Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           c6grid_00;
106     __m128           c6grid_10;
107     __m128           c6grid_20;
108     __m128           c6grid_30;
109     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     real             *vdwgridparam;
111     __m128           one_half  = _mm_set1_ps(0.5);
112     __m128           minus_one = _mm_set1_ps(-1.0);
113     __m128i          ewitab;
114     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     real             *ewtab;
116     __m128           dummy_mask,cutoff_mask;
117     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
118     __m128           one     = _mm_set1_ps(1.0);
119     __m128           two     = _mm_set1_ps(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_ps(fr->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136     vdwgridparam     = fr->ljpme_c6grid;
137     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
138     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
139     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
140
141     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
154     rcutoff_scalar   = fr->rcoulomb;
155     rcutoff          = _mm_set1_ps(rcutoff_scalar);
156     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
157
158     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
159     rvdw             = _mm_set1_ps(fr->rvdw);
160
161     /* Avoid stupid compiler warnings */
162     jnrA = jnrB = jnrC = jnrD = 0;
163     j_coord_offsetA = 0;
164     j_coord_offsetB = 0;
165     j_coord_offsetC = 0;
166     j_coord_offsetD = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
193
194         fix0             = _mm_setzero_ps();
195         fiy0             = _mm_setzero_ps();
196         fiz0             = _mm_setzero_ps();
197         fix1             = _mm_setzero_ps();
198         fiy1             = _mm_setzero_ps();
199         fiz1             = _mm_setzero_ps();
200         fix2             = _mm_setzero_ps();
201         fiy2             = _mm_setzero_ps();
202         fiz2             = _mm_setzero_ps();
203         fix3             = _mm_setzero_ps();
204         fiy3             = _mm_setzero_ps();
205         fiz3             = _mm_setzero_ps();
206
207         /* Reset potential sums */
208         velecsum         = _mm_setzero_ps();
209         vvdwsum          = _mm_setzero_ps();
210
211         /* Start inner kernel loop */
212         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
213         {
214
215             /* Get j neighbor index, and coordinate index */
216             jnrA             = jjnr[jidx];
217             jnrB             = jjnr[jidx+1];
218             jnrC             = jjnr[jidx+2];
219             jnrD             = jjnr[jidx+3];
220             j_coord_offsetA  = DIM*jnrA;
221             j_coord_offsetB  = DIM*jnrB;
222             j_coord_offsetC  = DIM*jnrC;
223             j_coord_offsetD  = DIM*jnrD;
224
225             /* load j atom coordinates */
226             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
227                                               x+j_coord_offsetC,x+j_coord_offsetD,
228                                               &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm_sub_ps(ix0,jx0);
232             dy00             = _mm_sub_ps(iy0,jy0);
233             dz00             = _mm_sub_ps(iz0,jz0);
234             dx10             = _mm_sub_ps(ix1,jx0);
235             dy10             = _mm_sub_ps(iy1,jy0);
236             dz10             = _mm_sub_ps(iz1,jz0);
237             dx20             = _mm_sub_ps(ix2,jx0);
238             dy20             = _mm_sub_ps(iy2,jy0);
239             dz20             = _mm_sub_ps(iz2,jz0);
240             dx30             = _mm_sub_ps(ix3,jx0);
241             dy30             = _mm_sub_ps(iy3,jy0);
242             dz30             = _mm_sub_ps(iz3,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
246             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
247             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
248             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
249
250             rinv00           = gmx_mm_invsqrt_ps(rsq00);
251             rinv10           = gmx_mm_invsqrt_ps(rsq10);
252             rinv20           = gmx_mm_invsqrt_ps(rsq20);
253             rinv30           = gmx_mm_invsqrt_ps(rsq30);
254
255             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
256             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
257             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
258             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
259
260             /* Load parameters for j particles */
261             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
262                                                               charge+jnrC+0,charge+jnrD+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267
268             fjx0             = _mm_setzero_ps();
269             fjy0             = _mm_setzero_ps();
270             fjz0             = _mm_setzero_ps();
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (gmx_mm_any_lt(rsq00,rcutoff2))
277             {
278
279             r00              = _mm_mul_ps(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
283                                          vdwparam+vdwioffset0+vdwjidx0B,
284                                          vdwparam+vdwioffset0+vdwjidx0C,
285                                          vdwparam+vdwioffset0+vdwjidx0D,
286                                          &c6_00,&c12_00);
287
288             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
289                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
290                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
291                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
292
293             /* Analytical LJ-PME */
294             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
296             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
297             exponent         = gmx_simd_exp_r(ewcljrsq);
298             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
299             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
300             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
301             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
302             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
303             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
304                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
305             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
306             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
307
308             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
312             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
313
314             fscal            = fvdw;
315
316             fscal            = _mm_and_ps(fscal,cutoff_mask);
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm_mul_ps(fscal,dx00);
320             ty               = _mm_mul_ps(fscal,dy00);
321             tz               = _mm_mul_ps(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm_add_ps(fix0,tx);
325             fiy0             = _mm_add_ps(fiy0,ty);
326             fiz0             = _mm_add_ps(fiz0,tz);
327
328             fjx0             = _mm_add_ps(fjx0,tx);
329             fjy0             = _mm_add_ps(fjy0,ty);
330             fjz0             = _mm_add_ps(fjz0,tz);
331
332             }
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (gmx_mm_any_lt(rsq10,rcutoff2))
339             {
340
341             r10              = _mm_mul_ps(rsq10,rinv10);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq10             = _mm_mul_ps(iq1,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
349             ewrt             = _mm_mul_ps(r10,ewtabscale);
350             ewitab           = _mm_cvttps_epi32(ewrt);
351             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
352             ewitab           = _mm_slli_epi32(ewitab,2);
353             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
354             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
355             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
356             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
357             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
358             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
359             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
360             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
361             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
362
363             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velec            = _mm_and_ps(velec,cutoff_mask);
367             velecsum         = _mm_add_ps(velecsum,velec);
368
369             fscal            = felec;
370
371             fscal            = _mm_and_ps(fscal,cutoff_mask);
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm_mul_ps(fscal,dx10);
375             ty               = _mm_mul_ps(fscal,dy10);
376             tz               = _mm_mul_ps(fscal,dz10);
377
378             /* Update vectorial force */
379             fix1             = _mm_add_ps(fix1,tx);
380             fiy1             = _mm_add_ps(fiy1,ty);
381             fiz1             = _mm_add_ps(fiz1,tz);
382
383             fjx0             = _mm_add_ps(fjx0,tx);
384             fjy0             = _mm_add_ps(fjy0,ty);
385             fjz0             = _mm_add_ps(fjz0,tz);
386
387             }
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             if (gmx_mm_any_lt(rsq20,rcutoff2))
394             {
395
396             r20              = _mm_mul_ps(rsq20,rinv20);
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq20             = _mm_mul_ps(iq2,jq0);
400
401             /* EWALD ELECTROSTATICS */
402
403             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
404             ewrt             = _mm_mul_ps(r20,ewtabscale);
405             ewitab           = _mm_cvttps_epi32(ewrt);
406             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
407             ewitab           = _mm_slli_epi32(ewitab,2);
408             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
409             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
410             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
411             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
412             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
413             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
414             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
415             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
416             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
417
418             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_ps(velec,cutoff_mask);
422             velecsum         = _mm_add_ps(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_and_ps(fscal,cutoff_mask);
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_ps(fscal,dx20);
430             ty               = _mm_mul_ps(fscal,dy20);
431             tz               = _mm_mul_ps(fscal,dz20);
432
433             /* Update vectorial force */
434             fix2             = _mm_add_ps(fix2,tx);
435             fiy2             = _mm_add_ps(fiy2,ty);
436             fiz2             = _mm_add_ps(fiz2,tz);
437
438             fjx0             = _mm_add_ps(fjx0,tx);
439             fjy0             = _mm_add_ps(fjy0,ty);
440             fjz0             = _mm_add_ps(fjz0,tz);
441
442             }
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             if (gmx_mm_any_lt(rsq30,rcutoff2))
449             {
450
451             r30              = _mm_mul_ps(rsq30,rinv30);
452
453             /* Compute parameters for interactions between i and j atoms */
454             qq30             = _mm_mul_ps(iq3,jq0);
455
456             /* EWALD ELECTROSTATICS */
457
458             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
459             ewrt             = _mm_mul_ps(r30,ewtabscale);
460             ewitab           = _mm_cvttps_epi32(ewrt);
461             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
462             ewitab           = _mm_slli_epi32(ewitab,2);
463             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
464             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
465             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
466             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
467             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
468             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
469             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
470             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
471             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
472
473             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_and_ps(velec,cutoff_mask);
477             velecsum         = _mm_add_ps(velecsum,velec);
478
479             fscal            = felec;
480
481             fscal            = _mm_and_ps(fscal,cutoff_mask);
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm_mul_ps(fscal,dx30);
485             ty               = _mm_mul_ps(fscal,dy30);
486             tz               = _mm_mul_ps(fscal,dz30);
487
488             /* Update vectorial force */
489             fix3             = _mm_add_ps(fix3,tx);
490             fiy3             = _mm_add_ps(fiy3,ty);
491             fiz3             = _mm_add_ps(fiz3,tz);
492
493             fjx0             = _mm_add_ps(fjx0,tx);
494             fjy0             = _mm_add_ps(fjy0,ty);
495             fjz0             = _mm_add_ps(fjz0,tz);
496
497             }
498
499             fjptrA             = f+j_coord_offsetA;
500             fjptrB             = f+j_coord_offsetB;
501             fjptrC             = f+j_coord_offsetC;
502             fjptrD             = f+j_coord_offsetD;
503
504             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
505
506             /* Inner loop uses 200 flops */
507         }
508
509         if(jidx<j_index_end)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrlistA         = jjnr[jidx];
514             jnrlistB         = jjnr[jidx+1];
515             jnrlistC         = jjnr[jidx+2];
516             jnrlistD         = jjnr[jidx+3];
517             /* Sign of each element will be negative for non-real atoms.
518              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
519              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
520              */
521             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
522             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
523             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
524             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
525             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
526             j_coord_offsetA  = DIM*jnrA;
527             j_coord_offsetB  = DIM*jnrB;
528             j_coord_offsetC  = DIM*jnrC;
529             j_coord_offsetD  = DIM*jnrD;
530
531             /* load j atom coordinates */
532             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
533                                               x+j_coord_offsetC,x+j_coord_offsetD,
534                                               &jx0,&jy0,&jz0);
535
536             /* Calculate displacement vector */
537             dx00             = _mm_sub_ps(ix0,jx0);
538             dy00             = _mm_sub_ps(iy0,jy0);
539             dz00             = _mm_sub_ps(iz0,jz0);
540             dx10             = _mm_sub_ps(ix1,jx0);
541             dy10             = _mm_sub_ps(iy1,jy0);
542             dz10             = _mm_sub_ps(iz1,jz0);
543             dx20             = _mm_sub_ps(ix2,jx0);
544             dy20             = _mm_sub_ps(iy2,jy0);
545             dz20             = _mm_sub_ps(iz2,jz0);
546             dx30             = _mm_sub_ps(ix3,jx0);
547             dy30             = _mm_sub_ps(iy3,jy0);
548             dz30             = _mm_sub_ps(iz3,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
552             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
553             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
554             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
555
556             rinv00           = gmx_mm_invsqrt_ps(rsq00);
557             rinv10           = gmx_mm_invsqrt_ps(rsq10);
558             rinv20           = gmx_mm_invsqrt_ps(rsq20);
559             rinv30           = gmx_mm_invsqrt_ps(rsq30);
560
561             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
562             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
563             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
564             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
565
566             /* Load parameters for j particles */
567             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
568                                                               charge+jnrC+0,charge+jnrD+0);
569             vdwjidx0A        = 2*vdwtype[jnrA+0];
570             vdwjidx0B        = 2*vdwtype[jnrB+0];
571             vdwjidx0C        = 2*vdwtype[jnrC+0];
572             vdwjidx0D        = 2*vdwtype[jnrD+0];
573
574             fjx0             = _mm_setzero_ps();
575             fjy0             = _mm_setzero_ps();
576             fjz0             = _mm_setzero_ps();
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (gmx_mm_any_lt(rsq00,rcutoff2))
583             {
584
585             r00              = _mm_mul_ps(rsq00,rinv00);
586             r00              = _mm_andnot_ps(dummy_mask,r00);
587
588             /* Compute parameters for interactions between i and j atoms */
589             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
590                                          vdwparam+vdwioffset0+vdwjidx0B,
591                                          vdwparam+vdwioffset0+vdwjidx0C,
592                                          vdwparam+vdwioffset0+vdwjidx0D,
593                                          &c6_00,&c12_00);
594
595             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
596                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
597                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
598                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
599
600             /* Analytical LJ-PME */
601             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
602             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
603             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
604             exponent         = gmx_simd_exp_r(ewcljrsq);
605             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
606             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
607             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
608             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
609             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
610             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
611                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
612             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
613             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
614
615             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
619             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
620             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
621
622             fscal            = fvdw;
623
624             fscal            = _mm_and_ps(fscal,cutoff_mask);
625
626             fscal            = _mm_andnot_ps(dummy_mask,fscal);
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm_mul_ps(fscal,dx00);
630             ty               = _mm_mul_ps(fscal,dy00);
631             tz               = _mm_mul_ps(fscal,dz00);
632
633             /* Update vectorial force */
634             fix0             = _mm_add_ps(fix0,tx);
635             fiy0             = _mm_add_ps(fiy0,ty);
636             fiz0             = _mm_add_ps(fiz0,tz);
637
638             fjx0             = _mm_add_ps(fjx0,tx);
639             fjy0             = _mm_add_ps(fjy0,ty);
640             fjz0             = _mm_add_ps(fjz0,tz);
641
642             }
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             if (gmx_mm_any_lt(rsq10,rcutoff2))
649             {
650
651             r10              = _mm_mul_ps(rsq10,rinv10);
652             r10              = _mm_andnot_ps(dummy_mask,r10);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq10             = _mm_mul_ps(iq1,jq0);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
660             ewrt             = _mm_mul_ps(r10,ewtabscale);
661             ewitab           = _mm_cvttps_epi32(ewrt);
662             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
663             ewitab           = _mm_slli_epi32(ewitab,2);
664             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
665             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
666             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
667             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
668             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
669             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
670             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
671             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
672             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
673
674             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_and_ps(velec,cutoff_mask);
678             velec            = _mm_andnot_ps(dummy_mask,velec);
679             velecsum         = _mm_add_ps(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm_and_ps(fscal,cutoff_mask);
684
685             fscal            = _mm_andnot_ps(dummy_mask,fscal);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm_mul_ps(fscal,dx10);
689             ty               = _mm_mul_ps(fscal,dy10);
690             tz               = _mm_mul_ps(fscal,dz10);
691
692             /* Update vectorial force */
693             fix1             = _mm_add_ps(fix1,tx);
694             fiy1             = _mm_add_ps(fiy1,ty);
695             fiz1             = _mm_add_ps(fiz1,tz);
696
697             fjx0             = _mm_add_ps(fjx0,tx);
698             fjy0             = _mm_add_ps(fjy0,ty);
699             fjz0             = _mm_add_ps(fjz0,tz);
700
701             }
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (gmx_mm_any_lt(rsq20,rcutoff2))
708             {
709
710             r20              = _mm_mul_ps(rsq20,rinv20);
711             r20              = _mm_andnot_ps(dummy_mask,r20);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq20             = _mm_mul_ps(iq2,jq0);
715
716             /* EWALD ELECTROSTATICS */
717
718             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
719             ewrt             = _mm_mul_ps(r20,ewtabscale);
720             ewitab           = _mm_cvttps_epi32(ewrt);
721             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
722             ewitab           = _mm_slli_epi32(ewitab,2);
723             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
724             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
725             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
726             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
727             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
728             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
729             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
730             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
731             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
732
733             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
734
735             /* Update potential sum for this i atom from the interaction with this j atom. */
736             velec            = _mm_and_ps(velec,cutoff_mask);
737             velec            = _mm_andnot_ps(dummy_mask,velec);
738             velecsum         = _mm_add_ps(velecsum,velec);
739
740             fscal            = felec;
741
742             fscal            = _mm_and_ps(fscal,cutoff_mask);
743
744             fscal            = _mm_andnot_ps(dummy_mask,fscal);
745
746             /* Calculate temporary vectorial force */
747             tx               = _mm_mul_ps(fscal,dx20);
748             ty               = _mm_mul_ps(fscal,dy20);
749             tz               = _mm_mul_ps(fscal,dz20);
750
751             /* Update vectorial force */
752             fix2             = _mm_add_ps(fix2,tx);
753             fiy2             = _mm_add_ps(fiy2,ty);
754             fiz2             = _mm_add_ps(fiz2,tz);
755
756             fjx0             = _mm_add_ps(fjx0,tx);
757             fjy0             = _mm_add_ps(fjy0,ty);
758             fjz0             = _mm_add_ps(fjz0,tz);
759
760             }
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             if (gmx_mm_any_lt(rsq30,rcutoff2))
767             {
768
769             r30              = _mm_mul_ps(rsq30,rinv30);
770             r30              = _mm_andnot_ps(dummy_mask,r30);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq30             = _mm_mul_ps(iq3,jq0);
774
775             /* EWALD ELECTROSTATICS */
776
777             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
778             ewrt             = _mm_mul_ps(r30,ewtabscale);
779             ewitab           = _mm_cvttps_epi32(ewrt);
780             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
781             ewitab           = _mm_slli_epi32(ewitab,2);
782             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
783             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
784             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
785             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
786             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
787             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
788             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
789             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
790             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
791
792             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
793
794             /* Update potential sum for this i atom from the interaction with this j atom. */
795             velec            = _mm_and_ps(velec,cutoff_mask);
796             velec            = _mm_andnot_ps(dummy_mask,velec);
797             velecsum         = _mm_add_ps(velecsum,velec);
798
799             fscal            = felec;
800
801             fscal            = _mm_and_ps(fscal,cutoff_mask);
802
803             fscal            = _mm_andnot_ps(dummy_mask,fscal);
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm_mul_ps(fscal,dx30);
807             ty               = _mm_mul_ps(fscal,dy30);
808             tz               = _mm_mul_ps(fscal,dz30);
809
810             /* Update vectorial force */
811             fix3             = _mm_add_ps(fix3,tx);
812             fiy3             = _mm_add_ps(fiy3,ty);
813             fiz3             = _mm_add_ps(fiz3,tz);
814
815             fjx0             = _mm_add_ps(fjx0,tx);
816             fjy0             = _mm_add_ps(fjy0,ty);
817             fjz0             = _mm_add_ps(fjz0,tz);
818
819             }
820
821             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
822             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
823             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
824             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
825
826             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
827
828             /* Inner loop uses 204 flops */
829         }
830
831         /* End of innermost loop */
832
833         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
834                                               f+i_coord_offset,fshift+i_shift_offset);
835
836         ggid                        = gid[iidx];
837         /* Update potential energies */
838         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
839         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
840
841         /* Increment number of inner iterations */
842         inneriter                  += j_index_end - j_index_start;
843
844         /* Outer loop uses 26 flops */
845     }
846
847     /* Increment number of outer iterations */
848     outeriter        += nri;
849
850     /* Update outer/inner flops */
851
852     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*204);
853 }
854 /*
855  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_single
856  * Electrostatics interaction: Ewald
857  * VdW interaction:            LJEwald
858  * Geometry:                   Water4-Particle
859  * Calculate force/pot:        Force
860  */
861 void
862 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_single
863                     (t_nblist                    * gmx_restrict       nlist,
864                      rvec                        * gmx_restrict          xx,
865                      rvec                        * gmx_restrict          ff,
866                      t_forcerec                  * gmx_restrict          fr,
867                      t_mdatoms                   * gmx_restrict     mdatoms,
868                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
869                      t_nrnb                      * gmx_restrict        nrnb)
870 {
871     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
872      * just 0 for non-waters.
873      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
874      * jnr indices corresponding to data put in the four positions in the SIMD register.
875      */
876     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
877     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
878     int              jnrA,jnrB,jnrC,jnrD;
879     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
880     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
881     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
882     real             rcutoff_scalar;
883     real             *shiftvec,*fshift,*x,*f;
884     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
885     real             scratch[4*DIM];
886     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
887     int              vdwioffset0;
888     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
889     int              vdwioffset1;
890     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
891     int              vdwioffset2;
892     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
893     int              vdwioffset3;
894     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
895     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
896     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
897     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
898     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
899     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
900     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
901     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
902     real             *charge;
903     int              nvdwtype;
904     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
905     int              *vdwtype;
906     real             *vdwparam;
907     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
908     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
909     __m128           c6grid_00;
910     __m128           c6grid_10;
911     __m128           c6grid_20;
912     __m128           c6grid_30;
913     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
914     real             *vdwgridparam;
915     __m128           one_half  = _mm_set1_ps(0.5);
916     __m128           minus_one = _mm_set1_ps(-1.0);
917     __m128i          ewitab;
918     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
919     real             *ewtab;
920     __m128           dummy_mask,cutoff_mask;
921     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
922     __m128           one     = _mm_set1_ps(1.0);
923     __m128           two     = _mm_set1_ps(2.0);
924     x                = xx[0];
925     f                = ff[0];
926
927     nri              = nlist->nri;
928     iinr             = nlist->iinr;
929     jindex           = nlist->jindex;
930     jjnr             = nlist->jjnr;
931     shiftidx         = nlist->shift;
932     gid              = nlist->gid;
933     shiftvec         = fr->shift_vec[0];
934     fshift           = fr->fshift[0];
935     facel            = _mm_set1_ps(fr->epsfac);
936     charge           = mdatoms->chargeA;
937     nvdwtype         = fr->ntype;
938     vdwparam         = fr->nbfp;
939     vdwtype          = mdatoms->typeA;
940     vdwgridparam     = fr->ljpme_c6grid;
941     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
942     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
943     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
944
945     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
946     ewtab            = fr->ic->tabq_coul_F;
947     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
948     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
949
950     /* Setup water-specific parameters */
951     inr              = nlist->iinr[0];
952     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
953     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
954     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
955     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
956
957     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
958     rcutoff_scalar   = fr->rcoulomb;
959     rcutoff          = _mm_set1_ps(rcutoff_scalar);
960     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
961
962     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
963     rvdw             = _mm_set1_ps(fr->rvdw);
964
965     /* Avoid stupid compiler warnings */
966     jnrA = jnrB = jnrC = jnrD = 0;
967     j_coord_offsetA = 0;
968     j_coord_offsetB = 0;
969     j_coord_offsetC = 0;
970     j_coord_offsetD = 0;
971
972     outeriter        = 0;
973     inneriter        = 0;
974
975     for(iidx=0;iidx<4*DIM;iidx++)
976     {
977         scratch[iidx] = 0.0;
978     }
979
980     /* Start outer loop over neighborlists */
981     for(iidx=0; iidx<nri; iidx++)
982     {
983         /* Load shift vector for this list */
984         i_shift_offset   = DIM*shiftidx[iidx];
985
986         /* Load limits for loop over neighbors */
987         j_index_start    = jindex[iidx];
988         j_index_end      = jindex[iidx+1];
989
990         /* Get outer coordinate index */
991         inr              = iinr[iidx];
992         i_coord_offset   = DIM*inr;
993
994         /* Load i particle coords and add shift vector */
995         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
996                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
997
998         fix0             = _mm_setzero_ps();
999         fiy0             = _mm_setzero_ps();
1000         fiz0             = _mm_setzero_ps();
1001         fix1             = _mm_setzero_ps();
1002         fiy1             = _mm_setzero_ps();
1003         fiz1             = _mm_setzero_ps();
1004         fix2             = _mm_setzero_ps();
1005         fiy2             = _mm_setzero_ps();
1006         fiz2             = _mm_setzero_ps();
1007         fix3             = _mm_setzero_ps();
1008         fiy3             = _mm_setzero_ps();
1009         fiz3             = _mm_setzero_ps();
1010
1011         /* Start inner kernel loop */
1012         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1013         {
1014
1015             /* Get j neighbor index, and coordinate index */
1016             jnrA             = jjnr[jidx];
1017             jnrB             = jjnr[jidx+1];
1018             jnrC             = jjnr[jidx+2];
1019             jnrD             = jjnr[jidx+3];
1020             j_coord_offsetA  = DIM*jnrA;
1021             j_coord_offsetB  = DIM*jnrB;
1022             j_coord_offsetC  = DIM*jnrC;
1023             j_coord_offsetD  = DIM*jnrD;
1024
1025             /* load j atom coordinates */
1026             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1027                                               x+j_coord_offsetC,x+j_coord_offsetD,
1028                                               &jx0,&jy0,&jz0);
1029
1030             /* Calculate displacement vector */
1031             dx00             = _mm_sub_ps(ix0,jx0);
1032             dy00             = _mm_sub_ps(iy0,jy0);
1033             dz00             = _mm_sub_ps(iz0,jz0);
1034             dx10             = _mm_sub_ps(ix1,jx0);
1035             dy10             = _mm_sub_ps(iy1,jy0);
1036             dz10             = _mm_sub_ps(iz1,jz0);
1037             dx20             = _mm_sub_ps(ix2,jx0);
1038             dy20             = _mm_sub_ps(iy2,jy0);
1039             dz20             = _mm_sub_ps(iz2,jz0);
1040             dx30             = _mm_sub_ps(ix3,jx0);
1041             dy30             = _mm_sub_ps(iy3,jy0);
1042             dz30             = _mm_sub_ps(iz3,jz0);
1043
1044             /* Calculate squared distance and things based on it */
1045             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1046             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1047             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1048             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1049
1050             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1051             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1052             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1053             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1054
1055             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1056             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1057             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1058             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1059
1060             /* Load parameters for j particles */
1061             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1062                                                               charge+jnrC+0,charge+jnrD+0);
1063             vdwjidx0A        = 2*vdwtype[jnrA+0];
1064             vdwjidx0B        = 2*vdwtype[jnrB+0];
1065             vdwjidx0C        = 2*vdwtype[jnrC+0];
1066             vdwjidx0D        = 2*vdwtype[jnrD+0];
1067
1068             fjx0             = _mm_setzero_ps();
1069             fjy0             = _mm_setzero_ps();
1070             fjz0             = _mm_setzero_ps();
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             if (gmx_mm_any_lt(rsq00,rcutoff2))
1077             {
1078
1079             r00              = _mm_mul_ps(rsq00,rinv00);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1083                                          vdwparam+vdwioffset0+vdwjidx0B,
1084                                          vdwparam+vdwioffset0+vdwjidx0C,
1085                                          vdwparam+vdwioffset0+vdwjidx0D,
1086                                          &c6_00,&c12_00);
1087
1088             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1089                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1090                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1091                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1092
1093             /* Analytical LJ-PME */
1094             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1095             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1096             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1097             exponent         = gmx_simd_exp_r(ewcljrsq);
1098             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1099             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1100             /* f6A = 6 * C6grid * (1 - poly) */
1101             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1102             /* f6B = C6grid * exponent * beta^6 */
1103             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1104             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1105             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1106
1107             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1108
1109             fscal            = fvdw;
1110
1111             fscal            = _mm_and_ps(fscal,cutoff_mask);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx00);
1115             ty               = _mm_mul_ps(fscal,dy00);
1116             tz               = _mm_mul_ps(fscal,dz00);
1117
1118             /* Update vectorial force */
1119             fix0             = _mm_add_ps(fix0,tx);
1120             fiy0             = _mm_add_ps(fiy0,ty);
1121             fiz0             = _mm_add_ps(fiz0,tz);
1122
1123             fjx0             = _mm_add_ps(fjx0,tx);
1124             fjy0             = _mm_add_ps(fjy0,ty);
1125             fjz0             = _mm_add_ps(fjz0,tz);
1126
1127             }
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             if (gmx_mm_any_lt(rsq10,rcutoff2))
1134             {
1135
1136             r10              = _mm_mul_ps(rsq10,rinv10);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq10             = _mm_mul_ps(iq1,jq0);
1140
1141             /* EWALD ELECTROSTATICS */
1142
1143             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1144             ewrt             = _mm_mul_ps(r10,ewtabscale);
1145             ewitab           = _mm_cvttps_epi32(ewrt);
1146             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1147             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1148                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1149                                          &ewtabF,&ewtabFn);
1150             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1151             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1152
1153             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1154
1155             fscal            = felec;
1156
1157             fscal            = _mm_and_ps(fscal,cutoff_mask);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm_mul_ps(fscal,dx10);
1161             ty               = _mm_mul_ps(fscal,dy10);
1162             tz               = _mm_mul_ps(fscal,dz10);
1163
1164             /* Update vectorial force */
1165             fix1             = _mm_add_ps(fix1,tx);
1166             fiy1             = _mm_add_ps(fiy1,ty);
1167             fiz1             = _mm_add_ps(fiz1,tz);
1168
1169             fjx0             = _mm_add_ps(fjx0,tx);
1170             fjy0             = _mm_add_ps(fjy0,ty);
1171             fjz0             = _mm_add_ps(fjz0,tz);
1172
1173             }
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             if (gmx_mm_any_lt(rsq20,rcutoff2))
1180             {
1181
1182             r20              = _mm_mul_ps(rsq20,rinv20);
1183
1184             /* Compute parameters for interactions between i and j atoms */
1185             qq20             = _mm_mul_ps(iq2,jq0);
1186
1187             /* EWALD ELECTROSTATICS */
1188
1189             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1190             ewrt             = _mm_mul_ps(r20,ewtabscale);
1191             ewitab           = _mm_cvttps_epi32(ewrt);
1192             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1193             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1194                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1195                                          &ewtabF,&ewtabFn);
1196             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1197             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1198
1199             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1200
1201             fscal            = felec;
1202
1203             fscal            = _mm_and_ps(fscal,cutoff_mask);
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = _mm_mul_ps(fscal,dx20);
1207             ty               = _mm_mul_ps(fscal,dy20);
1208             tz               = _mm_mul_ps(fscal,dz20);
1209
1210             /* Update vectorial force */
1211             fix2             = _mm_add_ps(fix2,tx);
1212             fiy2             = _mm_add_ps(fiy2,ty);
1213             fiz2             = _mm_add_ps(fiz2,tz);
1214
1215             fjx0             = _mm_add_ps(fjx0,tx);
1216             fjy0             = _mm_add_ps(fjy0,ty);
1217             fjz0             = _mm_add_ps(fjz0,tz);
1218
1219             }
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             if (gmx_mm_any_lt(rsq30,rcutoff2))
1226             {
1227
1228             r30              = _mm_mul_ps(rsq30,rinv30);
1229
1230             /* Compute parameters for interactions between i and j atoms */
1231             qq30             = _mm_mul_ps(iq3,jq0);
1232
1233             /* EWALD ELECTROSTATICS */
1234
1235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1236             ewrt             = _mm_mul_ps(r30,ewtabscale);
1237             ewitab           = _mm_cvttps_epi32(ewrt);
1238             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1239             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1240                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1241                                          &ewtabF,&ewtabFn);
1242             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1243             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1244
1245             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm_and_ps(fscal,cutoff_mask);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm_mul_ps(fscal,dx30);
1253             ty               = _mm_mul_ps(fscal,dy30);
1254             tz               = _mm_mul_ps(fscal,dz30);
1255
1256             /* Update vectorial force */
1257             fix3             = _mm_add_ps(fix3,tx);
1258             fiy3             = _mm_add_ps(fiy3,ty);
1259             fiz3             = _mm_add_ps(fiz3,tz);
1260
1261             fjx0             = _mm_add_ps(fjx0,tx);
1262             fjy0             = _mm_add_ps(fjy0,ty);
1263             fjz0             = _mm_add_ps(fjz0,tz);
1264
1265             }
1266
1267             fjptrA             = f+j_coord_offsetA;
1268             fjptrB             = f+j_coord_offsetB;
1269             fjptrC             = f+j_coord_offsetC;
1270             fjptrD             = f+j_coord_offsetD;
1271
1272             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1273
1274             /* Inner loop uses 166 flops */
1275         }
1276
1277         if(jidx<j_index_end)
1278         {
1279
1280             /* Get j neighbor index, and coordinate index */
1281             jnrlistA         = jjnr[jidx];
1282             jnrlistB         = jjnr[jidx+1];
1283             jnrlistC         = jjnr[jidx+2];
1284             jnrlistD         = jjnr[jidx+3];
1285             /* Sign of each element will be negative for non-real atoms.
1286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1287              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1288              */
1289             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1290             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1291             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1292             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1293             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1294             j_coord_offsetA  = DIM*jnrA;
1295             j_coord_offsetB  = DIM*jnrB;
1296             j_coord_offsetC  = DIM*jnrC;
1297             j_coord_offsetD  = DIM*jnrD;
1298
1299             /* load j atom coordinates */
1300             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1301                                               x+j_coord_offsetC,x+j_coord_offsetD,
1302                                               &jx0,&jy0,&jz0);
1303
1304             /* Calculate displacement vector */
1305             dx00             = _mm_sub_ps(ix0,jx0);
1306             dy00             = _mm_sub_ps(iy0,jy0);
1307             dz00             = _mm_sub_ps(iz0,jz0);
1308             dx10             = _mm_sub_ps(ix1,jx0);
1309             dy10             = _mm_sub_ps(iy1,jy0);
1310             dz10             = _mm_sub_ps(iz1,jz0);
1311             dx20             = _mm_sub_ps(ix2,jx0);
1312             dy20             = _mm_sub_ps(iy2,jy0);
1313             dz20             = _mm_sub_ps(iz2,jz0);
1314             dx30             = _mm_sub_ps(ix3,jx0);
1315             dy30             = _mm_sub_ps(iy3,jy0);
1316             dz30             = _mm_sub_ps(iz3,jz0);
1317
1318             /* Calculate squared distance and things based on it */
1319             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1320             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1321             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1322             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1323
1324             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1325             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1326             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1327             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1328
1329             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1330             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1331             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1332             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1333
1334             /* Load parameters for j particles */
1335             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1336                                                               charge+jnrC+0,charge+jnrD+0);
1337             vdwjidx0A        = 2*vdwtype[jnrA+0];
1338             vdwjidx0B        = 2*vdwtype[jnrB+0];
1339             vdwjidx0C        = 2*vdwtype[jnrC+0];
1340             vdwjidx0D        = 2*vdwtype[jnrD+0];
1341
1342             fjx0             = _mm_setzero_ps();
1343             fjy0             = _mm_setzero_ps();
1344             fjz0             = _mm_setzero_ps();
1345
1346             /**************************
1347              * CALCULATE INTERACTIONS *
1348              **************************/
1349
1350             if (gmx_mm_any_lt(rsq00,rcutoff2))
1351             {
1352
1353             r00              = _mm_mul_ps(rsq00,rinv00);
1354             r00              = _mm_andnot_ps(dummy_mask,r00);
1355
1356             /* Compute parameters for interactions between i and j atoms */
1357             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1358                                          vdwparam+vdwioffset0+vdwjidx0B,
1359                                          vdwparam+vdwioffset0+vdwjidx0C,
1360                                          vdwparam+vdwioffset0+vdwjidx0D,
1361                                          &c6_00,&c12_00);
1362
1363             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1364                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1365                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1366                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1367
1368             /* Analytical LJ-PME */
1369             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1370             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1371             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1372             exponent         = gmx_simd_exp_r(ewcljrsq);
1373             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1374             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1375             /* f6A = 6 * C6grid * (1 - poly) */
1376             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1377             /* f6B = C6grid * exponent * beta^6 */
1378             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1379             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1380             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1381
1382             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1383
1384             fscal            = fvdw;
1385
1386             fscal            = _mm_and_ps(fscal,cutoff_mask);
1387
1388             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1389
1390             /* Calculate temporary vectorial force */
1391             tx               = _mm_mul_ps(fscal,dx00);
1392             ty               = _mm_mul_ps(fscal,dy00);
1393             tz               = _mm_mul_ps(fscal,dz00);
1394
1395             /* Update vectorial force */
1396             fix0             = _mm_add_ps(fix0,tx);
1397             fiy0             = _mm_add_ps(fiy0,ty);
1398             fiz0             = _mm_add_ps(fiz0,tz);
1399
1400             fjx0             = _mm_add_ps(fjx0,tx);
1401             fjy0             = _mm_add_ps(fjy0,ty);
1402             fjz0             = _mm_add_ps(fjz0,tz);
1403
1404             }
1405
1406             /**************************
1407              * CALCULATE INTERACTIONS *
1408              **************************/
1409
1410             if (gmx_mm_any_lt(rsq10,rcutoff2))
1411             {
1412
1413             r10              = _mm_mul_ps(rsq10,rinv10);
1414             r10              = _mm_andnot_ps(dummy_mask,r10);
1415
1416             /* Compute parameters for interactions between i and j atoms */
1417             qq10             = _mm_mul_ps(iq1,jq0);
1418
1419             /* EWALD ELECTROSTATICS */
1420
1421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1422             ewrt             = _mm_mul_ps(r10,ewtabscale);
1423             ewitab           = _mm_cvttps_epi32(ewrt);
1424             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1425             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1426                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1427                                          &ewtabF,&ewtabFn);
1428             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1429             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1430
1431             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1432
1433             fscal            = felec;
1434
1435             fscal            = _mm_and_ps(fscal,cutoff_mask);
1436
1437             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1438
1439             /* Calculate temporary vectorial force */
1440             tx               = _mm_mul_ps(fscal,dx10);
1441             ty               = _mm_mul_ps(fscal,dy10);
1442             tz               = _mm_mul_ps(fscal,dz10);
1443
1444             /* Update vectorial force */
1445             fix1             = _mm_add_ps(fix1,tx);
1446             fiy1             = _mm_add_ps(fiy1,ty);
1447             fiz1             = _mm_add_ps(fiz1,tz);
1448
1449             fjx0             = _mm_add_ps(fjx0,tx);
1450             fjy0             = _mm_add_ps(fjy0,ty);
1451             fjz0             = _mm_add_ps(fjz0,tz);
1452
1453             }
1454
1455             /**************************
1456              * CALCULATE INTERACTIONS *
1457              **************************/
1458
1459             if (gmx_mm_any_lt(rsq20,rcutoff2))
1460             {
1461
1462             r20              = _mm_mul_ps(rsq20,rinv20);
1463             r20              = _mm_andnot_ps(dummy_mask,r20);
1464
1465             /* Compute parameters for interactions between i and j atoms */
1466             qq20             = _mm_mul_ps(iq2,jq0);
1467
1468             /* EWALD ELECTROSTATICS */
1469
1470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1471             ewrt             = _mm_mul_ps(r20,ewtabscale);
1472             ewitab           = _mm_cvttps_epi32(ewrt);
1473             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1474             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1475                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1476                                          &ewtabF,&ewtabFn);
1477             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1478             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1479
1480             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1481
1482             fscal            = felec;
1483
1484             fscal            = _mm_and_ps(fscal,cutoff_mask);
1485
1486             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1487
1488             /* Calculate temporary vectorial force */
1489             tx               = _mm_mul_ps(fscal,dx20);
1490             ty               = _mm_mul_ps(fscal,dy20);
1491             tz               = _mm_mul_ps(fscal,dz20);
1492
1493             /* Update vectorial force */
1494             fix2             = _mm_add_ps(fix2,tx);
1495             fiy2             = _mm_add_ps(fiy2,ty);
1496             fiz2             = _mm_add_ps(fiz2,tz);
1497
1498             fjx0             = _mm_add_ps(fjx0,tx);
1499             fjy0             = _mm_add_ps(fjy0,ty);
1500             fjz0             = _mm_add_ps(fjz0,tz);
1501
1502             }
1503
1504             /**************************
1505              * CALCULATE INTERACTIONS *
1506              **************************/
1507
1508             if (gmx_mm_any_lt(rsq30,rcutoff2))
1509             {
1510
1511             r30              = _mm_mul_ps(rsq30,rinv30);
1512             r30              = _mm_andnot_ps(dummy_mask,r30);
1513
1514             /* Compute parameters for interactions between i and j atoms */
1515             qq30             = _mm_mul_ps(iq3,jq0);
1516
1517             /* EWALD ELECTROSTATICS */
1518
1519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1520             ewrt             = _mm_mul_ps(r30,ewtabscale);
1521             ewitab           = _mm_cvttps_epi32(ewrt);
1522             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1523             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1524                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1525                                          &ewtabF,&ewtabFn);
1526             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1527             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1528
1529             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1530
1531             fscal            = felec;
1532
1533             fscal            = _mm_and_ps(fscal,cutoff_mask);
1534
1535             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1536
1537             /* Calculate temporary vectorial force */
1538             tx               = _mm_mul_ps(fscal,dx30);
1539             ty               = _mm_mul_ps(fscal,dy30);
1540             tz               = _mm_mul_ps(fscal,dz30);
1541
1542             /* Update vectorial force */
1543             fix3             = _mm_add_ps(fix3,tx);
1544             fiy3             = _mm_add_ps(fiy3,ty);
1545             fiz3             = _mm_add_ps(fiz3,tz);
1546
1547             fjx0             = _mm_add_ps(fjx0,tx);
1548             fjy0             = _mm_add_ps(fjy0,ty);
1549             fjz0             = _mm_add_ps(fjz0,tz);
1550
1551             }
1552
1553             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1554             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1555             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1556             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1557
1558             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1559
1560             /* Inner loop uses 170 flops */
1561         }
1562
1563         /* End of innermost loop */
1564
1565         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1566                                               f+i_coord_offset,fshift+i_shift_offset);
1567
1568         /* Increment number of inner iterations */
1569         inneriter                  += j_index_end - j_index_start;
1570
1571         /* Outer loop uses 24 flops */
1572     }
1573
1574     /* Increment number of outer iterations */
1575     outeriter        += nri;
1576
1577     /* Update outer/inner flops */
1578
1579     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*170);
1580 }