Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           c6grid_00;
102     __m128           c6grid_10;
103     __m128           c6grid_20;
104     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128           one_half  = _mm_set1_ps(0.5);
107     __m128           minus_one = _mm_set1_ps(-1.0);
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
144     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
145     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->ic->rcoulomb;
150     rcutoff          = _mm_set1_ps(rcutoff_scalar);
151     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
154     rvdw             = _mm_set1_ps(fr->ic->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
188
189         fix0             = _mm_setzero_ps();
190         fiy0             = _mm_setzero_ps();
191         fiz0             = _mm_setzero_ps();
192         fix1             = _mm_setzero_ps();
193         fiy1             = _mm_setzero_ps();
194         fiz1             = _mm_setzero_ps();
195         fix2             = _mm_setzero_ps();
196         fiy2             = _mm_setzero_ps();
197         fiz2             = _mm_setzero_ps();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_ps();
201         vvdwsum          = _mm_setzero_ps();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             j_coord_offsetA  = DIM*jnrA;
213             j_coord_offsetB  = DIM*jnrB;
214             j_coord_offsetC  = DIM*jnrC;
215             j_coord_offsetD  = DIM*jnrD;
216
217             /* load j atom coordinates */
218             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
219                                               x+j_coord_offsetC,x+j_coord_offsetD,
220                                               &jx0,&jy0,&jz0);
221
222             /* Calculate displacement vector */
223             dx00             = _mm_sub_ps(ix0,jx0);
224             dy00             = _mm_sub_ps(iy0,jy0);
225             dz00             = _mm_sub_ps(iz0,jz0);
226             dx10             = _mm_sub_ps(ix1,jx0);
227             dy10             = _mm_sub_ps(iy1,jy0);
228             dz10             = _mm_sub_ps(iz1,jz0);
229             dx20             = _mm_sub_ps(ix2,jx0);
230             dy20             = _mm_sub_ps(iy2,jy0);
231             dz20             = _mm_sub_ps(iz2,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
235             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
237
238             rinv00           = sse41_invsqrt_f(rsq00);
239             rinv10           = sse41_invsqrt_f(rsq10);
240             rinv20           = sse41_invsqrt_f(rsq20);
241
242             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
243             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
244             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
248                                                               charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm_setzero_ps();
255             fjy0             = _mm_setzero_ps();
256             fjz0             = _mm_setzero_ps();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (gmx_mm_any_lt(rsq00,rcutoff2))
263             {
264
265             r00              = _mm_mul_ps(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm_mul_ps(iq0,jq0);
269             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
270                                          vdwparam+vdwioffset0+vdwjidx0B,
271                                          vdwparam+vdwioffset0+vdwjidx0C,
272                                          vdwparam+vdwioffset0+vdwjidx0D,
273                                          &c6_00,&c12_00);
274
275             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
276                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
277                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
283             ewrt             = _mm_mul_ps(r00,ewtabscale);
284             ewitab           = _mm_cvttps_epi32(ewrt);
285             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
286             ewitab           = _mm_slli_epi32(ewitab,2);
287             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
288             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
289             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
290             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
291             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
292             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
293             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
294             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
295             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
296
297             /* Analytical LJ-PME */
298             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
299             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
300             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
301             exponent         = sse41_exp_f(ewcljrsq);
302             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
303             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
304             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
305             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
306             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
307             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
308                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
309             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
310             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
311
312             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_and_ps(velec,cutoff_mask);
316             velecsum         = _mm_add_ps(velecsum,velec);
317             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
318             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
319
320             fscal            = _mm_add_ps(felec,fvdw);
321
322             fscal            = _mm_and_ps(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_ps(fscal,dx00);
326             ty               = _mm_mul_ps(fscal,dy00);
327             tz               = _mm_mul_ps(fscal,dz00);
328
329             /* Update vectorial force */
330             fix0             = _mm_add_ps(fix0,tx);
331             fiy0             = _mm_add_ps(fiy0,ty);
332             fiz0             = _mm_add_ps(fiz0,tz);
333
334             fjx0             = _mm_add_ps(fjx0,tx);
335             fjy0             = _mm_add_ps(fjy0,ty);
336             fjz0             = _mm_add_ps(fjz0,tz);
337
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm_any_lt(rsq10,rcutoff2))
345             {
346
347             r10              = _mm_mul_ps(rsq10,rinv10);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq10             = _mm_mul_ps(iq1,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm_mul_ps(r10,ewtabscale);
356             ewitab           = _mm_cvttps_epi32(ewrt);
357             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
358             ewitab           = _mm_slli_epi32(ewitab,2);
359             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
360             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
361             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
362             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
363             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
364             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
365             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
366             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
367             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
368
369             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             fscal            = _mm_and_ps(fscal,cutoff_mask);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_ps(fscal,dx10);
381             ty               = _mm_mul_ps(fscal,dy10);
382             tz               = _mm_mul_ps(fscal,dz10);
383
384             /* Update vectorial force */
385             fix1             = _mm_add_ps(fix1,tx);
386             fiy1             = _mm_add_ps(fiy1,ty);
387             fiz1             = _mm_add_ps(fiz1,tz);
388
389             fjx0             = _mm_add_ps(fjx0,tx);
390             fjy0             = _mm_add_ps(fjy0,ty);
391             fjz0             = _mm_add_ps(fjz0,tz);
392
393             }
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm_any_lt(rsq20,rcutoff2))
400             {
401
402             r20              = _mm_mul_ps(rsq20,rinv20);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq20             = _mm_mul_ps(iq2,jq0);
406
407             /* EWALD ELECTROSTATICS */
408
409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
410             ewrt             = _mm_mul_ps(r20,ewtabscale);
411             ewitab           = _mm_cvttps_epi32(ewrt);
412             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
413             ewitab           = _mm_slli_epi32(ewitab,2);
414             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
415             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
416             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
417             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
418             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
419             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
420             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
421             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
422             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
423
424             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm_and_ps(velec,cutoff_mask);
428             velecsum         = _mm_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             fscal            = _mm_and_ps(fscal,cutoff_mask);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx20);
436             ty               = _mm_mul_ps(fscal,dy20);
437             tz               = _mm_mul_ps(fscal,dz20);
438
439             /* Update vectorial force */
440             fix2             = _mm_add_ps(fix2,tx);
441             fiy2             = _mm_add_ps(fiy2,ty);
442             fiz2             = _mm_add_ps(fiz2,tz);
443
444             fjx0             = _mm_add_ps(fjx0,tx);
445             fjy0             = _mm_add_ps(fjy0,ty);
446             fjz0             = _mm_add_ps(fjz0,tz);
447
448             }
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 174 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               x+j_coord_offsetC,x+j_coord_offsetD,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_ps(ix0,jx0);
489             dy00             = _mm_sub_ps(iy0,jy0);
490             dz00             = _mm_sub_ps(iz0,jz0);
491             dx10             = _mm_sub_ps(ix1,jx0);
492             dy10             = _mm_sub_ps(iy1,jy0);
493             dz10             = _mm_sub_ps(iz1,jz0);
494             dx20             = _mm_sub_ps(ix2,jx0);
495             dy20             = _mm_sub_ps(iy2,jy0);
496             dz20             = _mm_sub_ps(iz2,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
502
503             rinv00           = sse41_invsqrt_f(rsq00);
504             rinv10           = sse41_invsqrt_f(rsq10);
505             rinv20           = sse41_invsqrt_f(rsq20);
506
507             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
508             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
509             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
513                                                               charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             fjx0             = _mm_setzero_ps();
520             fjy0             = _mm_setzero_ps();
521             fjz0             = _mm_setzero_ps();
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             if (gmx_mm_any_lt(rsq00,rcutoff2))
528             {
529
530             r00              = _mm_mul_ps(rsq00,rinv00);
531             r00              = _mm_andnot_ps(dummy_mask,r00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm_mul_ps(iq0,jq0);
535             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,
537                                          vdwparam+vdwioffset0+vdwjidx0C,
538                                          vdwparam+vdwioffset0+vdwjidx0D,
539                                          &c6_00,&c12_00);
540
541             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
542                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
545
546             /* EWALD ELECTROSTATICS */
547
548             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
549             ewrt             = _mm_mul_ps(r00,ewtabscale);
550             ewitab           = _mm_cvttps_epi32(ewrt);
551             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
552             ewitab           = _mm_slli_epi32(ewitab,2);
553             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
554             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
555             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
556             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
557             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
558             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
559             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
560             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
561             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
562
563             /* Analytical LJ-PME */
564             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
565             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
566             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
567             exponent         = sse41_exp_f(ewcljrsq);
568             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
569             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
570             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
571             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
572             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
573             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
574                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
575             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
576             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
577
578             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
579
580             /* Update potential sum for this i atom from the interaction with this j atom. */
581             velec            = _mm_and_ps(velec,cutoff_mask);
582             velec            = _mm_andnot_ps(dummy_mask,velec);
583             velecsum         = _mm_add_ps(velecsum,velec);
584             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
585             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
586             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
587
588             fscal            = _mm_add_ps(felec,fvdw);
589
590             fscal            = _mm_and_ps(fscal,cutoff_mask);
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx00);
596             ty               = _mm_mul_ps(fscal,dy00);
597             tz               = _mm_mul_ps(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm_add_ps(fix0,tx);
601             fiy0             = _mm_add_ps(fiy0,ty);
602             fiz0             = _mm_add_ps(fiz0,tz);
603
604             fjx0             = _mm_add_ps(fjx0,tx);
605             fjy0             = _mm_add_ps(fjy0,ty);
606             fjz0             = _mm_add_ps(fjz0,tz);
607
608             }
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             if (gmx_mm_any_lt(rsq10,rcutoff2))
615             {
616
617             r10              = _mm_mul_ps(rsq10,rinv10);
618             r10              = _mm_andnot_ps(dummy_mask,r10);
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq10             = _mm_mul_ps(iq1,jq0);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_ps(r10,ewtabscale);
627             ewitab           = _mm_cvttps_epi32(ewrt);
628             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
632             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
633             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
634             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
635             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
636             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
637             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
638             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
639
640             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
641
642             /* Update potential sum for this i atom from the interaction with this j atom. */
643             velec            = _mm_and_ps(velec,cutoff_mask);
644             velec            = _mm_andnot_ps(dummy_mask,velec);
645             velecsum         = _mm_add_ps(velecsum,velec);
646
647             fscal            = felec;
648
649             fscal            = _mm_and_ps(fscal,cutoff_mask);
650
651             fscal            = _mm_andnot_ps(dummy_mask,fscal);
652
653             /* Calculate temporary vectorial force */
654             tx               = _mm_mul_ps(fscal,dx10);
655             ty               = _mm_mul_ps(fscal,dy10);
656             tz               = _mm_mul_ps(fscal,dz10);
657
658             /* Update vectorial force */
659             fix1             = _mm_add_ps(fix1,tx);
660             fiy1             = _mm_add_ps(fiy1,ty);
661             fiz1             = _mm_add_ps(fiz1,tz);
662
663             fjx0             = _mm_add_ps(fjx0,tx);
664             fjy0             = _mm_add_ps(fjy0,ty);
665             fjz0             = _mm_add_ps(fjz0,tz);
666
667             }
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             if (gmx_mm_any_lt(rsq20,rcutoff2))
674             {
675
676             r20              = _mm_mul_ps(rsq20,rinv20);
677             r20              = _mm_andnot_ps(dummy_mask,r20);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq20             = _mm_mul_ps(iq2,jq0);
681
682             /* EWALD ELECTROSTATICS */
683
684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
685             ewrt             = _mm_mul_ps(r20,ewtabscale);
686             ewitab           = _mm_cvttps_epi32(ewrt);
687             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
688             ewitab           = _mm_slli_epi32(ewitab,2);
689             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
690             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
691             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
692             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
693             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
694             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
695             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
696             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
697             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
698
699             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
700
701             /* Update potential sum for this i atom from the interaction with this j atom. */
702             velec            = _mm_and_ps(velec,cutoff_mask);
703             velec            = _mm_andnot_ps(dummy_mask,velec);
704             velecsum         = _mm_add_ps(velecsum,velec);
705
706             fscal            = felec;
707
708             fscal            = _mm_and_ps(fscal,cutoff_mask);
709
710             fscal            = _mm_andnot_ps(dummy_mask,fscal);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm_mul_ps(fscal,dx20);
714             ty               = _mm_mul_ps(fscal,dy20);
715             tz               = _mm_mul_ps(fscal,dz20);
716
717             /* Update vectorial force */
718             fix2             = _mm_add_ps(fix2,tx);
719             fiy2             = _mm_add_ps(fiy2,ty);
720             fiz2             = _mm_add_ps(fiz2,tz);
721
722             fjx0             = _mm_add_ps(fjx0,tx);
723             fjy0             = _mm_add_ps(fjy0,ty);
724             fjz0             = _mm_add_ps(fjz0,tz);
725
726             }
727
728             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
729             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
730             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
731             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
732
733             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
734
735             /* Inner loop uses 177 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         ggid                        = gid[iidx];
744         /* Update potential energies */
745         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
746         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
747
748         /* Increment number of inner iterations */
749         inneriter                  += j_index_end - j_index_start;
750
751         /* Outer loop uses 20 flops */
752     }
753
754     /* Increment number of outer iterations */
755     outeriter        += nri;
756
757     /* Update outer/inner flops */
758
759     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
760 }
761 /*
762  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
763  * Electrostatics interaction: Ewald
764  * VdW interaction:            LJEwald
765  * Geometry:                   Water3-Particle
766  * Calculate force/pot:        Force
767  */
768 void
769 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
770                     (t_nblist                    * gmx_restrict       nlist,
771                      rvec                        * gmx_restrict          xx,
772                      rvec                        * gmx_restrict          ff,
773                      struct t_forcerec           * gmx_restrict          fr,
774                      t_mdatoms                   * gmx_restrict     mdatoms,
775                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
776                      t_nrnb                      * gmx_restrict        nrnb)
777 {
778     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
779      * just 0 for non-waters.
780      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
781      * jnr indices corresponding to data put in the four positions in the SIMD register.
782      */
783     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
784     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
785     int              jnrA,jnrB,jnrC,jnrD;
786     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
787     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
788     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
789     real             rcutoff_scalar;
790     real             *shiftvec,*fshift,*x,*f;
791     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
792     real             scratch[4*DIM];
793     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
794     int              vdwioffset0;
795     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
796     int              vdwioffset1;
797     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
798     int              vdwioffset2;
799     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
800     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
801     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
802     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
803     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
804     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
805     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
806     real             *charge;
807     int              nvdwtype;
808     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
809     int              *vdwtype;
810     real             *vdwparam;
811     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
812     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
813     __m128           c6grid_00;
814     __m128           c6grid_10;
815     __m128           c6grid_20;
816     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
817     real             *vdwgridparam;
818     __m128           one_half  = _mm_set1_ps(0.5);
819     __m128           minus_one = _mm_set1_ps(-1.0);
820     __m128i          ewitab;
821     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
822     real             *ewtab;
823     __m128           dummy_mask,cutoff_mask;
824     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
825     __m128           one     = _mm_set1_ps(1.0);
826     __m128           two     = _mm_set1_ps(2.0);
827     x                = xx[0];
828     f                = ff[0];
829
830     nri              = nlist->nri;
831     iinr             = nlist->iinr;
832     jindex           = nlist->jindex;
833     jjnr             = nlist->jjnr;
834     shiftidx         = nlist->shift;
835     gid              = nlist->gid;
836     shiftvec         = fr->shift_vec[0];
837     fshift           = fr->fshift[0];
838     facel            = _mm_set1_ps(fr->ic->epsfac);
839     charge           = mdatoms->chargeA;
840     nvdwtype         = fr->ntype;
841     vdwparam         = fr->nbfp;
842     vdwtype          = mdatoms->typeA;
843     vdwgridparam     = fr->ljpme_c6grid;
844     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
845     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
846     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
847
848     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
849     ewtab            = fr->ic->tabq_coul_F;
850     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
851     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
852
853     /* Setup water-specific parameters */
854     inr              = nlist->iinr[0];
855     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
856     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
857     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
858     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
859
860     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
861     rcutoff_scalar   = fr->ic->rcoulomb;
862     rcutoff          = _mm_set1_ps(rcutoff_scalar);
863     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
864
865     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
866     rvdw             = _mm_set1_ps(fr->ic->rvdw);
867
868     /* Avoid stupid compiler warnings */
869     jnrA = jnrB = jnrC = jnrD = 0;
870     j_coord_offsetA = 0;
871     j_coord_offsetB = 0;
872     j_coord_offsetC = 0;
873     j_coord_offsetD = 0;
874
875     outeriter        = 0;
876     inneriter        = 0;
877
878     for(iidx=0;iidx<4*DIM;iidx++)
879     {
880         scratch[iidx] = 0.0;
881     }
882
883     /* Start outer loop over neighborlists */
884     for(iidx=0; iidx<nri; iidx++)
885     {
886         /* Load shift vector for this list */
887         i_shift_offset   = DIM*shiftidx[iidx];
888
889         /* Load limits for loop over neighbors */
890         j_index_start    = jindex[iidx];
891         j_index_end      = jindex[iidx+1];
892
893         /* Get outer coordinate index */
894         inr              = iinr[iidx];
895         i_coord_offset   = DIM*inr;
896
897         /* Load i particle coords and add shift vector */
898         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
899                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
900
901         fix0             = _mm_setzero_ps();
902         fiy0             = _mm_setzero_ps();
903         fiz0             = _mm_setzero_ps();
904         fix1             = _mm_setzero_ps();
905         fiy1             = _mm_setzero_ps();
906         fiz1             = _mm_setzero_ps();
907         fix2             = _mm_setzero_ps();
908         fiy2             = _mm_setzero_ps();
909         fiz2             = _mm_setzero_ps();
910
911         /* Start inner kernel loop */
912         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
913         {
914
915             /* Get j neighbor index, and coordinate index */
916             jnrA             = jjnr[jidx];
917             jnrB             = jjnr[jidx+1];
918             jnrC             = jjnr[jidx+2];
919             jnrD             = jjnr[jidx+3];
920             j_coord_offsetA  = DIM*jnrA;
921             j_coord_offsetB  = DIM*jnrB;
922             j_coord_offsetC  = DIM*jnrC;
923             j_coord_offsetD  = DIM*jnrD;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
927                                               x+j_coord_offsetC,x+j_coord_offsetD,
928                                               &jx0,&jy0,&jz0);
929
930             /* Calculate displacement vector */
931             dx00             = _mm_sub_ps(ix0,jx0);
932             dy00             = _mm_sub_ps(iy0,jy0);
933             dz00             = _mm_sub_ps(iz0,jz0);
934             dx10             = _mm_sub_ps(ix1,jx0);
935             dy10             = _mm_sub_ps(iy1,jy0);
936             dz10             = _mm_sub_ps(iz1,jz0);
937             dx20             = _mm_sub_ps(ix2,jx0);
938             dy20             = _mm_sub_ps(iy2,jy0);
939             dz20             = _mm_sub_ps(iz2,jz0);
940
941             /* Calculate squared distance and things based on it */
942             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
943             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
944             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
945
946             rinv00           = sse41_invsqrt_f(rsq00);
947             rinv10           = sse41_invsqrt_f(rsq10);
948             rinv20           = sse41_invsqrt_f(rsq20);
949
950             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
951             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
952             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
953
954             /* Load parameters for j particles */
955             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
956                                                               charge+jnrC+0,charge+jnrD+0);
957             vdwjidx0A        = 2*vdwtype[jnrA+0];
958             vdwjidx0B        = 2*vdwtype[jnrB+0];
959             vdwjidx0C        = 2*vdwtype[jnrC+0];
960             vdwjidx0D        = 2*vdwtype[jnrD+0];
961
962             fjx0             = _mm_setzero_ps();
963             fjy0             = _mm_setzero_ps();
964             fjz0             = _mm_setzero_ps();
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm_any_lt(rsq00,rcutoff2))
971             {
972
973             r00              = _mm_mul_ps(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq00             = _mm_mul_ps(iq0,jq0);
977             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
978                                          vdwparam+vdwioffset0+vdwjidx0B,
979                                          vdwparam+vdwioffset0+vdwjidx0C,
980                                          vdwparam+vdwioffset0+vdwjidx0D,
981                                          &c6_00,&c12_00);
982
983             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
984                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
985                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
986                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_ps(r00,ewtabscale);
992             ewitab           = _mm_cvttps_epi32(ewrt);
993             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
994             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
995                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
996                                          &ewtabF,&ewtabFn);
997             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
998             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
999
1000             /* Analytical LJ-PME */
1001             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1002             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1003             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1004             exponent         = sse41_exp_f(ewcljrsq);
1005             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1006             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1007             /* f6A = 6 * C6grid * (1 - poly) */
1008             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1009             /* f6B = C6grid * exponent * beta^6 */
1010             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1011             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1012             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1013
1014             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1015
1016             fscal            = _mm_add_ps(felec,fvdw);
1017
1018             fscal            = _mm_and_ps(fscal,cutoff_mask);
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = _mm_mul_ps(fscal,dx00);
1022             ty               = _mm_mul_ps(fscal,dy00);
1023             tz               = _mm_mul_ps(fscal,dz00);
1024
1025             /* Update vectorial force */
1026             fix0             = _mm_add_ps(fix0,tx);
1027             fiy0             = _mm_add_ps(fiy0,ty);
1028             fiz0             = _mm_add_ps(fiz0,tz);
1029
1030             fjx0             = _mm_add_ps(fjx0,tx);
1031             fjy0             = _mm_add_ps(fjy0,ty);
1032             fjz0             = _mm_add_ps(fjz0,tz);
1033
1034             }
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             if (gmx_mm_any_lt(rsq10,rcutoff2))
1041             {
1042
1043             r10              = _mm_mul_ps(rsq10,rinv10);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq10             = _mm_mul_ps(iq1,jq0);
1047
1048             /* EWALD ELECTROSTATICS */
1049
1050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1051             ewrt             = _mm_mul_ps(r10,ewtabscale);
1052             ewitab           = _mm_cvttps_epi32(ewrt);
1053             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1054             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1055                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1056                                          &ewtabF,&ewtabFn);
1057             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1058             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1059
1060             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_and_ps(fscal,cutoff_mask);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx10);
1068             ty               = _mm_mul_ps(fscal,dy10);
1069             tz               = _mm_mul_ps(fscal,dz10);
1070
1071             /* Update vectorial force */
1072             fix1             = _mm_add_ps(fix1,tx);
1073             fiy1             = _mm_add_ps(fiy1,ty);
1074             fiz1             = _mm_add_ps(fiz1,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079
1080             }
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             if (gmx_mm_any_lt(rsq20,rcutoff2))
1087             {
1088
1089             r20              = _mm_mul_ps(rsq20,rinv20);
1090
1091             /* Compute parameters for interactions between i and j atoms */
1092             qq20             = _mm_mul_ps(iq2,jq0);
1093
1094             /* EWALD ELECTROSTATICS */
1095
1096             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1097             ewrt             = _mm_mul_ps(r20,ewtabscale);
1098             ewitab           = _mm_cvttps_epi32(ewrt);
1099             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1100             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1101                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1102                                          &ewtabF,&ewtabFn);
1103             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1104             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1105
1106             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_and_ps(fscal,cutoff_mask);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx20);
1114             ty               = _mm_mul_ps(fscal,dy20);
1115             tz               = _mm_mul_ps(fscal,dz20);
1116
1117             /* Update vectorial force */
1118             fix2             = _mm_add_ps(fix2,tx);
1119             fiy2             = _mm_add_ps(fiy2,ty);
1120             fiz2             = _mm_add_ps(fiz2,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125
1126             }
1127
1128             fjptrA             = f+j_coord_offsetA;
1129             fjptrB             = f+j_coord_offsetB;
1130             fjptrC             = f+j_coord_offsetC;
1131             fjptrD             = f+j_coord_offsetD;
1132
1133             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1134
1135             /* Inner loop uses 140 flops */
1136         }
1137
1138         if(jidx<j_index_end)
1139         {
1140
1141             /* Get j neighbor index, and coordinate index */
1142             jnrlistA         = jjnr[jidx];
1143             jnrlistB         = jjnr[jidx+1];
1144             jnrlistC         = jjnr[jidx+2];
1145             jnrlistD         = jjnr[jidx+3];
1146             /* Sign of each element will be negative for non-real atoms.
1147              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1148              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1149              */
1150             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1151             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1152             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1153             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1154             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1155             j_coord_offsetA  = DIM*jnrA;
1156             j_coord_offsetB  = DIM*jnrB;
1157             j_coord_offsetC  = DIM*jnrC;
1158             j_coord_offsetD  = DIM*jnrD;
1159
1160             /* load j atom coordinates */
1161             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1162                                               x+j_coord_offsetC,x+j_coord_offsetD,
1163                                               &jx0,&jy0,&jz0);
1164
1165             /* Calculate displacement vector */
1166             dx00             = _mm_sub_ps(ix0,jx0);
1167             dy00             = _mm_sub_ps(iy0,jy0);
1168             dz00             = _mm_sub_ps(iz0,jz0);
1169             dx10             = _mm_sub_ps(ix1,jx0);
1170             dy10             = _mm_sub_ps(iy1,jy0);
1171             dz10             = _mm_sub_ps(iz1,jz0);
1172             dx20             = _mm_sub_ps(ix2,jx0);
1173             dy20             = _mm_sub_ps(iy2,jy0);
1174             dz20             = _mm_sub_ps(iz2,jz0);
1175
1176             /* Calculate squared distance and things based on it */
1177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1178             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1179             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1180
1181             rinv00           = sse41_invsqrt_f(rsq00);
1182             rinv10           = sse41_invsqrt_f(rsq10);
1183             rinv20           = sse41_invsqrt_f(rsq20);
1184
1185             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1186             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1188
1189             /* Load parameters for j particles */
1190             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1191                                                               charge+jnrC+0,charge+jnrD+0);
1192             vdwjidx0A        = 2*vdwtype[jnrA+0];
1193             vdwjidx0B        = 2*vdwtype[jnrB+0];
1194             vdwjidx0C        = 2*vdwtype[jnrC+0];
1195             vdwjidx0D        = 2*vdwtype[jnrD+0];
1196
1197             fjx0             = _mm_setzero_ps();
1198             fjy0             = _mm_setzero_ps();
1199             fjz0             = _mm_setzero_ps();
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (gmx_mm_any_lt(rsq00,rcutoff2))
1206             {
1207
1208             r00              = _mm_mul_ps(rsq00,rinv00);
1209             r00              = _mm_andnot_ps(dummy_mask,r00);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq00             = _mm_mul_ps(iq0,jq0);
1213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1214                                          vdwparam+vdwioffset0+vdwjidx0B,
1215                                          vdwparam+vdwioffset0+vdwjidx0C,
1216                                          vdwparam+vdwioffset0+vdwjidx0D,
1217                                          &c6_00,&c12_00);
1218
1219             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1220                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1221                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1222                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1223
1224             /* EWALD ELECTROSTATICS */
1225
1226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1227             ewrt             = _mm_mul_ps(r00,ewtabscale);
1228             ewitab           = _mm_cvttps_epi32(ewrt);
1229             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1230             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1231                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1232                                          &ewtabF,&ewtabFn);
1233             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1234             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1235
1236             /* Analytical LJ-PME */
1237             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1238             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1239             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1240             exponent         = sse41_exp_f(ewcljrsq);
1241             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1242             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1243             /* f6A = 6 * C6grid * (1 - poly) */
1244             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1245             /* f6B = C6grid * exponent * beta^6 */
1246             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1247             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1248             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1249
1250             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1251
1252             fscal            = _mm_add_ps(felec,fvdw);
1253
1254             fscal            = _mm_and_ps(fscal,cutoff_mask);
1255
1256             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1257
1258             /* Calculate temporary vectorial force */
1259             tx               = _mm_mul_ps(fscal,dx00);
1260             ty               = _mm_mul_ps(fscal,dy00);
1261             tz               = _mm_mul_ps(fscal,dz00);
1262
1263             /* Update vectorial force */
1264             fix0             = _mm_add_ps(fix0,tx);
1265             fiy0             = _mm_add_ps(fiy0,ty);
1266             fiz0             = _mm_add_ps(fiz0,tz);
1267
1268             fjx0             = _mm_add_ps(fjx0,tx);
1269             fjy0             = _mm_add_ps(fjy0,ty);
1270             fjz0             = _mm_add_ps(fjz0,tz);
1271
1272             }
1273
1274             /**************************
1275              * CALCULATE INTERACTIONS *
1276              **************************/
1277
1278             if (gmx_mm_any_lt(rsq10,rcutoff2))
1279             {
1280
1281             r10              = _mm_mul_ps(rsq10,rinv10);
1282             r10              = _mm_andnot_ps(dummy_mask,r10);
1283
1284             /* Compute parameters for interactions between i and j atoms */
1285             qq10             = _mm_mul_ps(iq1,jq0);
1286
1287             /* EWALD ELECTROSTATICS */
1288
1289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1290             ewrt             = _mm_mul_ps(r10,ewtabscale);
1291             ewitab           = _mm_cvttps_epi32(ewrt);
1292             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1293             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1294                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1295                                          &ewtabF,&ewtabFn);
1296             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1297             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1298
1299             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm_and_ps(fscal,cutoff_mask);
1304
1305             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1306
1307             /* Calculate temporary vectorial force */
1308             tx               = _mm_mul_ps(fscal,dx10);
1309             ty               = _mm_mul_ps(fscal,dy10);
1310             tz               = _mm_mul_ps(fscal,dz10);
1311
1312             /* Update vectorial force */
1313             fix1             = _mm_add_ps(fix1,tx);
1314             fiy1             = _mm_add_ps(fiy1,ty);
1315             fiz1             = _mm_add_ps(fiz1,tz);
1316
1317             fjx0             = _mm_add_ps(fjx0,tx);
1318             fjy0             = _mm_add_ps(fjy0,ty);
1319             fjz0             = _mm_add_ps(fjz0,tz);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             r20              = _mm_mul_ps(rsq20,rinv20);
1331             r20              = _mm_andnot_ps(dummy_mask,r20);
1332
1333             /* Compute parameters for interactions between i and j atoms */
1334             qq20             = _mm_mul_ps(iq2,jq0);
1335
1336             /* EWALD ELECTROSTATICS */
1337
1338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1339             ewrt             = _mm_mul_ps(r20,ewtabscale);
1340             ewitab           = _mm_cvttps_epi32(ewrt);
1341             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1342             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1343                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1344                                          &ewtabF,&ewtabFn);
1345             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1346             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1347
1348             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1349
1350             fscal            = felec;
1351
1352             fscal            = _mm_and_ps(fscal,cutoff_mask);
1353
1354             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1355
1356             /* Calculate temporary vectorial force */
1357             tx               = _mm_mul_ps(fscal,dx20);
1358             ty               = _mm_mul_ps(fscal,dy20);
1359             tz               = _mm_mul_ps(fscal,dz20);
1360
1361             /* Update vectorial force */
1362             fix2             = _mm_add_ps(fix2,tx);
1363             fiy2             = _mm_add_ps(fiy2,ty);
1364             fiz2             = _mm_add_ps(fiz2,tz);
1365
1366             fjx0             = _mm_add_ps(fjx0,tx);
1367             fjy0             = _mm_add_ps(fjy0,ty);
1368             fjz0             = _mm_add_ps(fjz0,tz);
1369
1370             }
1371
1372             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1373             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1374             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1375             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1376
1377             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1378
1379             /* Inner loop uses 143 flops */
1380         }
1381
1382         /* End of innermost loop */
1383
1384         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1385                                               f+i_coord_offset,fshift+i_shift_offset);
1386
1387         /* Increment number of inner iterations */
1388         inneriter                  += j_index_end - j_index_start;
1389
1390         /* Outer loop uses 18 flops */
1391     }
1392
1393     /* Increment number of outer iterations */
1394     outeriter        += nri;
1395
1396     /* Update outer/inner flops */
1397
1398     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1399 }