);
2606             ty               = _mm_mul_ps(fscal,dy22);
2607             tz               = _mm_mul_ps(fscal,dz22);
2608
2609             /* Update vectorial force */
2610             fix2             = _mm_add_ps(fix2,tx);
2611             fiy2             = _mm_add_ps(fiy2,ty);
2612             fiz2             = _mm_add_ps(fiz2,tz);
2613
2614             fjx2             = _mm_add_ps(fjx2,tx);
2615             fjy2             = _mm_add_ps(fjy2,ty);
2616             fjz2             = _mm_add_ps(fjz2,tz);
2617
2618             }
2619
2620             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2621             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2622             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2623             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2624
2625             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2626                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2627
2628             /* Inner loop uses 367 flops */
2629         }
2630
2631         /* End of innermost loop */
2632
2633         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2634                                               f+i_coord_offset,fshift+i_shift_offset);
2635
2636         /* Increment number of inner iterations */
2637         inneriter                  += j_index_end - j_index_start;
2638
2639         /* Outer loop uses 18 flops */
2640     }
2641
2642     /* Increment number of outer iterations */
2643     outeriter        += nri;
2644
2645     /* Update outer/inner flops */
2646
2647     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*367);
2648 }