Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     real             *vdwgridparam;
109     __m128           one_half  = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128           dummy_mask,cutoff_mask;
115     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116     __m128           one     = _mm_set1_ps(1.0);
117     __m128           two     = _mm_set1_ps(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm_set1_ps(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134     vdwgridparam     = fr->ljpme_c6grid;
135     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
136     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
137     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
152     rcutoff_scalar   = fr->rcoulomb;
153     rcutoff          = _mm_set1_ps(rcutoff_scalar);
154     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
155
156     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
157     rvdw             = _mm_set1_ps(fr->rvdw);
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = jnrC = jnrD = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163     j_coord_offsetC = 0;
164     j_coord_offsetD = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191
192         fix0             = _mm_setzero_ps();
193         fiy0             = _mm_setzero_ps();
194         fiz0             = _mm_setzero_ps();
195         fix1             = _mm_setzero_ps();
196         fiy1             = _mm_setzero_ps();
197         fiz1             = _mm_setzero_ps();
198         fix2             = _mm_setzero_ps();
199         fiy2             = _mm_setzero_ps();
200         fiz2             = _mm_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm_setzero_ps();
204         vvdwsum          = _mm_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               x+j_coord_offsetC,x+j_coord_offsetD,
223                                               &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm_sub_ps(ix0,jx0);
227             dy00             = _mm_sub_ps(iy0,jy0);
228             dz00             = _mm_sub_ps(iz0,jz0);
229             dx10             = _mm_sub_ps(ix1,jx0);
230             dy10             = _mm_sub_ps(iy1,jy0);
231             dz10             = _mm_sub_ps(iz1,jz0);
232             dx20             = _mm_sub_ps(ix2,jx0);
233             dy20             = _mm_sub_ps(iy2,jy0);
234             dz20             = _mm_sub_ps(iz2,jz0);
235
236             /* Calculate squared distance and things based on it */
237             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
238             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
239             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
240
241             rinv00           = gmx_mm_invsqrt_ps(rsq00);
242             rinv10           = gmx_mm_invsqrt_ps(rsq10);
243             rinv20           = gmx_mm_invsqrt_ps(rsq20);
244
245             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
246             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
247             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
248
249             /* Load parameters for j particles */
250             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251                                                               charge+jnrC+0,charge+jnrD+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256
257             fjx0             = _mm_setzero_ps();
258             fjy0             = _mm_setzero_ps();
259             fjz0             = _mm_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             if (gmx_mm_any_lt(rsq00,rcutoff2))
266             {
267
268             r00              = _mm_mul_ps(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq00             = _mm_mul_ps(iq0,jq0);
272             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
273                                          vdwparam+vdwioffset0+vdwjidx0B,
274                                          vdwparam+vdwioffset0+vdwjidx0C,
275                                          vdwparam+vdwioffset0+vdwjidx0D,
276                                          &c6_00,&c12_00);
277
278             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
282
283             /* EWALD ELECTROSTATICS */
284
285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
286             ewrt             = _mm_mul_ps(r00,ewtabscale);
287             ewitab           = _mm_cvttps_epi32(ewrt);
288             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
289             ewitab           = _mm_slli_epi32(ewitab,2);
290             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
291             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
292             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
293             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
294             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
295             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
296             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
297             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
298             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
299
300             /* Analytical LJ-PME */
301             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
302             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
303             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
304             exponent         = gmx_simd_exp_r(ewcljrsq);
305             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
306             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
307             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
308             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
309             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
310             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
311                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
312             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
313             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
314
315             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_ps(velec,cutoff_mask);
319             velecsum         = _mm_add_ps(velecsum,velec);
320             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
321             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
322
323             fscal            = _mm_add_ps(felec,fvdw);
324
325             fscal            = _mm_and_ps(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm_mul_ps(fscal,dx00);
329             ty               = _mm_mul_ps(fscal,dy00);
330             tz               = _mm_mul_ps(fscal,dz00);
331
332             /* Update vectorial force */
333             fix0             = _mm_add_ps(fix0,tx);
334             fiy0             = _mm_add_ps(fiy0,ty);
335             fiz0             = _mm_add_ps(fiz0,tz);
336
337             fjx0             = _mm_add_ps(fjx0,tx);
338             fjy0             = _mm_add_ps(fjy0,ty);
339             fjz0             = _mm_add_ps(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm_any_lt(rsq10,rcutoff2))
348             {
349
350             r10              = _mm_mul_ps(rsq10,rinv10);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq10             = _mm_mul_ps(iq1,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_ps(r10,ewtabscale);
359             ewitab           = _mm_cvttps_epi32(ewrt);
360             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
365             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
366             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
367             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
368             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
369             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
370             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
371
372             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm_and_ps(velec,cutoff_mask);
376             velecsum         = _mm_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm_and_ps(fscal,cutoff_mask);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm_mul_ps(fscal,dx10);
384             ty               = _mm_mul_ps(fscal,dy10);
385             tz               = _mm_mul_ps(fscal,dz10);
386
387             /* Update vectorial force */
388             fix1             = _mm_add_ps(fix1,tx);
389             fiy1             = _mm_add_ps(fiy1,ty);
390             fiz1             = _mm_add_ps(fiz1,tz);
391
392             fjx0             = _mm_add_ps(fjx0,tx);
393             fjy0             = _mm_add_ps(fjy0,ty);
394             fjz0             = _mm_add_ps(fjz0,tz);
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (gmx_mm_any_lt(rsq20,rcutoff2))
403             {
404
405             r20              = _mm_mul_ps(rsq20,rinv20);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq20             = _mm_mul_ps(iq2,jq0);
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = _mm_mul_ps(r20,ewtabscale);
414             ewitab           = _mm_cvttps_epi32(ewrt);
415             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
419             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
420             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
421             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
422             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
423             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
424             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
425             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
426
427             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velec            = _mm_and_ps(velec,cutoff_mask);
431             velecsum         = _mm_add_ps(velecsum,velec);
432
433             fscal            = felec;
434
435             fscal            = _mm_and_ps(fscal,cutoff_mask);
436
437             /* Calculate temporary vectorial force */
438             tx               = _mm_mul_ps(fscal,dx20);
439             ty               = _mm_mul_ps(fscal,dy20);
440             tz               = _mm_mul_ps(fscal,dz20);
441
442             /* Update vectorial force */
443             fix2             = _mm_add_ps(fix2,tx);
444             fiy2             = _mm_add_ps(fiy2,ty);
445             fiz2             = _mm_add_ps(fiz2,tz);
446
447             fjx0             = _mm_add_ps(fjx0,tx);
448             fjy0             = _mm_add_ps(fjy0,ty);
449             fjz0             = _mm_add_ps(fjz0,tz);
450
451             }
452
453             fjptrA             = f+j_coord_offsetA;
454             fjptrB             = f+j_coord_offsetB;
455             fjptrC             = f+j_coord_offsetC;
456             fjptrD             = f+j_coord_offsetD;
457
458             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
459
460             /* Inner loop uses 174 flops */
461         }
462
463         if(jidx<j_index_end)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrlistA         = jjnr[jidx];
468             jnrlistB         = jjnr[jidx+1];
469             jnrlistC         = jjnr[jidx+2];
470             jnrlistD         = jjnr[jidx+3];
471             /* Sign of each element will be negative for non-real atoms.
472              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
473              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
474              */
475             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
476             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
477             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
478             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
479             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
480             j_coord_offsetA  = DIM*jnrA;
481             j_coord_offsetB  = DIM*jnrB;
482             j_coord_offsetC  = DIM*jnrC;
483             j_coord_offsetD  = DIM*jnrD;
484
485             /* load j atom coordinates */
486             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
487                                               x+j_coord_offsetC,x+j_coord_offsetD,
488                                               &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm_sub_ps(ix0,jx0);
492             dy00             = _mm_sub_ps(iy0,jy0);
493             dz00             = _mm_sub_ps(iz0,jz0);
494             dx10             = _mm_sub_ps(ix1,jx0);
495             dy10             = _mm_sub_ps(iy1,jy0);
496             dz10             = _mm_sub_ps(iz1,jz0);
497             dx20             = _mm_sub_ps(ix2,jx0);
498             dy20             = _mm_sub_ps(iy2,jy0);
499             dz20             = _mm_sub_ps(iz2,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
504             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
505
506             rinv00           = gmx_mm_invsqrt_ps(rsq00);
507             rinv10           = gmx_mm_invsqrt_ps(rsq10);
508             rinv20           = gmx_mm_invsqrt_ps(rsq20);
509
510             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
511             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
512             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
513
514             /* Load parameters for j particles */
515             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
516                                                               charge+jnrC+0,charge+jnrD+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519             vdwjidx0C        = 2*vdwtype[jnrC+0];
520             vdwjidx0D        = 2*vdwtype[jnrD+0];
521
522             fjx0             = _mm_setzero_ps();
523             fjy0             = _mm_setzero_ps();
524             fjz0             = _mm_setzero_ps();
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             if (gmx_mm_any_lt(rsq00,rcutoff2))
531             {
532
533             r00              = _mm_mul_ps(rsq00,rinv00);
534             r00              = _mm_andnot_ps(dummy_mask,r00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq00             = _mm_mul_ps(iq0,jq0);
538             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,
540                                          vdwparam+vdwioffset0+vdwjidx0C,
541                                          vdwparam+vdwioffset0+vdwjidx0D,
542                                          &c6_00,&c12_00);
543
544             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
547                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
548
549             /* EWALD ELECTROSTATICS */
550
551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552             ewrt             = _mm_mul_ps(r00,ewtabscale);
553             ewitab           = _mm_cvttps_epi32(ewrt);
554             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
558             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
559             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
560             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
561             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
562             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
563             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
564             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
565
566             /* Analytical LJ-PME */
567             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
568             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
569             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
570             exponent         = gmx_simd_exp_r(ewcljrsq);
571             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
572             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
573             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
574             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
575             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
576             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
577                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
578             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
579             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
580
581             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_and_ps(velec,cutoff_mask);
585             velec            = _mm_andnot_ps(dummy_mask,velec);
586             velecsum         = _mm_add_ps(velecsum,velec);
587             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
588             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
589             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
590
591             fscal            = _mm_add_ps(felec,fvdw);
592
593             fscal            = _mm_and_ps(fscal,cutoff_mask);
594
595             fscal            = _mm_andnot_ps(dummy_mask,fscal);
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm_mul_ps(fscal,dx00);
599             ty               = _mm_mul_ps(fscal,dy00);
600             tz               = _mm_mul_ps(fscal,dz00);
601
602             /* Update vectorial force */
603             fix0             = _mm_add_ps(fix0,tx);
604             fiy0             = _mm_add_ps(fiy0,ty);
605             fiz0             = _mm_add_ps(fiz0,tz);
606
607             fjx0             = _mm_add_ps(fjx0,tx);
608             fjy0             = _mm_add_ps(fjy0,ty);
609             fjz0             = _mm_add_ps(fjz0,tz);
610
611             }
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq10,rcutoff2))
618             {
619
620             r10              = _mm_mul_ps(rsq10,rinv10);
621             r10              = _mm_andnot_ps(dummy_mask,r10);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq10             = _mm_mul_ps(iq1,jq0);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_ps(r10,ewtabscale);
630             ewitab           = _mm_cvttps_epi32(ewrt);
631             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
632             ewitab           = _mm_slli_epi32(ewitab,2);
633             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
634             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
635             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
636             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
637             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
638             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
639             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
640             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
641             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
642
643             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velec            = _mm_and_ps(velec,cutoff_mask);
647             velec            = _mm_andnot_ps(dummy_mask,velec);
648             velecsum         = _mm_add_ps(velecsum,velec);
649
650             fscal            = felec;
651
652             fscal            = _mm_and_ps(fscal,cutoff_mask);
653
654             fscal            = _mm_andnot_ps(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm_mul_ps(fscal,dx10);
658             ty               = _mm_mul_ps(fscal,dy10);
659             tz               = _mm_mul_ps(fscal,dz10);
660
661             /* Update vectorial force */
662             fix1             = _mm_add_ps(fix1,tx);
663             fiy1             = _mm_add_ps(fiy1,ty);
664             fiz1             = _mm_add_ps(fiz1,tz);
665
666             fjx0             = _mm_add_ps(fjx0,tx);
667             fjy0             = _mm_add_ps(fjy0,ty);
668             fjz0             = _mm_add_ps(fjz0,tz);
669
670             }
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_mm_any_lt(rsq20,rcutoff2))
677             {
678
679             r20              = _mm_mul_ps(rsq20,rinv20);
680             r20              = _mm_andnot_ps(dummy_mask,r20);
681
682             /* Compute parameters for interactions between i and j atoms */
683             qq20             = _mm_mul_ps(iq2,jq0);
684
685             /* EWALD ELECTROSTATICS */
686
687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688             ewrt             = _mm_mul_ps(r20,ewtabscale);
689             ewitab           = _mm_cvttps_epi32(ewrt);
690             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
691             ewitab           = _mm_slli_epi32(ewitab,2);
692             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
693             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
694             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
695             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
696             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
697             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
698             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
699             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
700             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
701
702             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
703
704             /* Update potential sum for this i atom from the interaction with this j atom. */
705             velec            = _mm_and_ps(velec,cutoff_mask);
706             velec            = _mm_andnot_ps(dummy_mask,velec);
707             velecsum         = _mm_add_ps(velecsum,velec);
708
709             fscal            = felec;
710
711             fscal            = _mm_and_ps(fscal,cutoff_mask);
712
713             fscal            = _mm_andnot_ps(dummy_mask,fscal);
714
715             /* Calculate temporary vectorial force */
716             tx               = _mm_mul_ps(fscal,dx20);
717             ty               = _mm_mul_ps(fscal,dy20);
718             tz               = _mm_mul_ps(fscal,dz20);
719
720             /* Update vectorial force */
721             fix2             = _mm_add_ps(fix2,tx);
722             fiy2             = _mm_add_ps(fiy2,ty);
723             fiz2             = _mm_add_ps(fiz2,tz);
724
725             fjx0             = _mm_add_ps(fjx0,tx);
726             fjy0             = _mm_add_ps(fjy0,ty);
727             fjz0             = _mm_add_ps(fjz0,tz);
728
729             }
730
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735
736             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
737
738             /* Inner loop uses 177 flops */
739         }
740
741         /* End of innermost loop */
742
743         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
744                                               f+i_coord_offset,fshift+i_shift_offset);
745
746         ggid                        = gid[iidx];
747         /* Update potential energies */
748         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
749         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
750
751         /* Increment number of inner iterations */
752         inneriter                  += j_index_end - j_index_start;
753
754         /* Outer loop uses 20 flops */
755     }
756
757     /* Increment number of outer iterations */
758     outeriter        += nri;
759
760     /* Update outer/inner flops */
761
762     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
763 }
764 /*
765  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
766  * Electrostatics interaction: Ewald
767  * VdW interaction:            LJEwald
768  * Geometry:                   Water3-Particle
769  * Calculate force/pot:        Force
770  */
771 void
772 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
773                     (t_nblist                    * gmx_restrict       nlist,
774                      rvec                        * gmx_restrict          xx,
775                      rvec                        * gmx_restrict          ff,
776                      t_forcerec                  * gmx_restrict          fr,
777                      t_mdatoms                   * gmx_restrict     mdatoms,
778                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
779                      t_nrnb                      * gmx_restrict        nrnb)
780 {
781     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
782      * just 0 for non-waters.
783      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
784      * jnr indices corresponding to data put in the four positions in the SIMD register.
785      */
786     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
787     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
788     int              jnrA,jnrB,jnrC,jnrD;
789     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
792     real             rcutoff_scalar;
793     real             *shiftvec,*fshift,*x,*f;
794     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
795     real             scratch[4*DIM];
796     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
797     int              vdwioffset0;
798     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
799     int              vdwioffset1;
800     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
801     int              vdwioffset2;
802     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
803     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
804     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
805     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
806     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
807     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
808     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
809     real             *charge;
810     int              nvdwtype;
811     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
812     int              *vdwtype;
813     real             *vdwparam;
814     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
815     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
816     __m128           c6grid_00;
817     __m128           c6grid_10;
818     __m128           c6grid_20;
819     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
820     real             *vdwgridparam;
821     __m128           one_half  = _mm_set1_ps(0.5);
822     __m128           minus_one = _mm_set1_ps(-1.0);
823     __m128i          ewitab;
824     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
825     real             *ewtab;
826     __m128           dummy_mask,cutoff_mask;
827     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
828     __m128           one     = _mm_set1_ps(1.0);
829     __m128           two     = _mm_set1_ps(2.0);
830     x                = xx[0];
831     f                = ff[0];
832
833     nri              = nlist->nri;
834     iinr             = nlist->iinr;
835     jindex           = nlist->jindex;
836     jjnr             = nlist->jjnr;
837     shiftidx         = nlist->shift;
838     gid              = nlist->gid;
839     shiftvec         = fr->shift_vec[0];
840     fshift           = fr->fshift[0];
841     facel            = _mm_set1_ps(fr->epsfac);
842     charge           = mdatoms->chargeA;
843     nvdwtype         = fr->ntype;
844     vdwparam         = fr->nbfp;
845     vdwtype          = mdatoms->typeA;
846     vdwgridparam     = fr->ljpme_c6grid;
847     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
848     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
849     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
850
851     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
852     ewtab            = fr->ic->tabq_coul_F;
853     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
854     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
855
856     /* Setup water-specific parameters */
857     inr              = nlist->iinr[0];
858     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
859     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
860     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
861     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
862
863     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
864     rcutoff_scalar   = fr->rcoulomb;
865     rcutoff          = _mm_set1_ps(rcutoff_scalar);
866     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
867
868     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
869     rvdw             = _mm_set1_ps(fr->rvdw);
870
871     /* Avoid stupid compiler warnings */
872     jnrA = jnrB = jnrC = jnrD = 0;
873     j_coord_offsetA = 0;
874     j_coord_offsetB = 0;
875     j_coord_offsetC = 0;
876     j_coord_offsetD = 0;
877
878     outeriter        = 0;
879     inneriter        = 0;
880
881     for(iidx=0;iidx<4*DIM;iidx++)
882     {
883         scratch[iidx] = 0.0;
884     }
885
886     /* Start outer loop over neighborlists */
887     for(iidx=0; iidx<nri; iidx++)
888     {
889         /* Load shift vector for this list */
890         i_shift_offset   = DIM*shiftidx[iidx];
891
892         /* Load limits for loop over neighbors */
893         j_index_start    = jindex[iidx];
894         j_index_end      = jindex[iidx+1];
895
896         /* Get outer coordinate index */
897         inr              = iinr[iidx];
898         i_coord_offset   = DIM*inr;
899
900         /* Load i particle coords and add shift vector */
901         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
902                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
903
904         fix0             = _mm_setzero_ps();
905         fiy0             = _mm_setzero_ps();
906         fiz0             = _mm_setzero_ps();
907         fix1             = _mm_setzero_ps();
908         fiy1             = _mm_setzero_ps();
909         fiz1             = _mm_setzero_ps();
910         fix2             = _mm_setzero_ps();
911         fiy2             = _mm_setzero_ps();
912         fiz2             = _mm_setzero_ps();
913
914         /* Start inner kernel loop */
915         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
916         {
917
918             /* Get j neighbor index, and coordinate index */
919             jnrA             = jjnr[jidx];
920             jnrB             = jjnr[jidx+1];
921             jnrC             = jjnr[jidx+2];
922             jnrD             = jjnr[jidx+3];
923             j_coord_offsetA  = DIM*jnrA;
924             j_coord_offsetB  = DIM*jnrB;
925             j_coord_offsetC  = DIM*jnrC;
926             j_coord_offsetD  = DIM*jnrD;
927
928             /* load j atom coordinates */
929             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
930                                               x+j_coord_offsetC,x+j_coord_offsetD,
931                                               &jx0,&jy0,&jz0);
932
933             /* Calculate displacement vector */
934             dx00             = _mm_sub_ps(ix0,jx0);
935             dy00             = _mm_sub_ps(iy0,jy0);
936             dz00             = _mm_sub_ps(iz0,jz0);
937             dx10             = _mm_sub_ps(ix1,jx0);
938             dy10             = _mm_sub_ps(iy1,jy0);
939             dz10             = _mm_sub_ps(iz1,jz0);
940             dx20             = _mm_sub_ps(ix2,jx0);
941             dy20             = _mm_sub_ps(iy2,jy0);
942             dz20             = _mm_sub_ps(iz2,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
946             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
947             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
948
949             rinv00           = gmx_mm_invsqrt_ps(rsq00);
950             rinv10           = gmx_mm_invsqrt_ps(rsq10);
951             rinv20           = gmx_mm_invsqrt_ps(rsq20);
952
953             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
954             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
955             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
959                                                               charge+jnrC+0,charge+jnrD+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961             vdwjidx0B        = 2*vdwtype[jnrB+0];
962             vdwjidx0C        = 2*vdwtype[jnrC+0];
963             vdwjidx0D        = 2*vdwtype[jnrD+0];
964
965             fjx0             = _mm_setzero_ps();
966             fjy0             = _mm_setzero_ps();
967             fjz0             = _mm_setzero_ps();
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             if (gmx_mm_any_lt(rsq00,rcutoff2))
974             {
975
976             r00              = _mm_mul_ps(rsq00,rinv00);
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq00             = _mm_mul_ps(iq0,jq0);
980             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
981                                          vdwparam+vdwioffset0+vdwjidx0B,
982                                          vdwparam+vdwioffset0+vdwjidx0C,
983                                          vdwparam+vdwioffset0+vdwjidx0D,
984                                          &c6_00,&c12_00);
985
986             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
987                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
988                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
989                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
990
991             /* EWALD ELECTROSTATICS */
992
993             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994             ewrt             = _mm_mul_ps(r00,ewtabscale);
995             ewitab           = _mm_cvttps_epi32(ewrt);
996             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
997             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
998                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
999                                          &ewtabF,&ewtabFn);
1000             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1001             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1002
1003             /* Analytical LJ-PME */
1004             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1005             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1006             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1007             exponent         = gmx_simd_exp_r(ewcljrsq);
1008             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1009             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1010             /* f6A = 6 * C6grid * (1 - poly) */
1011             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1012             /* f6B = C6grid * exponent * beta^6 */
1013             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1014             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1015             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1016
1017             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1018
1019             fscal            = _mm_add_ps(felec,fvdw);
1020
1021             fscal            = _mm_and_ps(fscal,cutoff_mask);
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_ps(fscal,dx00);
1025             ty               = _mm_mul_ps(fscal,dy00);
1026             tz               = _mm_mul_ps(fscal,dz00);
1027
1028             /* Update vectorial force */
1029             fix0             = _mm_add_ps(fix0,tx);
1030             fiy0             = _mm_add_ps(fiy0,ty);
1031             fiz0             = _mm_add_ps(fiz0,tz);
1032
1033             fjx0             = _mm_add_ps(fjx0,tx);
1034             fjy0             = _mm_add_ps(fjy0,ty);
1035             fjz0             = _mm_add_ps(fjz0,tz);
1036
1037             }
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             if (gmx_mm_any_lt(rsq10,rcutoff2))
1044             {
1045
1046             r10              = _mm_mul_ps(rsq10,rinv10);
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq10             = _mm_mul_ps(iq1,jq0);
1050
1051             /* EWALD ELECTROSTATICS */
1052
1053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054             ewrt             = _mm_mul_ps(r10,ewtabscale);
1055             ewitab           = _mm_cvttps_epi32(ewrt);
1056             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1057             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1058                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1059                                          &ewtabF,&ewtabFn);
1060             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1061             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1062
1063             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1064
1065             fscal            = felec;
1066
1067             fscal            = _mm_and_ps(fscal,cutoff_mask);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm_mul_ps(fscal,dx10);
1071             ty               = _mm_mul_ps(fscal,dy10);
1072             tz               = _mm_mul_ps(fscal,dz10);
1073
1074             /* Update vectorial force */
1075             fix1             = _mm_add_ps(fix1,tx);
1076             fiy1             = _mm_add_ps(fiy1,ty);
1077             fiz1             = _mm_add_ps(fiz1,tz);
1078
1079             fjx0             = _mm_add_ps(fjx0,tx);
1080             fjy0             = _mm_add_ps(fjy0,ty);
1081             fjz0             = _mm_add_ps(fjz0,tz);
1082
1083             }
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             if (gmx_mm_any_lt(rsq20,rcutoff2))
1090             {
1091
1092             r20              = _mm_mul_ps(rsq20,rinv20);
1093
1094             /* Compute parameters for interactions between i and j atoms */
1095             qq20             = _mm_mul_ps(iq2,jq0);
1096
1097             /* EWALD ELECTROSTATICS */
1098
1099             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1100             ewrt             = _mm_mul_ps(r20,ewtabscale);
1101             ewitab           = _mm_cvttps_epi32(ewrt);
1102             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1103             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1104                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1105                                          &ewtabF,&ewtabFn);
1106             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1107             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1108
1109             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1110
1111             fscal            = felec;
1112
1113             fscal            = _mm_and_ps(fscal,cutoff_mask);
1114
1115             /* Calculate temporary vectorial force */
1116             tx               = _mm_mul_ps(fscal,dx20);
1117             ty               = _mm_mul_ps(fscal,dy20);
1118             tz               = _mm_mul_ps(fscal,dz20);
1119
1120             /* Update vectorial force */
1121             fix2             = _mm_add_ps(fix2,tx);
1122             fiy2             = _mm_add_ps(fiy2,ty);
1123             fiz2             = _mm_add_ps(fiz2,tz);
1124
1125             fjx0             = _mm_add_ps(fjx0,tx);
1126             fjy0             = _mm_add_ps(fjy0,ty);
1127             fjz0             = _mm_add_ps(fjz0,tz);
1128
1129             }
1130
1131             fjptrA             = f+j_coord_offsetA;
1132             fjptrB             = f+j_coord_offsetB;
1133             fjptrC             = f+j_coord_offsetC;
1134             fjptrD             = f+j_coord_offsetD;
1135
1136             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1137
1138             /* Inner loop uses 140 flops */
1139         }
1140
1141         if(jidx<j_index_end)
1142         {
1143
1144             /* Get j neighbor index, and coordinate index */
1145             jnrlistA         = jjnr[jidx];
1146             jnrlistB         = jjnr[jidx+1];
1147             jnrlistC         = jjnr[jidx+2];
1148             jnrlistD         = jjnr[jidx+3];
1149             /* Sign of each element will be negative for non-real atoms.
1150              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1151              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1152              */
1153             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1154             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1155             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1156             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1157             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1158             j_coord_offsetA  = DIM*jnrA;
1159             j_coord_offsetB  = DIM*jnrB;
1160             j_coord_offsetC  = DIM*jnrC;
1161             j_coord_offsetD  = DIM*jnrD;
1162
1163             /* load j atom coordinates */
1164             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1165                                               x+j_coord_offsetC,x+j_coord_offsetD,
1166                                               &jx0,&jy0,&jz0);
1167
1168             /* Calculate displacement vector */
1169             dx00             = _mm_sub_ps(ix0,jx0);
1170             dy00             = _mm_sub_ps(iy0,jy0);
1171             dz00             = _mm_sub_ps(iz0,jz0);
1172             dx10             = _mm_sub_ps(ix1,jx0);
1173             dy10             = _mm_sub_ps(iy1,jy0);
1174             dz10             = _mm_sub_ps(iz1,jz0);
1175             dx20             = _mm_sub_ps(ix2,jx0);
1176             dy20             = _mm_sub_ps(iy2,jy0);
1177             dz20             = _mm_sub_ps(iz2,jz0);
1178
1179             /* Calculate squared distance and things based on it */
1180             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1181             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1182             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1183
1184             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1185             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1186             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1187
1188             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1189             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1190             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1191
1192             /* Load parameters for j particles */
1193             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1194                                                               charge+jnrC+0,charge+jnrD+0);
1195             vdwjidx0A        = 2*vdwtype[jnrA+0];
1196             vdwjidx0B        = 2*vdwtype[jnrB+0];
1197             vdwjidx0C        = 2*vdwtype[jnrC+0];
1198             vdwjidx0D        = 2*vdwtype[jnrD+0];
1199
1200             fjx0             = _mm_setzero_ps();
1201             fjy0             = _mm_setzero_ps();
1202             fjz0             = _mm_setzero_ps();
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             if (gmx_mm_any_lt(rsq00,rcutoff2))
1209             {
1210
1211             r00              = _mm_mul_ps(rsq00,rinv00);
1212             r00              = _mm_andnot_ps(dummy_mask,r00);
1213
1214             /* Compute parameters for interactions between i and j atoms */
1215             qq00             = _mm_mul_ps(iq0,jq0);
1216             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1217                                          vdwparam+vdwioffset0+vdwjidx0B,
1218                                          vdwparam+vdwioffset0+vdwjidx0C,
1219                                          vdwparam+vdwioffset0+vdwjidx0D,
1220                                          &c6_00,&c12_00);
1221
1222             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1223                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1224                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1225                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _mm_mul_ps(r00,ewtabscale);
1231             ewitab           = _mm_cvttps_epi32(ewrt);
1232             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1233             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1234                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1235                                          &ewtabF,&ewtabFn);
1236             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1237             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1238
1239             /* Analytical LJ-PME */
1240             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1241             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1242             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1243             exponent         = gmx_simd_exp_r(ewcljrsq);
1244             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1245             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1246             /* f6A = 6 * C6grid * (1 - poly) */
1247             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1248             /* f6B = C6grid * exponent * beta^6 */
1249             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1250             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1251             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1252
1253             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1254
1255             fscal            = _mm_add_ps(felec,fvdw);
1256
1257             fscal            = _mm_and_ps(fscal,cutoff_mask);
1258
1259             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1260
1261             /* Calculate temporary vectorial force */
1262             tx               = _mm_mul_ps(fscal,dx00);
1263             ty               = _mm_mul_ps(fscal,dy00);
1264             tz               = _mm_mul_ps(fscal,dz00);
1265
1266             /* Update vectorial force */
1267             fix0             = _mm_add_ps(fix0,tx);
1268             fiy0             = _mm_add_ps(fiy0,ty);
1269             fiz0             = _mm_add_ps(fiz0,tz);
1270
1271             fjx0             = _mm_add_ps(fjx0,tx);
1272             fjy0             = _mm_add_ps(fjy0,ty);
1273             fjz0             = _mm_add_ps(fjz0,tz);
1274
1275             }
1276
1277             /**************************
1278              * CALCULATE INTERACTIONS *
1279              **************************/
1280
1281             if (gmx_mm_any_lt(rsq10,rcutoff2))
1282             {
1283
1284             r10              = _mm_mul_ps(rsq10,rinv10);
1285             r10              = _mm_andnot_ps(dummy_mask,r10);
1286
1287             /* Compute parameters for interactions between i and j atoms */
1288             qq10             = _mm_mul_ps(iq1,jq0);
1289
1290             /* EWALD ELECTROSTATICS */
1291
1292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1293             ewrt             = _mm_mul_ps(r10,ewtabscale);
1294             ewitab           = _mm_cvttps_epi32(ewrt);
1295             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1296             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1297                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1298                                          &ewtabF,&ewtabFn);
1299             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1300             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1301
1302             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1303
1304             fscal            = felec;
1305
1306             fscal            = _mm_and_ps(fscal,cutoff_mask);
1307
1308             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1309
1310             /* Calculate temporary vectorial force */
1311             tx               = _mm_mul_ps(fscal,dx10);
1312             ty               = _mm_mul_ps(fscal,dy10);
1313             tz               = _mm_mul_ps(fscal,dz10);
1314
1315             /* Update vectorial force */
1316             fix1             = _mm_add_ps(fix1,tx);
1317             fiy1             = _mm_add_ps(fiy1,ty);
1318             fiz1             = _mm_add_ps(fiz1,tz);
1319
1320             fjx0             = _mm_add_ps(fjx0,tx);
1321             fjy0             = _mm_add_ps(fjy0,ty);
1322             fjz0             = _mm_add_ps(fjz0,tz);
1323
1324             }
1325
1326             /**************************
1327              * CALCULATE INTERACTIONS *
1328              **************************/
1329
1330             if (gmx_mm_any_lt(rsq20,rcutoff2))
1331             {
1332
1333             r20              = _mm_mul_ps(rsq20,rinv20);
1334             r20              = _mm_andnot_ps(dummy_mask,r20);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq20             = _mm_mul_ps(iq2,jq0);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _mm_mul_ps(r20,ewtabscale);
1343             ewitab           = _mm_cvttps_epi32(ewrt);
1344             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1345             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1346                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1347                                          &ewtabF,&ewtabFn);
1348             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1349             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1350
1351             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm_and_ps(fscal,cutoff_mask);
1356
1357             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm_mul_ps(fscal,dx20);
1361             ty               = _mm_mul_ps(fscal,dy20);
1362             tz               = _mm_mul_ps(fscal,dz20);
1363
1364             /* Update vectorial force */
1365             fix2             = _mm_add_ps(fix2,tx);
1366             fiy2             = _mm_add_ps(fiy2,ty);
1367             fiz2             = _mm_add_ps(fiz2,tz);
1368
1369             fjx0             = _mm_add_ps(fjx0,tx);
1370             fjy0             = _mm_add_ps(fjy0,ty);
1371             fjz0             = _mm_add_ps(fjz0,tz);
1372
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382             /* Inner loop uses 143 flops */
1383         }
1384
1385         /* End of innermost loop */
1386
1387         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1388                                               f+i_coord_offset,fshift+i_shift_offset);
1389
1390         /* Increment number of inner iterations */
1391         inneriter                  += j_index_end - j_index_start;
1392
1393         /* Outer loop uses 18 flops */
1394     }
1395
1396     /* Increment number of outer iterations */
1397     outeriter        += nri;
1398
1399     /* Update outer/inner flops */
1400
1401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1402 }