Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
120     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
121     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_ps(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168         fix1             = _mm_setzero_ps();
169         fiy1             = _mm_setzero_ps();
170         fiz1             = _mm_setzero_ps();
171         fix2             = _mm_setzero_ps();
172         fiy2             = _mm_setzero_ps();
173         fiz2             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_ps(rsq00);
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217
218             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
219             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
220             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm_any_lt(rsq00,rcutoff2))
235             {
236
237             r00              = _mm_mul_ps(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_ps(iq0,jq0);
241             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,
243                                          vdwparam+vdwioffset0+vdwjidx0C,
244                                          vdwparam+vdwioffset0+vdwjidx0D,
245                                          &c6_00,&c12_00);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm_mul_ps(r00,ewtabscale);
251             ewitab           = _mm_cvttps_epi32(ewrt);
252             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
256             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
257             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
258             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
259             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
260             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
261             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
262             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
268             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
270                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
271             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
272
273             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_ps(velec,cutoff_mask);
277             velecsum         = _mm_add_ps(velecsum,velec);
278             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             fscal            = _mm_and_ps(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx00);
287             ty               = _mm_mul_ps(fscal,dy00);
288             tz               = _mm_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_ps(fix0,tx);
292             fiy0             = _mm_add_ps(fiy0,ty);
293             fiz0             = _mm_add_ps(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301             }
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm_any_lt(rsq10,rcutoff2))
308             {
309
310             r10              = _mm_mul_ps(rsq10,rinv10);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm_mul_ps(iq1,jq0);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm_mul_ps(r10,ewtabscale);
319             ewitab           = _mm_cvttps_epi32(ewrt);
320             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
321             ewitab           = _mm_slli_epi32(ewitab,2);
322             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
323             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
324             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
325             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
326             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
327             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
328             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
329             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
330             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
331
332             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velec            = _mm_and_ps(velec,cutoff_mask);
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340             fscal            = _mm_and_ps(fscal,cutoff_mask);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm_mul_ps(fscal,dx10);
344             ty               = _mm_mul_ps(fscal,dy10);
345             tz               = _mm_mul_ps(fscal,dz10);
346
347             /* Update vectorial force */
348             fix1             = _mm_add_ps(fix1,tx);
349             fiy1             = _mm_add_ps(fiy1,ty);
350             fiz1             = _mm_add_ps(fiz1,tz);
351
352             fjptrA             = f+j_coord_offsetA;
353             fjptrB             = f+j_coord_offsetB;
354             fjptrC             = f+j_coord_offsetC;
355             fjptrD             = f+j_coord_offsetD;
356             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm_any_lt(rsq20,rcutoff2))
365             {
366
367             r20              = _mm_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_ps(r20,ewtabscale);
376             ewitab           = _mm_cvttps_epi32(ewrt);
377             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
383             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
385             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
386             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
387             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
388
389             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm_and_ps(velec,cutoff_mask);
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm_and_ps(fscal,cutoff_mask);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx20);
401             ty               = _mm_mul_ps(fscal,dy20);
402             tz               = _mm_mul_ps(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm_add_ps(fix2,tx);
406             fiy2             = _mm_add_ps(fiy2,ty);
407             fiz2             = _mm_add_ps(fiz2,tz);
408
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
414
415             }
416
417             /* Inner loop uses 156 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             /* Get j neighbor index, and coordinate index */
424             jnrlistA         = jjnr[jidx];
425             jnrlistB         = jjnr[jidx+1];
426             jnrlistC         = jjnr[jidx+2];
427             jnrlistD         = jjnr[jidx+3];
428             /* Sign of each element will be negative for non-real atoms.
429              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
430              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
431              */
432             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
433             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
434             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
435             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
436             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
437             j_coord_offsetA  = DIM*jnrA;
438             j_coord_offsetB  = DIM*jnrB;
439             j_coord_offsetC  = DIM*jnrC;
440             j_coord_offsetD  = DIM*jnrD;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444                                               x+j_coord_offsetC,x+j_coord_offsetD,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_ps(ix0,jx0);
449             dy00             = _mm_sub_ps(iy0,jy0);
450             dz00             = _mm_sub_ps(iz0,jz0);
451             dx10             = _mm_sub_ps(ix1,jx0);
452             dy10             = _mm_sub_ps(iy1,jy0);
453             dz10             = _mm_sub_ps(iz1,jz0);
454             dx20             = _mm_sub_ps(ix2,jx0);
455             dy20             = _mm_sub_ps(iy2,jy0);
456             dz20             = _mm_sub_ps(iz2,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
462
463             rinv00           = gmx_mm_invsqrt_ps(rsq00);
464             rinv10           = gmx_mm_invsqrt_ps(rsq10);
465             rinv20           = gmx_mm_invsqrt_ps(rsq20);
466
467             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
468             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
469             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
470
471             /* Load parameters for j particles */
472             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
473                                                               charge+jnrC+0,charge+jnrD+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475             vdwjidx0B        = 2*vdwtype[jnrB+0];
476             vdwjidx0C        = 2*vdwtype[jnrC+0];
477             vdwjidx0D        = 2*vdwtype[jnrD+0];
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             if (gmx_mm_any_lt(rsq00,rcutoff2))
484             {
485
486             r00              = _mm_mul_ps(rsq00,rinv00);
487             r00              = _mm_andnot_ps(dummy_mask,r00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq00             = _mm_mul_ps(iq0,jq0);
491             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
492                                          vdwparam+vdwioffset0+vdwjidx0B,
493                                          vdwparam+vdwioffset0+vdwjidx0C,
494                                          vdwparam+vdwioffset0+vdwjidx0D,
495                                          &c6_00,&c12_00);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_ps(r00,ewtabscale);
501             ewitab           = _mm_cvttps_epi32(ewrt);
502             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
503             ewitab           = _mm_slli_epi32(ewitab,2);
504             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
505             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
506             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
507             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
508             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
509             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
510             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
511             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
512             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
518             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
519             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
520                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
521             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
522
523             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm_and_ps(velec,cutoff_mask);
527             velec            = _mm_andnot_ps(dummy_mask,velec);
528             velecsum         = _mm_add_ps(velecsum,velec);
529             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
530             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
531             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
532
533             fscal            = _mm_add_ps(felec,fvdw);
534
535             fscal            = _mm_and_ps(fscal,cutoff_mask);
536
537             fscal            = _mm_andnot_ps(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_ps(fscal,dx00);
541             ty               = _mm_mul_ps(fscal,dy00);
542             tz               = _mm_mul_ps(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm_add_ps(fix0,tx);
546             fiy0             = _mm_add_ps(fiy0,ty);
547             fiz0             = _mm_add_ps(fiz0,tz);
548
549             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
550             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
551             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
552             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
553             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq10,rcutoff2))
562             {
563
564             r10              = _mm_mul_ps(rsq10,rinv10);
565             r10              = _mm_andnot_ps(dummy_mask,r10);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm_mul_ps(iq1,jq0);
569
570             /* EWALD ELECTROSTATICS */
571
572             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
573             ewrt             = _mm_mul_ps(r10,ewtabscale);
574             ewitab           = _mm_cvttps_epi32(ewrt);
575             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
576             ewitab           = _mm_slli_epi32(ewitab,2);
577             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
578             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
579             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
580             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
581             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
582             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
583             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
584             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
585             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
586
587             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
588
589             /* Update potential sum for this i atom from the interaction with this j atom. */
590             velec            = _mm_and_ps(velec,cutoff_mask);
591             velec            = _mm_andnot_ps(dummy_mask,velec);
592             velecsum         = _mm_add_ps(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_and_ps(fscal,cutoff_mask);
597
598             fscal            = _mm_andnot_ps(dummy_mask,fscal);
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_ps(fscal,dx10);
602             ty               = _mm_mul_ps(fscal,dy10);
603             tz               = _mm_mul_ps(fscal,dz10);
604
605             /* Update vectorial force */
606             fix1             = _mm_add_ps(fix1,tx);
607             fiy1             = _mm_add_ps(fiy1,ty);
608             fiz1             = _mm_add_ps(fiz1,tz);
609
610             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
611             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
612             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
613             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
614             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
615
616             }
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             if (gmx_mm_any_lt(rsq20,rcutoff2))
623             {
624
625             r20              = _mm_mul_ps(rsq20,rinv20);
626             r20              = _mm_andnot_ps(dummy_mask,r20);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq20             = _mm_mul_ps(iq2,jq0);
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = _mm_mul_ps(r20,ewtabscale);
635             ewitab           = _mm_cvttps_epi32(ewrt);
636             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
640             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
641             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
642             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
643             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
644             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
645             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
646             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
647
648             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_and_ps(velec,cutoff_mask);
652             velec            = _mm_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_ps(fscal,cutoff_mask);
658
659             fscal            = _mm_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_ps(fscal,dx20);
663             ty               = _mm_mul_ps(fscal,dy20);
664             tz               = _mm_mul_ps(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm_add_ps(fix2,tx);
668             fiy2             = _mm_add_ps(fiy2,ty);
669             fiz2             = _mm_add_ps(fiz2,tz);
670
671             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
672             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
673             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
674             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
675             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
676
677             }
678
679             /* Inner loop uses 159 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 20 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
707  * Electrostatics interaction: Ewald
708  * VdW interaction:            LennardJones
709  * Geometry:                   Water3-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
714                     (t_nblist * gmx_restrict                nlist,
715                      rvec * gmx_restrict                    xx,
716                      rvec * gmx_restrict                    ff,
717                      t_forcerec * gmx_restrict              fr,
718                      t_mdatoms * gmx_restrict               mdatoms,
719                      nb_kernel_data_t * gmx_restrict        kernel_data,
720                      t_nrnb * gmx_restrict                  nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
723      * just 0 for non-waters.
724      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB,jnrC,jnrD;
730     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
731     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
732     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
733     real             rcutoff_scalar;
734     real             *shiftvec,*fshift,*x,*f;
735     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
736     real             scratch[4*DIM];
737     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
738     int              vdwioffset0;
739     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
740     int              vdwioffset1;
741     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
742     int              vdwioffset2;
743     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
744     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
745     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
746     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
747     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
748     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
749     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     int              nvdwtype;
752     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
753     int              *vdwtype;
754     real             *vdwparam;
755     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
756     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
757     __m128i          ewitab;
758     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
759     real             *ewtab;
760     __m128           dummy_mask,cutoff_mask;
761     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
762     __m128           one     = _mm_set1_ps(1.0);
763     __m128           two     = _mm_set1_ps(2.0);
764     x                = xx[0];
765     f                = ff[0];
766
767     nri              = nlist->nri;
768     iinr             = nlist->iinr;
769     jindex           = nlist->jindex;
770     jjnr             = nlist->jjnr;
771     shiftidx         = nlist->shift;
772     gid              = nlist->gid;
773     shiftvec         = fr->shift_vec[0];
774     fshift           = fr->fshift[0];
775     facel            = _mm_set1_ps(fr->epsfac);
776     charge           = mdatoms->chargeA;
777     nvdwtype         = fr->ntype;
778     vdwparam         = fr->nbfp;
779     vdwtype          = mdatoms->typeA;
780
781     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
782     ewtab            = fr->ic->tabq_coul_F;
783     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
784     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
789     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
790     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
791     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
792
793     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
794     rcutoff_scalar   = fr->rcoulomb;
795     rcutoff          = _mm_set1_ps(rcutoff_scalar);
796     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
797
798     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
799     rvdw             = _mm_set1_ps(fr->rvdw);
800
801     /* Avoid stupid compiler warnings */
802     jnrA = jnrB = jnrC = jnrD = 0;
803     j_coord_offsetA = 0;
804     j_coord_offsetB = 0;
805     j_coord_offsetC = 0;
806     j_coord_offsetD = 0;
807
808     outeriter        = 0;
809     inneriter        = 0;
810
811     for(iidx=0;iidx<4*DIM;iidx++)
812     {
813         scratch[iidx] = 0.0;
814     }
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
832                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
833
834         fix0             = _mm_setzero_ps();
835         fiy0             = _mm_setzero_ps();
836         fiz0             = _mm_setzero_ps();
837         fix1             = _mm_setzero_ps();
838         fiy1             = _mm_setzero_ps();
839         fiz1             = _mm_setzero_ps();
840         fix2             = _mm_setzero_ps();
841         fiy2             = _mm_setzero_ps();
842         fiz2             = _mm_setzero_ps();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             jnrC             = jjnr[jidx+2];
852             jnrD             = jjnr[jidx+3];
853             j_coord_offsetA  = DIM*jnrA;
854             j_coord_offsetB  = DIM*jnrB;
855             j_coord_offsetC  = DIM*jnrC;
856             j_coord_offsetD  = DIM*jnrD;
857
858             /* load j atom coordinates */
859             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
860                                               x+j_coord_offsetC,x+j_coord_offsetD,
861                                               &jx0,&jy0,&jz0);
862
863             /* Calculate displacement vector */
864             dx00             = _mm_sub_ps(ix0,jx0);
865             dy00             = _mm_sub_ps(iy0,jy0);
866             dz00             = _mm_sub_ps(iz0,jz0);
867             dx10             = _mm_sub_ps(ix1,jx0);
868             dy10             = _mm_sub_ps(iy1,jy0);
869             dz10             = _mm_sub_ps(iz1,jz0);
870             dx20             = _mm_sub_ps(ix2,jx0);
871             dy20             = _mm_sub_ps(iy2,jy0);
872             dz20             = _mm_sub_ps(iz2,jz0);
873
874             /* Calculate squared distance and things based on it */
875             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
876             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
877             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
878
879             rinv00           = gmx_mm_invsqrt_ps(rsq00);
880             rinv10           = gmx_mm_invsqrt_ps(rsq10);
881             rinv20           = gmx_mm_invsqrt_ps(rsq20);
882
883             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
884             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
885             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
886
887             /* Load parameters for j particles */
888             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
889                                                               charge+jnrC+0,charge+jnrD+0);
890             vdwjidx0A        = 2*vdwtype[jnrA+0];
891             vdwjidx0B        = 2*vdwtype[jnrB+0];
892             vdwjidx0C        = 2*vdwtype[jnrC+0];
893             vdwjidx0D        = 2*vdwtype[jnrD+0];
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             if (gmx_mm_any_lt(rsq00,rcutoff2))
900             {
901
902             r00              = _mm_mul_ps(rsq00,rinv00);
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq00             = _mm_mul_ps(iq0,jq0);
906             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
907                                          vdwparam+vdwioffset0+vdwjidx0B,
908                                          vdwparam+vdwioffset0+vdwjidx0C,
909                                          vdwparam+vdwioffset0+vdwjidx0D,
910                                          &c6_00,&c12_00);
911
912             /* EWALD ELECTROSTATICS */
913
914             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
915             ewrt             = _mm_mul_ps(r00,ewtabscale);
916             ewitab           = _mm_cvttps_epi32(ewrt);
917             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
918             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
919                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
920                                          &ewtabF,&ewtabFn);
921             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
922             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
923
924             /* LENNARD-JONES DISPERSION/REPULSION */
925
926             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
927             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
928
929             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
930
931             fscal            = _mm_add_ps(felec,fvdw);
932
933             fscal            = _mm_and_ps(fscal,cutoff_mask);
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_ps(fscal,dx00);
937             ty               = _mm_mul_ps(fscal,dy00);
938             tz               = _mm_mul_ps(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm_add_ps(fix0,tx);
942             fiy0             = _mm_add_ps(fiy0,ty);
943             fiz0             = _mm_add_ps(fiz0,tz);
944
945             fjptrA             = f+j_coord_offsetA;
946             fjptrB             = f+j_coord_offsetB;
947             fjptrC             = f+j_coord_offsetC;
948             fjptrD             = f+j_coord_offsetD;
949             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
950
951             }
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             if (gmx_mm_any_lt(rsq10,rcutoff2))
958             {
959
960             r10              = _mm_mul_ps(rsq10,rinv10);
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm_mul_ps(iq1,jq0);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _mm_mul_ps(r10,ewtabscale);
969             ewitab           = _mm_cvttps_epi32(ewrt);
970             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
971             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
972                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
973                                          &ewtabF,&ewtabFn);
974             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
975             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
976
977             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
978
979             fscal            = felec;
980
981             fscal            = _mm_and_ps(fscal,cutoff_mask);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_ps(fscal,dx10);
985             ty               = _mm_mul_ps(fscal,dy10);
986             tz               = _mm_mul_ps(fscal,dz10);
987
988             /* Update vectorial force */
989             fix1             = _mm_add_ps(fix1,tx);
990             fiy1             = _mm_add_ps(fiy1,ty);
991             fiz1             = _mm_add_ps(fiz1,tz);
992
993             fjptrA             = f+j_coord_offsetA;
994             fjptrB             = f+j_coord_offsetB;
995             fjptrC             = f+j_coord_offsetC;
996             fjptrD             = f+j_coord_offsetD;
997             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (gmx_mm_any_lt(rsq20,rcutoff2))
1006             {
1007
1008             r20              = _mm_mul_ps(rsq20,rinv20);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq20             = _mm_mul_ps(iq2,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = _mm_mul_ps(r20,ewtabscale);
1017             ewitab           = _mm_cvttps_epi32(ewrt);
1018             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1019             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1020                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1021                                          &ewtabF,&ewtabFn);
1022             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1023             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1024
1025             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1026
1027             fscal            = felec;
1028
1029             fscal            = _mm_and_ps(fscal,cutoff_mask);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_ps(fscal,dx20);
1033             ty               = _mm_mul_ps(fscal,dy20);
1034             tz               = _mm_mul_ps(fscal,dz20);
1035
1036             /* Update vectorial force */
1037             fix2             = _mm_add_ps(fix2,tx);
1038             fiy2             = _mm_add_ps(fiy2,ty);
1039             fiz2             = _mm_add_ps(fiz2,tz);
1040
1041             fjptrA             = f+j_coord_offsetA;
1042             fjptrB             = f+j_coord_offsetB;
1043             fjptrC             = f+j_coord_offsetC;
1044             fjptrD             = f+j_coord_offsetD;
1045             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1046
1047             }
1048
1049             /* Inner loop uses 124 flops */
1050         }
1051
1052         if(jidx<j_index_end)
1053         {
1054
1055             /* Get j neighbor index, and coordinate index */
1056             jnrlistA         = jjnr[jidx];
1057             jnrlistB         = jjnr[jidx+1];
1058             jnrlistC         = jjnr[jidx+2];
1059             jnrlistD         = jjnr[jidx+3];
1060             /* Sign of each element will be negative for non-real atoms.
1061              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1062              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1063              */
1064             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1065             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1066             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1067             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1068             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1069             j_coord_offsetA  = DIM*jnrA;
1070             j_coord_offsetB  = DIM*jnrB;
1071             j_coord_offsetC  = DIM*jnrC;
1072             j_coord_offsetD  = DIM*jnrD;
1073
1074             /* load j atom coordinates */
1075             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1076                                               x+j_coord_offsetC,x+j_coord_offsetD,
1077                                               &jx0,&jy0,&jz0);
1078
1079             /* Calculate displacement vector */
1080             dx00             = _mm_sub_ps(ix0,jx0);
1081             dy00             = _mm_sub_ps(iy0,jy0);
1082             dz00             = _mm_sub_ps(iz0,jz0);
1083             dx10             = _mm_sub_ps(ix1,jx0);
1084             dy10             = _mm_sub_ps(iy1,jy0);
1085             dz10             = _mm_sub_ps(iz1,jz0);
1086             dx20             = _mm_sub_ps(ix2,jx0);
1087             dy20             = _mm_sub_ps(iy2,jy0);
1088             dz20             = _mm_sub_ps(iz2,jz0);
1089
1090             /* Calculate squared distance and things based on it */
1091             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1092             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1093             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1094
1095             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1096             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1097             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1098
1099             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1100             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1101             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1102
1103             /* Load parameters for j particles */
1104             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1105                                                               charge+jnrC+0,charge+jnrD+0);
1106             vdwjidx0A        = 2*vdwtype[jnrA+0];
1107             vdwjidx0B        = 2*vdwtype[jnrB+0];
1108             vdwjidx0C        = 2*vdwtype[jnrC+0];
1109             vdwjidx0D        = 2*vdwtype[jnrD+0];
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             if (gmx_mm_any_lt(rsq00,rcutoff2))
1116             {
1117
1118             r00              = _mm_mul_ps(rsq00,rinv00);
1119             r00              = _mm_andnot_ps(dummy_mask,r00);
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq00             = _mm_mul_ps(iq0,jq0);
1123             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1124                                          vdwparam+vdwioffset0+vdwjidx0B,
1125                                          vdwparam+vdwioffset0+vdwjidx0C,
1126                                          vdwparam+vdwioffset0+vdwjidx0D,
1127                                          &c6_00,&c12_00);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1132             ewrt             = _mm_mul_ps(r00,ewtabscale);
1133             ewitab           = _mm_cvttps_epi32(ewrt);
1134             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1135             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1136                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1137                                          &ewtabF,&ewtabFn);
1138             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1139             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1140
1141             /* LENNARD-JONES DISPERSION/REPULSION */
1142
1143             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1144             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1145
1146             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1147
1148             fscal            = _mm_add_ps(felec,fvdw);
1149
1150             fscal            = _mm_and_ps(fscal,cutoff_mask);
1151
1152             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm_mul_ps(fscal,dx00);
1156             ty               = _mm_mul_ps(fscal,dy00);
1157             tz               = _mm_mul_ps(fscal,dz00);
1158
1159             /* Update vectorial force */
1160             fix0             = _mm_add_ps(fix0,tx);
1161             fiy0             = _mm_add_ps(fiy0,ty);
1162             fiz0             = _mm_add_ps(fiz0,tz);
1163
1164             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1165             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1166             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1167             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1168             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1169
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm_any_lt(rsq10,rcutoff2))
1177             {
1178
1179             r10              = _mm_mul_ps(rsq10,rinv10);
1180             r10              = _mm_andnot_ps(dummy_mask,r10);
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm_mul_ps(iq1,jq0);
1184
1185             /* EWALD ELECTROSTATICS */
1186
1187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1188             ewrt             = _mm_mul_ps(r10,ewtabscale);
1189             ewitab           = _mm_cvttps_epi32(ewrt);
1190             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1191             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1192                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1193                                          &ewtabF,&ewtabFn);
1194             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1195             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1196
1197             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm_and_ps(fscal,cutoff_mask);
1202
1203             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = _mm_mul_ps(fscal,dx10);
1207             ty               = _mm_mul_ps(fscal,dy10);
1208             tz               = _mm_mul_ps(fscal,dz10);
1209
1210             /* Update vectorial force */
1211             fix1             = _mm_add_ps(fix1,tx);
1212             fiy1             = _mm_add_ps(fiy1,ty);
1213             fiz1             = _mm_add_ps(fiz1,tz);
1214
1215             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1216             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1217             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1218             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1219             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm_any_lt(rsq20,rcutoff2))
1228             {
1229
1230             r20              = _mm_mul_ps(rsq20,rinv20);
1231             r20              = _mm_andnot_ps(dummy_mask,r20);
1232
1233             /* Compute parameters for interactions between i and j atoms */
1234             qq20             = _mm_mul_ps(iq2,jq0);
1235
1236             /* EWALD ELECTROSTATICS */
1237
1238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1239             ewrt             = _mm_mul_ps(r20,ewtabscale);
1240             ewitab           = _mm_cvttps_epi32(ewrt);
1241             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1242             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1243                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1244                                          &ewtabF,&ewtabFn);
1245             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1246             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1247
1248             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm_and_ps(fscal,cutoff_mask);
1253
1254             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1255
1256             /* Calculate temporary vectorial force */
1257             tx               = _mm_mul_ps(fscal,dx20);
1258             ty               = _mm_mul_ps(fscal,dy20);
1259             tz               = _mm_mul_ps(fscal,dz20);
1260
1261             /* Update vectorial force */
1262             fix2             = _mm_add_ps(fix2,tx);
1263             fiy2             = _mm_add_ps(fiy2,ty);
1264             fiz2             = _mm_add_ps(fiz2,tz);
1265
1266             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1267             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1268             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1269             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1271
1272             }
1273
1274             /* Inner loop uses 127 flops */
1275         }
1276
1277         /* End of innermost loop */
1278
1279         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1280                                               f+i_coord_offset,fshift+i_shift_offset);
1281
1282         /* Increment number of inner iterations */
1283         inneriter                  += j_index_end - j_index_start;
1284
1285         /* Outer loop uses 18 flops */
1286     }
1287
1288     /* Increment number of outer iterations */
1289     outeriter        += nri;
1290
1291     /* Update outer/inner flops */
1292
1293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1294 }