Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
144
145     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
146     rvdw             = _mm_set1_ps(fr->rvdw);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229
230             rinv00           = gmx_mm_invsqrt_ps(rsq00);
231             rinv10           = gmx_mm_invsqrt_ps(rsq10);
232             rinv20           = gmx_mm_invsqrt_ps(rsq20);
233
234             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq00,rcutoff2))
255             {
256
257             r00              = _mm_mul_ps(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_ps(iq0,jq0);
261             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,
263                                          vdwparam+vdwioffset0+vdwjidx0C,
264                                          vdwparam+vdwioffset0+vdwjidx0D,
265                                          &c6_00,&c12_00);
266
267             /* EWALD ELECTROSTATICS */
268
269             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
270             ewrt             = _mm_mul_ps(r00,ewtabscale);
271             ewitab           = _mm_cvttps_epi32(ewrt);
272             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
273             ewitab           = _mm_slli_epi32(ewitab,2);
274             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
275             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
276             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
277             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
278             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
279             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
280             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
281             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
282             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
283
284             /* LENNARD-JONES DISPERSION/REPULSION */
285
286             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
287             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
288             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
289             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
290                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
291             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
292
293             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velec            = _mm_and_ps(velec,cutoff_mask);
297             velecsum         = _mm_add_ps(velecsum,velec);
298             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303             fscal            = _mm_and_ps(fscal,cutoff_mask);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjx0             = _mm_add_ps(fjx0,tx);
316             fjy0             = _mm_add_ps(fjy0,ty);
317             fjz0             = _mm_add_ps(fjz0,tz);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq10,rcutoff2))
326             {
327
328             r10              = _mm_mul_ps(rsq10,rinv10);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm_mul_ps(iq1,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_ps(r10,ewtabscale);
337             ewitab           = _mm_cvttps_epi32(ewrt);
338             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
342             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
343             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
344             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
345             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
346             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
347             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
348             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
349
350             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velec            = _mm_and_ps(velec,cutoff_mask);
354             velecsum         = _mm_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358             fscal            = _mm_and_ps(fscal,cutoff_mask);
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_ps(fscal,dx10);
362             ty               = _mm_mul_ps(fscal,dy10);
363             tz               = _mm_mul_ps(fscal,dz10);
364
365             /* Update vectorial force */
366             fix1             = _mm_add_ps(fix1,tx);
367             fiy1             = _mm_add_ps(fiy1,ty);
368             fiz1             = _mm_add_ps(fiz1,tz);
369
370             fjx0             = _mm_add_ps(fjx0,tx);
371             fjy0             = _mm_add_ps(fjy0,ty);
372             fjz0             = _mm_add_ps(fjz0,tz);
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (gmx_mm_any_lt(rsq20,rcutoff2))
381             {
382
383             r20              = _mm_mul_ps(rsq20,rinv20);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq20             = _mm_mul_ps(iq2,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_ps(r20,ewtabscale);
392             ewitab           = _mm_cvttps_epi32(ewrt);
393             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
399             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
401             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
402             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
403             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
404
405             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_ps(velec,cutoff_mask);
409             velecsum         = _mm_add_ps(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_ps(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_ps(fscal,dx20);
417             ty               = _mm_mul_ps(fscal,dy20);
418             tz               = _mm_mul_ps(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm_add_ps(fix2,tx);
422             fiy2             = _mm_add_ps(fiy2,ty);
423             fiz2             = _mm_add_ps(fiz2,tz);
424
425             fjx0             = _mm_add_ps(fjx0,tx);
426             fjy0             = _mm_add_ps(fjy0,ty);
427             fjz0             = _mm_add_ps(fjz0,tz);
428
429             }
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 156 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             /* Get j neighbor index, and coordinate index */
445             jnrlistA         = jjnr[jidx];
446             jnrlistB         = jjnr[jidx+1];
447             jnrlistC         = jjnr[jidx+2];
448             jnrlistD         = jjnr[jidx+3];
449             /* Sign of each element will be negative for non-real atoms.
450              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
451              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
452              */
453             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
454             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
455             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
456             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
457             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
458             j_coord_offsetA  = DIM*jnrA;
459             j_coord_offsetB  = DIM*jnrB;
460             j_coord_offsetC  = DIM*jnrC;
461             j_coord_offsetD  = DIM*jnrD;
462
463             /* load j atom coordinates */
464             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
465                                               x+j_coord_offsetC,x+j_coord_offsetD,
466                                               &jx0,&jy0,&jz0);
467
468             /* Calculate displacement vector */
469             dx00             = _mm_sub_ps(ix0,jx0);
470             dy00             = _mm_sub_ps(iy0,jy0);
471             dz00             = _mm_sub_ps(iz0,jz0);
472             dx10             = _mm_sub_ps(ix1,jx0);
473             dy10             = _mm_sub_ps(iy1,jy0);
474             dz10             = _mm_sub_ps(iz1,jz0);
475             dx20             = _mm_sub_ps(ix2,jx0);
476             dy20             = _mm_sub_ps(iy2,jy0);
477             dz20             = _mm_sub_ps(iz2,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
482             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
483
484             rinv00           = gmx_mm_invsqrt_ps(rsq00);
485             rinv10           = gmx_mm_invsqrt_ps(rsq10);
486             rinv20           = gmx_mm_invsqrt_ps(rsq20);
487
488             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
489             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
490             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
491
492             /* Load parameters for j particles */
493             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
494                                                               charge+jnrC+0,charge+jnrD+0);
495             vdwjidx0A        = 2*vdwtype[jnrA+0];
496             vdwjidx0B        = 2*vdwtype[jnrB+0];
497             vdwjidx0C        = 2*vdwtype[jnrC+0];
498             vdwjidx0D        = 2*vdwtype[jnrD+0];
499
500             fjx0             = _mm_setzero_ps();
501             fjy0             = _mm_setzero_ps();
502             fjz0             = _mm_setzero_ps();
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (gmx_mm_any_lt(rsq00,rcutoff2))
509             {
510
511             r00              = _mm_mul_ps(rsq00,rinv00);
512             r00              = _mm_andnot_ps(dummy_mask,r00);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm_mul_ps(iq0,jq0);
516             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
517                                          vdwparam+vdwioffset0+vdwjidx0B,
518                                          vdwparam+vdwioffset0+vdwjidx0C,
519                                          vdwparam+vdwioffset0+vdwjidx0D,
520                                          &c6_00,&c12_00);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm_mul_ps(r00,ewtabscale);
526             ewitab           = _mm_cvttps_epi32(ewrt);
527             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
531             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
532             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
533             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
534             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
535             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
536             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
537             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
538
539             /* LENNARD-JONES DISPERSION/REPULSION */
540
541             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
542             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
543             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
544             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
545                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
546             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
547
548             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_and_ps(velec,cutoff_mask);
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
555             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
556             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
557
558             fscal            = _mm_add_ps(felec,fvdw);
559
560             fscal            = _mm_and_ps(fscal,cutoff_mask);
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_ps(fscal,dx00);
566             ty               = _mm_mul_ps(fscal,dy00);
567             tz               = _mm_mul_ps(fscal,dz00);
568
569             /* Update vectorial force */
570             fix0             = _mm_add_ps(fix0,tx);
571             fiy0             = _mm_add_ps(fiy0,ty);
572             fiz0             = _mm_add_ps(fiz0,tz);
573
574             fjx0             = _mm_add_ps(fjx0,tx);
575             fjy0             = _mm_add_ps(fjy0,ty);
576             fjz0             = _mm_add_ps(fjz0,tz);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq10,rcutoff2))
585             {
586
587             r10              = _mm_mul_ps(rsq10,rinv10);
588             r10              = _mm_andnot_ps(dummy_mask,r10);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq10             = _mm_mul_ps(iq1,jq0);
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = _mm_mul_ps(r10,ewtabscale);
597             ewitab           = _mm_cvttps_epi32(ewrt);
598             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
599             ewitab           = _mm_slli_epi32(ewitab,2);
600             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
601             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
602             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
603             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
604             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
605             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
606             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
607             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
608             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
609
610             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm_and_ps(velec,cutoff_mask);
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_and_ps(fscal,cutoff_mask);
620
621             fscal            = _mm_andnot_ps(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_ps(fscal,dx10);
625             ty               = _mm_mul_ps(fscal,dy10);
626             tz               = _mm_mul_ps(fscal,dz10);
627
628             /* Update vectorial force */
629             fix1             = _mm_add_ps(fix1,tx);
630             fiy1             = _mm_add_ps(fiy1,ty);
631             fiz1             = _mm_add_ps(fiz1,tz);
632
633             fjx0             = _mm_add_ps(fjx0,tx);
634             fjy0             = _mm_add_ps(fjy0,ty);
635             fjz0             = _mm_add_ps(fjz0,tz);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm_any_lt(rsq20,rcutoff2))
644             {
645
646             r20              = _mm_mul_ps(rsq20,rinv20);
647             r20              = _mm_andnot_ps(dummy_mask,r20);
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq20             = _mm_mul_ps(iq2,jq0);
651
652             /* EWALD ELECTROSTATICS */
653
654             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
655             ewrt             = _mm_mul_ps(r20,ewtabscale);
656             ewitab           = _mm_cvttps_epi32(ewrt);
657             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
658             ewitab           = _mm_slli_epi32(ewitab,2);
659             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
660             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
661             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
662             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
663             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
664             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
665             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
666             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
667             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
668
669             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
670
671             /* Update potential sum for this i atom from the interaction with this j atom. */
672             velec            = _mm_and_ps(velec,cutoff_mask);
673             velec            = _mm_andnot_ps(dummy_mask,velec);
674             velecsum         = _mm_add_ps(velecsum,velec);
675
676             fscal            = felec;
677
678             fscal            = _mm_and_ps(fscal,cutoff_mask);
679
680             fscal            = _mm_andnot_ps(dummy_mask,fscal);
681
682             /* Calculate temporary vectorial force */
683             tx               = _mm_mul_ps(fscal,dx20);
684             ty               = _mm_mul_ps(fscal,dy20);
685             tz               = _mm_mul_ps(fscal,dz20);
686
687             /* Update vectorial force */
688             fix2             = _mm_add_ps(fix2,tx);
689             fiy2             = _mm_add_ps(fiy2,ty);
690             fiz2             = _mm_add_ps(fiz2,tz);
691
692             fjx0             = _mm_add_ps(fjx0,tx);
693             fjy0             = _mm_add_ps(fjy0,ty);
694             fjz0             = _mm_add_ps(fjz0,tz);
695
696             }
697
698             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
699             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
700             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
701             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
702
703             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
704
705             /* Inner loop uses 159 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
711                                               f+i_coord_offset,fshift+i_shift_offset);
712
713         ggid                        = gid[iidx];
714         /* Update potential energies */
715         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
716         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
717
718         /* Increment number of inner iterations */
719         inneriter                  += j_index_end - j_index_start;
720
721         /* Outer loop uses 20 flops */
722     }
723
724     /* Increment number of outer iterations */
725     outeriter        += nri;
726
727     /* Update outer/inner flops */
728
729     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
730 }
731 /*
732  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
733  * Electrostatics interaction: Ewald
734  * VdW interaction:            LennardJones
735  * Geometry:                   Water3-Particle
736  * Calculate force/pot:        Force
737  */
738 void
739 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
740                     (t_nblist                    * gmx_restrict       nlist,
741                      rvec                        * gmx_restrict          xx,
742                      rvec                        * gmx_restrict          ff,
743                      t_forcerec                  * gmx_restrict          fr,
744                      t_mdatoms                   * gmx_restrict     mdatoms,
745                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
746                      t_nrnb                      * gmx_restrict        nrnb)
747 {
748     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
749      * just 0 for non-waters.
750      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
751      * jnr indices corresponding to data put in the four positions in the SIMD register.
752      */
753     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
754     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
755     int              jnrA,jnrB,jnrC,jnrD;
756     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
757     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
758     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
759     real             rcutoff_scalar;
760     real             *shiftvec,*fshift,*x,*f;
761     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
762     real             scratch[4*DIM];
763     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
764     int              vdwioffset0;
765     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
766     int              vdwioffset1;
767     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
768     int              vdwioffset2;
769     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
770     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
771     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
772     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
773     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
774     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
775     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
776     real             *charge;
777     int              nvdwtype;
778     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
779     int              *vdwtype;
780     real             *vdwparam;
781     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
782     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
783     __m128i          ewitab;
784     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
785     real             *ewtab;
786     __m128           dummy_mask,cutoff_mask;
787     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
788     __m128           one     = _mm_set1_ps(1.0);
789     __m128           two     = _mm_set1_ps(2.0);
790     x                = xx[0];
791     f                = ff[0];
792
793     nri              = nlist->nri;
794     iinr             = nlist->iinr;
795     jindex           = nlist->jindex;
796     jjnr             = nlist->jjnr;
797     shiftidx         = nlist->shift;
798     gid              = nlist->gid;
799     shiftvec         = fr->shift_vec[0];
800     fshift           = fr->fshift[0];
801     facel            = _mm_set1_ps(fr->epsfac);
802     charge           = mdatoms->chargeA;
803     nvdwtype         = fr->ntype;
804     vdwparam         = fr->nbfp;
805     vdwtype          = mdatoms->typeA;
806
807     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
808     ewtab            = fr->ic->tabq_coul_F;
809     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
810     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
811
812     /* Setup water-specific parameters */
813     inr              = nlist->iinr[0];
814     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
815     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
816     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
817     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
818
819     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
820     rcutoff_scalar   = fr->rcoulomb;
821     rcutoff          = _mm_set1_ps(rcutoff_scalar);
822     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
823
824     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
825     rvdw             = _mm_set1_ps(fr->rvdw);
826
827     /* Avoid stupid compiler warnings */
828     jnrA = jnrB = jnrC = jnrD = 0;
829     j_coord_offsetA = 0;
830     j_coord_offsetB = 0;
831     j_coord_offsetC = 0;
832     j_coord_offsetD = 0;
833
834     outeriter        = 0;
835     inneriter        = 0;
836
837     for(iidx=0;iidx<4*DIM;iidx++)
838     {
839         scratch[iidx] = 0.0;
840     }
841
842     /* Start outer loop over neighborlists */
843     for(iidx=0; iidx<nri; iidx++)
844     {
845         /* Load shift vector for this list */
846         i_shift_offset   = DIM*shiftidx[iidx];
847
848         /* Load limits for loop over neighbors */
849         j_index_start    = jindex[iidx];
850         j_index_end      = jindex[iidx+1];
851
852         /* Get outer coordinate index */
853         inr              = iinr[iidx];
854         i_coord_offset   = DIM*inr;
855
856         /* Load i particle coords and add shift vector */
857         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
858                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
859
860         fix0             = _mm_setzero_ps();
861         fiy0             = _mm_setzero_ps();
862         fiz0             = _mm_setzero_ps();
863         fix1             = _mm_setzero_ps();
864         fiy1             = _mm_setzero_ps();
865         fiz1             = _mm_setzero_ps();
866         fix2             = _mm_setzero_ps();
867         fiy2             = _mm_setzero_ps();
868         fiz2             = _mm_setzero_ps();
869
870         /* Start inner kernel loop */
871         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
872         {
873
874             /* Get j neighbor index, and coordinate index */
875             jnrA             = jjnr[jidx];
876             jnrB             = jjnr[jidx+1];
877             jnrC             = jjnr[jidx+2];
878             jnrD             = jjnr[jidx+3];
879             j_coord_offsetA  = DIM*jnrA;
880             j_coord_offsetB  = DIM*jnrB;
881             j_coord_offsetC  = DIM*jnrC;
882             j_coord_offsetD  = DIM*jnrD;
883
884             /* load j atom coordinates */
885             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
886                                               x+j_coord_offsetC,x+j_coord_offsetD,
887                                               &jx0,&jy0,&jz0);
888
889             /* Calculate displacement vector */
890             dx00             = _mm_sub_ps(ix0,jx0);
891             dy00             = _mm_sub_ps(iy0,jy0);
892             dz00             = _mm_sub_ps(iz0,jz0);
893             dx10             = _mm_sub_ps(ix1,jx0);
894             dy10             = _mm_sub_ps(iy1,jy0);
895             dz10             = _mm_sub_ps(iz1,jz0);
896             dx20             = _mm_sub_ps(ix2,jx0);
897             dy20             = _mm_sub_ps(iy2,jy0);
898             dz20             = _mm_sub_ps(iz2,jz0);
899
900             /* Calculate squared distance and things based on it */
901             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
902             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
903             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
904
905             rinv00           = gmx_mm_invsqrt_ps(rsq00);
906             rinv10           = gmx_mm_invsqrt_ps(rsq10);
907             rinv20           = gmx_mm_invsqrt_ps(rsq20);
908
909             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
910             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
911             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
912
913             /* Load parameters for j particles */
914             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
915                                                               charge+jnrC+0,charge+jnrD+0);
916             vdwjidx0A        = 2*vdwtype[jnrA+0];
917             vdwjidx0B        = 2*vdwtype[jnrB+0];
918             vdwjidx0C        = 2*vdwtype[jnrC+0];
919             vdwjidx0D        = 2*vdwtype[jnrD+0];
920
921             fjx0             = _mm_setzero_ps();
922             fjy0             = _mm_setzero_ps();
923             fjz0             = _mm_setzero_ps();
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             if (gmx_mm_any_lt(rsq00,rcutoff2))
930             {
931
932             r00              = _mm_mul_ps(rsq00,rinv00);
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq00             = _mm_mul_ps(iq0,jq0);
936             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
937                                          vdwparam+vdwioffset0+vdwjidx0B,
938                                          vdwparam+vdwioffset0+vdwjidx0C,
939                                          vdwparam+vdwioffset0+vdwjidx0D,
940                                          &c6_00,&c12_00);
941
942             /* EWALD ELECTROSTATICS */
943
944             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
945             ewrt             = _mm_mul_ps(r00,ewtabscale);
946             ewitab           = _mm_cvttps_epi32(ewrt);
947             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
948             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
949                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
950                                          &ewtabF,&ewtabFn);
951             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
952             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
953
954             /* LENNARD-JONES DISPERSION/REPULSION */
955
956             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
957             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
958
959             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
960
961             fscal            = _mm_add_ps(felec,fvdw);
962
963             fscal            = _mm_and_ps(fscal,cutoff_mask);
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_ps(fscal,dx00);
967             ty               = _mm_mul_ps(fscal,dy00);
968             tz               = _mm_mul_ps(fscal,dz00);
969
970             /* Update vectorial force */
971             fix0             = _mm_add_ps(fix0,tx);
972             fiy0             = _mm_add_ps(fiy0,ty);
973             fiz0             = _mm_add_ps(fiz0,tz);
974
975             fjx0             = _mm_add_ps(fjx0,tx);
976             fjy0             = _mm_add_ps(fjy0,ty);
977             fjz0             = _mm_add_ps(fjz0,tz);
978
979             }
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             if (gmx_mm_any_lt(rsq10,rcutoff2))
986             {
987
988             r10              = _mm_mul_ps(rsq10,rinv10);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq10             = _mm_mul_ps(iq1,jq0);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm_mul_ps(r10,ewtabscale);
997             ewitab           = _mm_cvttps_epi32(ewrt);
998             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
999             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1000                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1001                                          &ewtabF,&ewtabFn);
1002             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1003             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1004
1005             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1006
1007             fscal            = felec;
1008
1009             fscal            = _mm_and_ps(fscal,cutoff_mask);
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_ps(fscal,dx10);
1013             ty               = _mm_mul_ps(fscal,dy10);
1014             tz               = _mm_mul_ps(fscal,dz10);
1015
1016             /* Update vectorial force */
1017             fix1             = _mm_add_ps(fix1,tx);
1018             fiy1             = _mm_add_ps(fiy1,ty);
1019             fiz1             = _mm_add_ps(fiz1,tz);
1020
1021             fjx0             = _mm_add_ps(fjx0,tx);
1022             fjy0             = _mm_add_ps(fjy0,ty);
1023             fjz0             = _mm_add_ps(fjz0,tz);
1024
1025             }
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             if (gmx_mm_any_lt(rsq20,rcutoff2))
1032             {
1033
1034             r20              = _mm_mul_ps(rsq20,rinv20);
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq20             = _mm_mul_ps(iq2,jq0);
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1042             ewrt             = _mm_mul_ps(r20,ewtabscale);
1043             ewitab           = _mm_cvttps_epi32(ewrt);
1044             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1045             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1046                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1047                                          &ewtabF,&ewtabFn);
1048             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1049             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1050
1051             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm_and_ps(fscal,cutoff_mask);
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm_mul_ps(fscal,dx20);
1059             ty               = _mm_mul_ps(fscal,dy20);
1060             tz               = _mm_mul_ps(fscal,dz20);
1061
1062             /* Update vectorial force */
1063             fix2             = _mm_add_ps(fix2,tx);
1064             fiy2             = _mm_add_ps(fiy2,ty);
1065             fiz2             = _mm_add_ps(fiz2,tz);
1066
1067             fjx0             = _mm_add_ps(fjx0,tx);
1068             fjy0             = _mm_add_ps(fjy0,ty);
1069             fjz0             = _mm_add_ps(fjz0,tz);
1070
1071             }
1072
1073             fjptrA             = f+j_coord_offsetA;
1074             fjptrB             = f+j_coord_offsetB;
1075             fjptrC             = f+j_coord_offsetC;
1076             fjptrD             = f+j_coord_offsetD;
1077
1078             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1079
1080             /* Inner loop uses 124 flops */
1081         }
1082
1083         if(jidx<j_index_end)
1084         {
1085
1086             /* Get j neighbor index, and coordinate index */
1087             jnrlistA         = jjnr[jidx];
1088             jnrlistB         = jjnr[jidx+1];
1089             jnrlistC         = jjnr[jidx+2];
1090             jnrlistD         = jjnr[jidx+3];
1091             /* Sign of each element will be negative for non-real atoms.
1092              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1093              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1094              */
1095             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1096             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1097             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1098             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1099             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1100             j_coord_offsetA  = DIM*jnrA;
1101             j_coord_offsetB  = DIM*jnrB;
1102             j_coord_offsetC  = DIM*jnrC;
1103             j_coord_offsetD  = DIM*jnrD;
1104
1105             /* load j atom coordinates */
1106             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1107                                               x+j_coord_offsetC,x+j_coord_offsetD,
1108                                               &jx0,&jy0,&jz0);
1109
1110             /* Calculate displacement vector */
1111             dx00             = _mm_sub_ps(ix0,jx0);
1112             dy00             = _mm_sub_ps(iy0,jy0);
1113             dz00             = _mm_sub_ps(iz0,jz0);
1114             dx10             = _mm_sub_ps(ix1,jx0);
1115             dy10             = _mm_sub_ps(iy1,jy0);
1116             dz10             = _mm_sub_ps(iz1,jz0);
1117             dx20             = _mm_sub_ps(ix2,jx0);
1118             dy20             = _mm_sub_ps(iy2,jy0);
1119             dz20             = _mm_sub_ps(iz2,jz0);
1120
1121             /* Calculate squared distance and things based on it */
1122             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1123             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1124             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1125
1126             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1127             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1128             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1129
1130             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1131             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1132             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1133
1134             /* Load parameters for j particles */
1135             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1136                                                               charge+jnrC+0,charge+jnrD+0);
1137             vdwjidx0A        = 2*vdwtype[jnrA+0];
1138             vdwjidx0B        = 2*vdwtype[jnrB+0];
1139             vdwjidx0C        = 2*vdwtype[jnrC+0];
1140             vdwjidx0D        = 2*vdwtype[jnrD+0];
1141
1142             fjx0             = _mm_setzero_ps();
1143             fjy0             = _mm_setzero_ps();
1144             fjz0             = _mm_setzero_ps();
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             if (gmx_mm_any_lt(rsq00,rcutoff2))
1151             {
1152
1153             r00              = _mm_mul_ps(rsq00,rinv00);
1154             r00              = _mm_andnot_ps(dummy_mask,r00);
1155
1156             /* Compute parameters for interactions between i and j atoms */
1157             qq00             = _mm_mul_ps(iq0,jq0);
1158             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1159                                          vdwparam+vdwioffset0+vdwjidx0B,
1160                                          vdwparam+vdwioffset0+vdwjidx0C,
1161                                          vdwparam+vdwioffset0+vdwjidx0D,
1162                                          &c6_00,&c12_00);
1163
1164             /* EWALD ELECTROSTATICS */
1165
1166             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1167             ewrt             = _mm_mul_ps(r00,ewtabscale);
1168             ewitab           = _mm_cvttps_epi32(ewrt);
1169             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1170             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1171                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1172                                          &ewtabF,&ewtabFn);
1173             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1174             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1175
1176             /* LENNARD-JONES DISPERSION/REPULSION */
1177
1178             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1179             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1180
1181             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1182
1183             fscal            = _mm_add_ps(felec,fvdw);
1184
1185             fscal            = _mm_and_ps(fscal,cutoff_mask);
1186
1187             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1188
1189             /* Calculate temporary vectorial force */
1190             tx               = _mm_mul_ps(fscal,dx00);
1191             ty               = _mm_mul_ps(fscal,dy00);
1192             tz               = _mm_mul_ps(fscal,dz00);
1193
1194             /* Update vectorial force */
1195             fix0             = _mm_add_ps(fix0,tx);
1196             fiy0             = _mm_add_ps(fiy0,ty);
1197             fiz0             = _mm_add_ps(fiz0,tz);
1198
1199             fjx0             = _mm_add_ps(fjx0,tx);
1200             fjy0             = _mm_add_ps(fjy0,ty);
1201             fjz0             = _mm_add_ps(fjz0,tz);
1202
1203             }
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             if (gmx_mm_any_lt(rsq10,rcutoff2))
1210             {
1211
1212             r10              = _mm_mul_ps(rsq10,rinv10);
1213             r10              = _mm_andnot_ps(dummy_mask,r10);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             qq10             = _mm_mul_ps(iq1,jq0);
1217
1218             /* EWALD ELECTROSTATICS */
1219
1220             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1221             ewrt             = _mm_mul_ps(r10,ewtabscale);
1222             ewitab           = _mm_cvttps_epi32(ewrt);
1223             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1224             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1225                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1226                                          &ewtabF,&ewtabFn);
1227             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1228             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1229
1230             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1231
1232             fscal            = felec;
1233
1234             fscal            = _mm_and_ps(fscal,cutoff_mask);
1235
1236             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1237
1238             /* Calculate temporary vectorial force */
1239             tx               = _mm_mul_ps(fscal,dx10);
1240             ty               = _mm_mul_ps(fscal,dy10);
1241             tz               = _mm_mul_ps(fscal,dz10);
1242
1243             /* Update vectorial force */
1244             fix1             = _mm_add_ps(fix1,tx);
1245             fiy1             = _mm_add_ps(fiy1,ty);
1246             fiz1             = _mm_add_ps(fiz1,tz);
1247
1248             fjx0             = _mm_add_ps(fjx0,tx);
1249             fjy0             = _mm_add_ps(fjy0,ty);
1250             fjz0             = _mm_add_ps(fjz0,tz);
1251
1252             }
1253
1254             /**************************
1255              * CALCULATE INTERACTIONS *
1256              **************************/
1257
1258             if (gmx_mm_any_lt(rsq20,rcutoff2))
1259             {
1260
1261             r20              = _mm_mul_ps(rsq20,rinv20);
1262             r20              = _mm_andnot_ps(dummy_mask,r20);
1263
1264             /* Compute parameters for interactions between i and j atoms */
1265             qq20             = _mm_mul_ps(iq2,jq0);
1266
1267             /* EWALD ELECTROSTATICS */
1268
1269             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1270             ewrt             = _mm_mul_ps(r20,ewtabscale);
1271             ewitab           = _mm_cvttps_epi32(ewrt);
1272             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1273             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1274                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1275                                          &ewtabF,&ewtabFn);
1276             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1277             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1278
1279             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_and_ps(fscal,cutoff_mask);
1284
1285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_ps(fscal,dx20);
1289             ty               = _mm_mul_ps(fscal,dy20);
1290             tz               = _mm_mul_ps(fscal,dz20);
1291
1292             /* Update vectorial force */
1293             fix2             = _mm_add_ps(fix2,tx);
1294             fiy2             = _mm_add_ps(fiy2,ty);
1295             fiz2             = _mm_add_ps(fiz2,tz);
1296
1297             fjx0             = _mm_add_ps(fjx0,tx);
1298             fjy0             = _mm_add_ps(fjy0,ty);
1299             fjz0             = _mm_add_ps(fjz0,tz);
1300
1301             }
1302
1303             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1304             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1305             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1306             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1307
1308             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1309
1310             /* Inner loop uses 127 flops */
1311         }
1312
1313         /* End of innermost loop */
1314
1315         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1316                                               f+i_coord_offset,fshift+i_shift_offset);
1317
1318         /* Increment number of inner iterations */
1319         inneriter                  += j_index_end - j_index_start;
1320
1321         /* Outer loop uses 18 flops */
1322     }
1323
1324     /* Increment number of outer iterations */
1325     outeriter        += nri;
1326
1327     /* Update outer/inner flops */
1328
1329     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1330 }