Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128           one_half  = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
145     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
146     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->rcoulomb;
151     rcutoff          = _mm_set1_ps(rcutoff_scalar);
152     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
153
154     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
155     rvdw             = _mm_set1_ps(fr->rvdw);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
189
190         fix0             = _mm_setzero_ps();
191         fiy0             = _mm_setzero_ps();
192         fiz0             = _mm_setzero_ps();
193         fix1             = _mm_setzero_ps();
194         fiy1             = _mm_setzero_ps();
195         fiz1             = _mm_setzero_ps();
196         fix2             = _mm_setzero_ps();
197         fiy2             = _mm_setzero_ps();
198         fiz2             = _mm_setzero_ps();
199
200         /* Reset potential sums */
201         velecsum         = _mm_setzero_ps();
202         vvdwsum          = _mm_setzero_ps();
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
206         {
207
208             /* Get j neighbor index, and coordinate index */
209             jnrA             = jjnr[jidx];
210             jnrB             = jjnr[jidx+1];
211             jnrC             = jjnr[jidx+2];
212             jnrD             = jjnr[jidx+3];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217
218             /* load j atom coordinates */
219             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
220                                               x+j_coord_offsetC,x+j_coord_offsetD,
221                                               &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_ps(ix0,jx0);
225             dy00             = _mm_sub_ps(iy0,jy0);
226             dz00             = _mm_sub_ps(iz0,jz0);
227             dx10             = _mm_sub_ps(ix1,jx0);
228             dy10             = _mm_sub_ps(iy1,jy0);
229             dz10             = _mm_sub_ps(iz1,jz0);
230             dx20             = _mm_sub_ps(ix2,jx0);
231             dy20             = _mm_sub_ps(iy2,jy0);
232             dz20             = _mm_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = gmx_mm_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm_invsqrt_ps(rsq20);
242
243             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
244             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                               charge+jnrC+0,charge+jnrD+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254
255             fjx0             = _mm_setzero_ps();
256             fjy0             = _mm_setzero_ps();
257             fjz0             = _mm_setzero_ps();
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             if (gmx_mm_any_lt(rsq00,rcutoff2))
264             {
265
266             r00              = _mm_mul_ps(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq00             = _mm_mul_ps(iq0,jq0);
270             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
271                                          vdwparam+vdwioffset0+vdwjidx0B,
272                                          vdwparam+vdwioffset0+vdwjidx0C,
273                                          vdwparam+vdwioffset0+vdwjidx0D,
274                                          &c6_00,&c12_00);
275
276             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
277                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _mm_mul_ps(r00,ewtabscale);
285             ewitab           = _mm_cvttps_epi32(ewrt);
286             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
287             ewitab           = _mm_slli_epi32(ewitab,2);
288             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
289             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
290             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
291             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
292             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
293             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
294             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
295             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
296             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
297
298             /* Analytical LJ-PME */
299             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
300             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
301             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
302             exponent         = gmx_simd_exp_r(ewcljrsq);
303             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
304             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
305             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
306             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
307             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
308             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
309                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
310             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
311             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
312
313             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm_and_ps(velec,cutoff_mask);
317             velecsum         = _mm_add_ps(velecsum,velec);
318             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
319             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
320
321             fscal            = _mm_add_ps(felec,fvdw);
322
323             fscal            = _mm_and_ps(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_ps(fscal,dx00);
327             ty               = _mm_mul_ps(fscal,dy00);
328             tz               = _mm_mul_ps(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm_add_ps(fix0,tx);
332             fiy0             = _mm_add_ps(fiy0,ty);
333             fiz0             = _mm_add_ps(fiz0,tz);
334
335             fjx0             = _mm_add_ps(fjx0,tx);
336             fjy0             = _mm_add_ps(fjy0,ty);
337             fjz0             = _mm_add_ps(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm_any_lt(rsq10,rcutoff2))
346             {
347
348             r10              = _mm_mul_ps(rsq10,rinv10);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq10             = _mm_mul_ps(iq1,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_ps(r10,ewtabscale);
357             ewitab           = _mm_cvttps_epi32(ewrt);
358             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
362             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
363             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
364             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
365             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
366             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
367             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
368             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
369
370             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm_and_ps(velec,cutoff_mask);
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm_and_ps(fscal,cutoff_mask);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm_mul_ps(fscal,dx10);
382             ty               = _mm_mul_ps(fscal,dy10);
383             tz               = _mm_mul_ps(fscal,dz10);
384
385             /* Update vectorial force */
386             fix1             = _mm_add_ps(fix1,tx);
387             fiy1             = _mm_add_ps(fiy1,ty);
388             fiz1             = _mm_add_ps(fiz1,tz);
389
390             fjx0             = _mm_add_ps(fjx0,tx);
391             fjy0             = _mm_add_ps(fjy0,ty);
392             fjz0             = _mm_add_ps(fjz0,tz);
393
394             }
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (gmx_mm_any_lt(rsq20,rcutoff2))
401             {
402
403             r20              = _mm_mul_ps(rsq20,rinv20);
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq20             = _mm_mul_ps(iq2,jq0);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_ps(r20,ewtabscale);
412             ewitab           = _mm_cvttps_epi32(ewrt);
413             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
414             ewitab           = _mm_slli_epi32(ewitab,2);
415             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
416             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
417             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
418             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
419             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
420             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
421             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
422             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
423             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
424
425             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm_and_ps(velec,cutoff_mask);
429             velecsum         = _mm_add_ps(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm_and_ps(fscal,cutoff_mask);
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm_mul_ps(fscal,dx20);
437             ty               = _mm_mul_ps(fscal,dy20);
438             tz               = _mm_mul_ps(fscal,dz20);
439
440             /* Update vectorial force */
441             fix2             = _mm_add_ps(fix2,tx);
442             fiy2             = _mm_add_ps(fiy2,ty);
443             fiz2             = _mm_add_ps(fiz2,tz);
444
445             fjx0             = _mm_add_ps(fjx0,tx);
446             fjy0             = _mm_add_ps(fjy0,ty);
447             fjz0             = _mm_add_ps(fjz0,tz);
448
449             }
450
451             fjptrA             = f+j_coord_offsetA;
452             fjptrB             = f+j_coord_offsetB;
453             fjptrC             = f+j_coord_offsetC;
454             fjptrD             = f+j_coord_offsetD;
455
456             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
457
458             /* Inner loop uses 174 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrlistA         = jjnr[jidx];
466             jnrlistB         = jjnr[jidx+1];
467             jnrlistC         = jjnr[jidx+2];
468             jnrlistD         = jjnr[jidx+3];
469             /* Sign of each element will be negative for non-real atoms.
470              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
471              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
472              */
473             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
474             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
475             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
476             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
477             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480             j_coord_offsetC  = DIM*jnrC;
481             j_coord_offsetD  = DIM*jnrD;
482
483             /* load j atom coordinates */
484             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
485                                               x+j_coord_offsetC,x+j_coord_offsetD,
486                                               &jx0,&jy0,&jz0);
487
488             /* Calculate displacement vector */
489             dx00             = _mm_sub_ps(ix0,jx0);
490             dy00             = _mm_sub_ps(iy0,jy0);
491             dz00             = _mm_sub_ps(iz0,jz0);
492             dx10             = _mm_sub_ps(ix1,jx0);
493             dy10             = _mm_sub_ps(iy1,jy0);
494             dz10             = _mm_sub_ps(iz1,jz0);
495             dx20             = _mm_sub_ps(ix2,jx0);
496             dy20             = _mm_sub_ps(iy2,jy0);
497             dz20             = _mm_sub_ps(iz2,jz0);
498
499             /* Calculate squared distance and things based on it */
500             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
501             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
502             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
503
504             rinv00           = gmx_mm_invsqrt_ps(rsq00);
505             rinv10           = gmx_mm_invsqrt_ps(rsq10);
506             rinv20           = gmx_mm_invsqrt_ps(rsq20);
507
508             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
509             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
510             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
511
512             /* Load parameters for j particles */
513             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
514                                                               charge+jnrC+0,charge+jnrD+0);
515             vdwjidx0A        = 2*vdwtype[jnrA+0];
516             vdwjidx0B        = 2*vdwtype[jnrB+0];
517             vdwjidx0C        = 2*vdwtype[jnrC+0];
518             vdwjidx0D        = 2*vdwtype[jnrD+0];
519
520             fjx0             = _mm_setzero_ps();
521             fjy0             = _mm_setzero_ps();
522             fjz0             = _mm_setzero_ps();
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             if (gmx_mm_any_lt(rsq00,rcutoff2))
529             {
530
531             r00              = _mm_mul_ps(rsq00,rinv00);
532             r00              = _mm_andnot_ps(dummy_mask,r00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm_mul_ps(iq0,jq0);
536             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,
538                                          vdwparam+vdwioffset0+vdwjidx0C,
539                                          vdwparam+vdwioffset0+vdwjidx0D,
540                                          &c6_00,&c12_00);
541
542             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
546
547             /* EWALD ELECTROSTATICS */
548
549             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
550             ewrt             = _mm_mul_ps(r00,ewtabscale);
551             ewitab           = _mm_cvttps_epi32(ewrt);
552             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
553             ewitab           = _mm_slli_epi32(ewitab,2);
554             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
555             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
556             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
557             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
558             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
559             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
560             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
561             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
562             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
563
564             /* Analytical LJ-PME */
565             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
566             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
567             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
568             exponent         = gmx_simd_exp_r(ewcljrsq);
569             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
570             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
571             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
572             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
573             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
574             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
575                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
576             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
577             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
578
579             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_and_ps(velec,cutoff_mask);
583             velec            = _mm_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm_add_ps(velecsum,velec);
585             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
586             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
587             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
588
589             fscal            = _mm_add_ps(felec,fvdw);
590
591             fscal            = _mm_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_ps(fscal,dx00);
597             ty               = _mm_mul_ps(fscal,dy00);
598             tz               = _mm_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_ps(fix0,tx);
602             fiy0             = _mm_add_ps(fiy0,ty);
603             fiz0             = _mm_add_ps(fiz0,tz);
604
605             fjx0             = _mm_add_ps(fjx0,tx);
606             fjy0             = _mm_add_ps(fjy0,ty);
607             fjz0             = _mm_add_ps(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq10,rcutoff2))
616             {
617
618             r10              = _mm_mul_ps(rsq10,rinv10);
619             r10              = _mm_andnot_ps(dummy_mask,r10);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq10             = _mm_mul_ps(iq1,jq0);
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = _mm_mul_ps(r10,ewtabscale);
628             ewitab           = _mm_cvttps_epi32(ewrt);
629             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
630             ewitab           = _mm_slli_epi32(ewitab,2);
631             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
632             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
633             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
634             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
635             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
636             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
637             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
638             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
639             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
640
641             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_and_ps(velec,cutoff_mask);
645             velec            = _mm_andnot_ps(dummy_mask,velec);
646             velecsum         = _mm_add_ps(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_and_ps(fscal,cutoff_mask);
651
652             fscal            = _mm_andnot_ps(dummy_mask,fscal);
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_ps(fscal,dx10);
656             ty               = _mm_mul_ps(fscal,dy10);
657             tz               = _mm_mul_ps(fscal,dz10);
658
659             /* Update vectorial force */
660             fix1             = _mm_add_ps(fix1,tx);
661             fiy1             = _mm_add_ps(fiy1,ty);
662             fiz1             = _mm_add_ps(fiz1,tz);
663
664             fjx0             = _mm_add_ps(fjx0,tx);
665             fjy0             = _mm_add_ps(fjy0,ty);
666             fjz0             = _mm_add_ps(fjz0,tz);
667
668             }
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_mm_any_lt(rsq20,rcutoff2))
675             {
676
677             r20              = _mm_mul_ps(rsq20,rinv20);
678             r20              = _mm_andnot_ps(dummy_mask,r20);
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq20             = _mm_mul_ps(iq2,jq0);
682
683             /* EWALD ELECTROSTATICS */
684
685             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686             ewrt             = _mm_mul_ps(r20,ewtabscale);
687             ewitab           = _mm_cvttps_epi32(ewrt);
688             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
689             ewitab           = _mm_slli_epi32(ewitab,2);
690             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
691             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
692             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
693             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
694             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
695             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
696             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
697             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
698             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
699
700             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
701
702             /* Update potential sum for this i atom from the interaction with this j atom. */
703             velec            = _mm_and_ps(velec,cutoff_mask);
704             velec            = _mm_andnot_ps(dummy_mask,velec);
705             velecsum         = _mm_add_ps(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm_and_ps(fscal,cutoff_mask);
710
711             fscal            = _mm_andnot_ps(dummy_mask,fscal);
712
713             /* Calculate temporary vectorial force */
714             tx               = _mm_mul_ps(fscal,dx20);
715             ty               = _mm_mul_ps(fscal,dy20);
716             tz               = _mm_mul_ps(fscal,dz20);
717
718             /* Update vectorial force */
719             fix2             = _mm_add_ps(fix2,tx);
720             fiy2             = _mm_add_ps(fiy2,ty);
721             fiz2             = _mm_add_ps(fiz2,tz);
722
723             fjx0             = _mm_add_ps(fjx0,tx);
724             fjy0             = _mm_add_ps(fjy0,ty);
725             fjz0             = _mm_add_ps(fjz0,tz);
726
727             }
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733
734             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 177 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
742                                               f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 20 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
764  * Electrostatics interaction: Ewald
765  * VdW interaction:            LJEwald
766  * Geometry:                   Water3-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
771                     (t_nblist                    * gmx_restrict       nlist,
772                      rvec                        * gmx_restrict          xx,
773                      rvec                        * gmx_restrict          ff,
774                      t_forcerec                  * gmx_restrict          fr,
775                      t_mdatoms                   * gmx_restrict     mdatoms,
776                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
777                      t_nrnb                      * gmx_restrict        nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
780      * just 0 for non-waters.
781      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB,jnrC,jnrD;
787     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
788     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
789     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
790     real             rcutoff_scalar;
791     real             *shiftvec,*fshift,*x,*f;
792     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
793     real             scratch[4*DIM];
794     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
795     int              vdwioffset0;
796     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
797     int              vdwioffset1;
798     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
799     int              vdwioffset2;
800     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
801     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
802     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
803     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
804     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
805     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
806     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
807     real             *charge;
808     int              nvdwtype;
809     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
810     int              *vdwtype;
811     real             *vdwparam;
812     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
813     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
814     __m128           c6grid_00;
815     __m128           c6grid_10;
816     __m128           c6grid_20;
817     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
818     real             *vdwgridparam;
819     __m128           one_half  = _mm_set1_ps(0.5);
820     __m128           minus_one = _mm_set1_ps(-1.0);
821     __m128i          ewitab;
822     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
823     real             *ewtab;
824     __m128           dummy_mask,cutoff_mask;
825     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
826     __m128           one     = _mm_set1_ps(1.0);
827     __m128           two     = _mm_set1_ps(2.0);
828     x                = xx[0];
829     f                = ff[0];
830
831     nri              = nlist->nri;
832     iinr             = nlist->iinr;
833     jindex           = nlist->jindex;
834     jjnr             = nlist->jjnr;
835     shiftidx         = nlist->shift;
836     gid              = nlist->gid;
837     shiftvec         = fr->shift_vec[0];
838     fshift           = fr->fshift[0];
839     facel            = _mm_set1_ps(fr->epsfac);
840     charge           = mdatoms->chargeA;
841     nvdwtype         = fr->ntype;
842     vdwparam         = fr->nbfp;
843     vdwtype          = mdatoms->typeA;
844     vdwgridparam     = fr->ljpme_c6grid;
845     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
846     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
847     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
848
849     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
850     ewtab            = fr->ic->tabq_coul_F;
851     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
852     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
853
854     /* Setup water-specific parameters */
855     inr              = nlist->iinr[0];
856     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
857     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
858     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
859     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
860
861     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
862     rcutoff_scalar   = fr->rcoulomb;
863     rcutoff          = _mm_set1_ps(rcutoff_scalar);
864     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
865
866     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
867     rvdw             = _mm_set1_ps(fr->rvdw);
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
901
902         fix0             = _mm_setzero_ps();
903         fiy0             = _mm_setzero_ps();
904         fiz0             = _mm_setzero_ps();
905         fix1             = _mm_setzero_ps();
906         fiy1             = _mm_setzero_ps();
907         fiz1             = _mm_setzero_ps();
908         fix2             = _mm_setzero_ps();
909         fiy2             = _mm_setzero_ps();
910         fiz2             = _mm_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941
942             /* Calculate squared distance and things based on it */
943             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
944             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
945             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
946
947             rinv00           = gmx_mm_invsqrt_ps(rsq00);
948             rinv10           = gmx_mm_invsqrt_ps(rsq10);
949             rinv20           = gmx_mm_invsqrt_ps(rsq20);
950
951             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
952             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
953             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
954
955             /* Load parameters for j particles */
956             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
957                                                               charge+jnrC+0,charge+jnrD+0);
958             vdwjidx0A        = 2*vdwtype[jnrA+0];
959             vdwjidx0B        = 2*vdwtype[jnrB+0];
960             vdwjidx0C        = 2*vdwtype[jnrC+0];
961             vdwjidx0D        = 2*vdwtype[jnrD+0];
962
963             fjx0             = _mm_setzero_ps();
964             fjy0             = _mm_setzero_ps();
965             fjz0             = _mm_setzero_ps();
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             if (gmx_mm_any_lt(rsq00,rcutoff2))
972             {
973
974             r00              = _mm_mul_ps(rsq00,rinv00);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq00             = _mm_mul_ps(iq0,jq0);
978             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
979                                          vdwparam+vdwioffset0+vdwjidx0B,
980                                          vdwparam+vdwioffset0+vdwjidx0C,
981                                          vdwparam+vdwioffset0+vdwjidx0D,
982                                          &c6_00,&c12_00);
983
984             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
985                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
986                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
987                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
988
989             /* EWALD ELECTROSTATICS */
990
991             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
992             ewrt             = _mm_mul_ps(r00,ewtabscale);
993             ewitab           = _mm_cvttps_epi32(ewrt);
994             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
995             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
996                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
997                                          &ewtabF,&ewtabFn);
998             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
999             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1000
1001             /* Analytical LJ-PME */
1002             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1003             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1004             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1005             exponent         = gmx_simd_exp_r(ewcljrsq);
1006             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1007             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1008             /* f6A = 6 * C6grid * (1 - poly) */
1009             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1010             /* f6B = C6grid * exponent * beta^6 */
1011             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1012             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1013             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1014
1015             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1016
1017             fscal            = _mm_add_ps(felec,fvdw);
1018
1019             fscal            = _mm_and_ps(fscal,cutoff_mask);
1020
1021             /* Calculate temporary vectorial force */
1022             tx               = _mm_mul_ps(fscal,dx00);
1023             ty               = _mm_mul_ps(fscal,dy00);
1024             tz               = _mm_mul_ps(fscal,dz00);
1025
1026             /* Update vectorial force */
1027             fix0             = _mm_add_ps(fix0,tx);
1028             fiy0             = _mm_add_ps(fiy0,ty);
1029             fiz0             = _mm_add_ps(fiz0,tz);
1030
1031             fjx0             = _mm_add_ps(fjx0,tx);
1032             fjy0             = _mm_add_ps(fjy0,ty);
1033             fjz0             = _mm_add_ps(fjz0,tz);
1034
1035             }
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             if (gmx_mm_any_lt(rsq10,rcutoff2))
1042             {
1043
1044             r10              = _mm_mul_ps(rsq10,rinv10);
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             qq10             = _mm_mul_ps(iq1,jq0);
1048
1049             /* EWALD ELECTROSTATICS */
1050
1051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1052             ewrt             = _mm_mul_ps(r10,ewtabscale);
1053             ewitab           = _mm_cvttps_epi32(ewrt);
1054             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1055             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1056                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1057                                          &ewtabF,&ewtabFn);
1058             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1059             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1060
1061             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1062
1063             fscal            = felec;
1064
1065             fscal            = _mm_and_ps(fscal,cutoff_mask);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm_mul_ps(fscal,dx10);
1069             ty               = _mm_mul_ps(fscal,dy10);
1070             tz               = _mm_mul_ps(fscal,dz10);
1071
1072             /* Update vectorial force */
1073             fix1             = _mm_add_ps(fix1,tx);
1074             fiy1             = _mm_add_ps(fiy1,ty);
1075             fiz1             = _mm_add_ps(fiz1,tz);
1076
1077             fjx0             = _mm_add_ps(fjx0,tx);
1078             fjy0             = _mm_add_ps(fjy0,ty);
1079             fjz0             = _mm_add_ps(fjz0,tz);
1080
1081             }
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             if (gmx_mm_any_lt(rsq20,rcutoff2))
1088             {
1089
1090             r20              = _mm_mul_ps(rsq20,rinv20);
1091
1092             /* Compute parameters for interactions between i and j atoms */
1093             qq20             = _mm_mul_ps(iq2,jq0);
1094
1095             /* EWALD ELECTROSTATICS */
1096
1097             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1098             ewrt             = _mm_mul_ps(r20,ewtabscale);
1099             ewitab           = _mm_cvttps_epi32(ewrt);
1100             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1101             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1102                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1103                                          &ewtabF,&ewtabFn);
1104             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1105             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1106
1107             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_and_ps(fscal,cutoff_mask);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx20);
1115             ty               = _mm_mul_ps(fscal,dy20);
1116             tz               = _mm_mul_ps(fscal,dz20);
1117
1118             /* Update vectorial force */
1119             fix2             = _mm_add_ps(fix2,tx);
1120             fiy2             = _mm_add_ps(fiy2,ty);
1121             fiz2             = _mm_add_ps(fiz2,tz);
1122
1123             fjx0             = _mm_add_ps(fjx0,tx);
1124             fjy0             = _mm_add_ps(fjy0,ty);
1125             fjz0             = _mm_add_ps(fjz0,tz);
1126
1127             }
1128
1129             fjptrA             = f+j_coord_offsetA;
1130             fjptrB             = f+j_coord_offsetB;
1131             fjptrC             = f+j_coord_offsetC;
1132             fjptrD             = f+j_coord_offsetD;
1133
1134             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 140 flops */
1137         }
1138
1139         if(jidx<j_index_end)
1140         {
1141
1142             /* Get j neighbor index, and coordinate index */
1143             jnrlistA         = jjnr[jidx];
1144             jnrlistB         = jjnr[jidx+1];
1145             jnrlistC         = jjnr[jidx+2];
1146             jnrlistD         = jjnr[jidx+3];
1147             /* Sign of each element will be negative for non-real atoms.
1148              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1149              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1150              */
1151             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1152             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1153             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1154             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1155             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1156             j_coord_offsetA  = DIM*jnrA;
1157             j_coord_offsetB  = DIM*jnrB;
1158             j_coord_offsetC  = DIM*jnrC;
1159             j_coord_offsetD  = DIM*jnrD;
1160
1161             /* load j atom coordinates */
1162             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1163                                               x+j_coord_offsetC,x+j_coord_offsetD,
1164                                               &jx0,&jy0,&jz0);
1165
1166             /* Calculate displacement vector */
1167             dx00             = _mm_sub_ps(ix0,jx0);
1168             dy00             = _mm_sub_ps(iy0,jy0);
1169             dz00             = _mm_sub_ps(iz0,jz0);
1170             dx10             = _mm_sub_ps(ix1,jx0);
1171             dy10             = _mm_sub_ps(iy1,jy0);
1172             dz10             = _mm_sub_ps(iz1,jz0);
1173             dx20             = _mm_sub_ps(ix2,jx0);
1174             dy20             = _mm_sub_ps(iy2,jy0);
1175             dz20             = _mm_sub_ps(iz2,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1179             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1180             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1181
1182             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1183             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1184             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1185
1186             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1187             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1188             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1192                                                               charge+jnrC+0,charge+jnrD+0);
1193             vdwjidx0A        = 2*vdwtype[jnrA+0];
1194             vdwjidx0B        = 2*vdwtype[jnrB+0];
1195             vdwjidx0C        = 2*vdwtype[jnrC+0];
1196             vdwjidx0D        = 2*vdwtype[jnrD+0];
1197
1198             fjx0             = _mm_setzero_ps();
1199             fjy0             = _mm_setzero_ps();
1200             fjz0             = _mm_setzero_ps();
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             if (gmx_mm_any_lt(rsq00,rcutoff2))
1207             {
1208
1209             r00              = _mm_mul_ps(rsq00,rinv00);
1210             r00              = _mm_andnot_ps(dummy_mask,r00);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq00             = _mm_mul_ps(iq0,jq0);
1214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1215                                          vdwparam+vdwioffset0+vdwjidx0B,
1216                                          vdwparam+vdwioffset0+vdwjidx0C,
1217                                          vdwparam+vdwioffset0+vdwjidx0D,
1218                                          &c6_00,&c12_00);
1219
1220             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1221                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1222                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1223                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm_mul_ps(r00,ewtabscale);
1229             ewitab           = _mm_cvttps_epi32(ewrt);
1230             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1231             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1232                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1233                                          &ewtabF,&ewtabFn);
1234             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1235             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1236
1237             /* Analytical LJ-PME */
1238             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1239             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1240             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1241             exponent         = gmx_simd_exp_r(ewcljrsq);
1242             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1243             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1244             /* f6A = 6 * C6grid * (1 - poly) */
1245             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1246             /* f6B = C6grid * exponent * beta^6 */
1247             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1248             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1249             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1250
1251             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1252
1253             fscal            = _mm_add_ps(felec,fvdw);
1254
1255             fscal            = _mm_and_ps(fscal,cutoff_mask);
1256
1257             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1258
1259             /* Calculate temporary vectorial force */
1260             tx               = _mm_mul_ps(fscal,dx00);
1261             ty               = _mm_mul_ps(fscal,dy00);
1262             tz               = _mm_mul_ps(fscal,dz00);
1263
1264             /* Update vectorial force */
1265             fix0             = _mm_add_ps(fix0,tx);
1266             fiy0             = _mm_add_ps(fiy0,ty);
1267             fiz0             = _mm_add_ps(fiz0,tz);
1268
1269             fjx0             = _mm_add_ps(fjx0,tx);
1270             fjy0             = _mm_add_ps(fjy0,ty);
1271             fjz0             = _mm_add_ps(fjz0,tz);
1272
1273             }
1274
1275             /**************************
1276              * CALCULATE INTERACTIONS *
1277              **************************/
1278
1279             if (gmx_mm_any_lt(rsq10,rcutoff2))
1280             {
1281
1282             r10              = _mm_mul_ps(rsq10,rinv10);
1283             r10              = _mm_andnot_ps(dummy_mask,r10);
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq10             = _mm_mul_ps(iq1,jq0);
1287
1288             /* EWALD ELECTROSTATICS */
1289
1290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1291             ewrt             = _mm_mul_ps(r10,ewtabscale);
1292             ewitab           = _mm_cvttps_epi32(ewrt);
1293             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1294             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1295                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1296                                          &ewtabF,&ewtabFn);
1297             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1298             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1299
1300             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm_and_ps(fscal,cutoff_mask);
1305
1306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm_mul_ps(fscal,dx10);
1310             ty               = _mm_mul_ps(fscal,dy10);
1311             tz               = _mm_mul_ps(fscal,dz10);
1312
1313             /* Update vectorial force */
1314             fix1             = _mm_add_ps(fix1,tx);
1315             fiy1             = _mm_add_ps(fiy1,ty);
1316             fiz1             = _mm_add_ps(fiz1,tz);
1317
1318             fjx0             = _mm_add_ps(fjx0,tx);
1319             fjy0             = _mm_add_ps(fjy0,ty);
1320             fjz0             = _mm_add_ps(fjz0,tz);
1321
1322             }
1323
1324             /**************************
1325              * CALCULATE INTERACTIONS *
1326              **************************/
1327
1328             if (gmx_mm_any_lt(rsq20,rcutoff2))
1329             {
1330
1331             r20              = _mm_mul_ps(rsq20,rinv20);
1332             r20              = _mm_andnot_ps(dummy_mask,r20);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             qq20             = _mm_mul_ps(iq2,jq0);
1336
1337             /* EWALD ELECTROSTATICS */
1338
1339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1340             ewrt             = _mm_mul_ps(r20,ewtabscale);
1341             ewitab           = _mm_cvttps_epi32(ewrt);
1342             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1343             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1344                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1345                                          &ewtabF,&ewtabFn);
1346             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1347             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1348
1349             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1350
1351             fscal            = felec;
1352
1353             fscal            = _mm_and_ps(fscal,cutoff_mask);
1354
1355             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1356
1357             /* Calculate temporary vectorial force */
1358             tx               = _mm_mul_ps(fscal,dx20);
1359             ty               = _mm_mul_ps(fscal,dy20);
1360             tz               = _mm_mul_ps(fscal,dz20);
1361
1362             /* Update vectorial force */
1363             fix2             = _mm_add_ps(fix2,tx);
1364             fiy2             = _mm_add_ps(fiy2,ty);
1365             fiz2             = _mm_add_ps(fiz2,tz);
1366
1367             fjx0             = _mm_add_ps(fjx0,tx);
1368             fjy0             = _mm_add_ps(fjy0,ty);
1369             fjz0             = _mm_add_ps(fjz0,tz);
1370
1371             }
1372
1373             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1374             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1375             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1376             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1377
1378             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1379
1380             /* Inner loop uses 143 flops */
1381         }
1382
1383         /* End of innermost loop */
1384
1385         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1386                                               f+i_coord_offset,fshift+i_shift_offset);
1387
1388         /* Increment number of inner iterations */
1389         inneriter                  += j_index_end - j_index_start;
1390
1391         /* Outer loop uses 18 flops */
1392     }
1393
1394     /* Increment number of outer iterations */
1395     outeriter        += nri;
1396
1397     /* Update outer/inner flops */
1398
1399     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1400 }