Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half  = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124     vdwgridparam     = fr->ljpme_c6grid;
125     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
126     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
127     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm_set1_ps(rcutoff_scalar);
137     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
138
139     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
140     rvdw             = _mm_set1_ps(fr->rvdw);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm_setzero_ps();
175         fiy0             = _mm_setzero_ps();
176         fiz0             = _mm_setzero_ps();
177
178         /* Load parameters for i particles */
179         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
180         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                               charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             if (gmx_mm_any_lt(rsq00,rcutoff2))
230             {
231
232             r00              = _mm_mul_ps(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_ps(iq0,jq0);
236             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,
238                                          vdwparam+vdwioffset0+vdwjidx0C,
239                                          vdwparam+vdwioffset0+vdwjidx0D,
240                                          &c6_00,&c12_00);
241
242             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
243                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
244                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
245                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm_mul_ps(r00,ewtabscale);
251             ewitab           = _mm_cvttps_epi32(ewrt);
252             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
256             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
257             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
258             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
259             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
260             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
261             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
262             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
263
264             /* Analytical LJ-PME */
265             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
266             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
267             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
268             exponent         = gmx_simd_exp_r(ewcljrsq);
269             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
270             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
271             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
272             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
273             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
274             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
275                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
276             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
277             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
278
279             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm_and_ps(velec,cutoff_mask);
283             velecsum         = _mm_add_ps(velecsum,velec);
284             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm_add_ps(felec,fvdw);
288
289             fscal            = _mm_and_ps(fscal,cutoff_mask);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_ps(fscal,dx00);
293             ty               = _mm_mul_ps(fscal,dy00);
294             tz               = _mm_mul_ps(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm_add_ps(fix0,tx);
298             fiy0             = _mm_add_ps(fiy0,ty);
299             fiz0             = _mm_add_ps(fiz0,tz);
300
301             fjptrA             = f+j_coord_offsetA;
302             fjptrB             = f+j_coord_offsetB;
303             fjptrC             = f+j_coord_offsetC;
304             fjptrD             = f+j_coord_offsetD;
305             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
306
307             }
308
309             /* Inner loop uses 82 flops */
310         }
311
312         if(jidx<j_index_end)
313         {
314
315             /* Get j neighbor index, and coordinate index */
316             jnrlistA         = jjnr[jidx];
317             jnrlistB         = jjnr[jidx+1];
318             jnrlistC         = jjnr[jidx+2];
319             jnrlistD         = jjnr[jidx+3];
320             /* Sign of each element will be negative for non-real atoms.
321              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
322              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
323              */
324             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
325             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
326             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
327             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
328             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
329             j_coord_offsetA  = DIM*jnrA;
330             j_coord_offsetB  = DIM*jnrB;
331             j_coord_offsetC  = DIM*jnrC;
332             j_coord_offsetD  = DIM*jnrD;
333
334             /* load j atom coordinates */
335             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
336                                               x+j_coord_offsetC,x+j_coord_offsetD,
337                                               &jx0,&jy0,&jz0);
338
339             /* Calculate displacement vector */
340             dx00             = _mm_sub_ps(ix0,jx0);
341             dy00             = _mm_sub_ps(iy0,jy0);
342             dz00             = _mm_sub_ps(iz0,jz0);
343
344             /* Calculate squared distance and things based on it */
345             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
346
347             rinv00           = gmx_mm_invsqrt_ps(rsq00);
348
349             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
350
351             /* Load parameters for j particles */
352             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
353                                                               charge+jnrC+0,charge+jnrD+0);
354             vdwjidx0A        = 2*vdwtype[jnrA+0];
355             vdwjidx0B        = 2*vdwtype[jnrB+0];
356             vdwjidx0C        = 2*vdwtype[jnrC+0];
357             vdwjidx0D        = 2*vdwtype[jnrD+0];
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm_any_lt(rsq00,rcutoff2))
364             {
365
366             r00              = _mm_mul_ps(rsq00,rinv00);
367             r00              = _mm_andnot_ps(dummy_mask,r00);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq00             = _mm_mul_ps(iq0,jq0);
371             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
372                                          vdwparam+vdwioffset0+vdwjidx0B,
373                                          vdwparam+vdwioffset0+vdwjidx0C,
374                                          vdwparam+vdwioffset0+vdwjidx0D,
375                                          &c6_00,&c12_00);
376
377             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
378                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
379                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
380                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm_mul_ps(r00,ewtabscale);
386             ewitab           = _mm_cvttps_epi32(ewrt);
387             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
391             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
392             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
393             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
394             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
395             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
396             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
397             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
398
399             /* Analytical LJ-PME */
400             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
401             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
402             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
403             exponent         = gmx_simd_exp_r(ewcljrsq);
404             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
405             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
406             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
407             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
408             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
409             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
410                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
411             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
412             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
413
414             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_and_ps(velec,cutoff_mask);
418             velec            = _mm_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm_add_ps(velecsum,velec);
420             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
421             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
422             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
423
424             fscal            = _mm_add_ps(felec,fvdw);
425
426             fscal            = _mm_and_ps(fscal,cutoff_mask);
427
428             fscal            = _mm_andnot_ps(dummy_mask,fscal);
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm_mul_ps(fscal,dx00);
432             ty               = _mm_mul_ps(fscal,dy00);
433             tz               = _mm_mul_ps(fscal,dz00);
434
435             /* Update vectorial force */
436             fix0             = _mm_add_ps(fix0,tx);
437             fiy0             = _mm_add_ps(fiy0,ty);
438             fiz0             = _mm_add_ps(fiz0,tz);
439
440             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
441             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
442             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
443             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
444             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
445
446             }
447
448             /* Inner loop uses 83 flops */
449         }
450
451         /* End of innermost loop */
452
453         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
454                                               f+i_coord_offset,fshift+i_shift_offset);
455
456         ggid                        = gid[iidx];
457         /* Update potential energies */
458         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
459         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 9 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
473 }
474 /*
475  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
476  * Electrostatics interaction: Ewald
477  * VdW interaction:            LJEwald
478  * Geometry:                   Particle-Particle
479  * Calculate force/pot:        Force
480  */
481 void
482 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
483                     (t_nblist                    * gmx_restrict       nlist,
484                      rvec                        * gmx_restrict          xx,
485                      rvec                        * gmx_restrict          ff,
486                      t_forcerec                  * gmx_restrict          fr,
487                      t_mdatoms                   * gmx_restrict     mdatoms,
488                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
489                      t_nrnb                      * gmx_restrict        nrnb)
490 {
491     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
492      * just 0 for non-waters.
493      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
494      * jnr indices corresponding to data put in the four positions in the SIMD register.
495      */
496     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
497     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
498     int              jnrA,jnrB,jnrC,jnrD;
499     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
500     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
501     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
502     real             rcutoff_scalar;
503     real             *shiftvec,*fshift,*x,*f;
504     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
505     real             scratch[4*DIM];
506     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
507     int              vdwioffset0;
508     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
509     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
510     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
511     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
512     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
513     real             *charge;
514     int              nvdwtype;
515     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
516     int              *vdwtype;
517     real             *vdwparam;
518     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
519     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
520     __m128           c6grid_00;
521     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
522     real             *vdwgridparam;
523     __m128           one_half  = _mm_set1_ps(0.5);
524     __m128           minus_one = _mm_set1_ps(-1.0);
525     __m128i          ewitab;
526     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
527     real             *ewtab;
528     __m128           dummy_mask,cutoff_mask;
529     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
530     __m128           one     = _mm_set1_ps(1.0);
531     __m128           two     = _mm_set1_ps(2.0);
532     x                = xx[0];
533     f                = ff[0];
534
535     nri              = nlist->nri;
536     iinr             = nlist->iinr;
537     jindex           = nlist->jindex;
538     jjnr             = nlist->jjnr;
539     shiftidx         = nlist->shift;
540     gid              = nlist->gid;
541     shiftvec         = fr->shift_vec[0];
542     fshift           = fr->fshift[0];
543     facel            = _mm_set1_ps(fr->epsfac);
544     charge           = mdatoms->chargeA;
545     nvdwtype         = fr->ntype;
546     vdwparam         = fr->nbfp;
547     vdwtype          = mdatoms->typeA;
548     vdwgridparam     = fr->ljpme_c6grid;
549     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
550     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
551     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
552
553     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
554     ewtab            = fr->ic->tabq_coul_F;
555     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
556     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
557
558     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
559     rcutoff_scalar   = fr->rcoulomb;
560     rcutoff          = _mm_set1_ps(rcutoff_scalar);
561     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
562
563     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
564     rvdw             = _mm_set1_ps(fr->rvdw);
565
566     /* Avoid stupid compiler warnings */
567     jnrA = jnrB = jnrC = jnrD = 0;
568     j_coord_offsetA = 0;
569     j_coord_offsetB = 0;
570     j_coord_offsetC = 0;
571     j_coord_offsetD = 0;
572
573     outeriter        = 0;
574     inneriter        = 0;
575
576     for(iidx=0;iidx<4*DIM;iidx++)
577     {
578         scratch[iidx] = 0.0;
579     }
580
581     /* Start outer loop over neighborlists */
582     for(iidx=0; iidx<nri; iidx++)
583     {
584         /* Load shift vector for this list */
585         i_shift_offset   = DIM*shiftidx[iidx];
586
587         /* Load limits for loop over neighbors */
588         j_index_start    = jindex[iidx];
589         j_index_end      = jindex[iidx+1];
590
591         /* Get outer coordinate index */
592         inr              = iinr[iidx];
593         i_coord_offset   = DIM*inr;
594
595         /* Load i particle coords and add shift vector */
596         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
597
598         fix0             = _mm_setzero_ps();
599         fiy0             = _mm_setzero_ps();
600         fiz0             = _mm_setzero_ps();
601
602         /* Load parameters for i particles */
603         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
604         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
605
606         /* Start inner kernel loop */
607         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
608         {
609
610             /* Get j neighbor index, and coordinate index */
611             jnrA             = jjnr[jidx];
612             jnrB             = jjnr[jidx+1];
613             jnrC             = jjnr[jidx+2];
614             jnrD             = jjnr[jidx+3];
615             j_coord_offsetA  = DIM*jnrA;
616             j_coord_offsetB  = DIM*jnrB;
617             j_coord_offsetC  = DIM*jnrC;
618             j_coord_offsetD  = DIM*jnrD;
619
620             /* load j atom coordinates */
621             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
622                                               x+j_coord_offsetC,x+j_coord_offsetD,
623                                               &jx0,&jy0,&jz0);
624
625             /* Calculate displacement vector */
626             dx00             = _mm_sub_ps(ix0,jx0);
627             dy00             = _mm_sub_ps(iy0,jy0);
628             dz00             = _mm_sub_ps(iz0,jz0);
629
630             /* Calculate squared distance and things based on it */
631             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
632
633             rinv00           = gmx_mm_invsqrt_ps(rsq00);
634
635             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
636
637             /* Load parameters for j particles */
638             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
639                                                               charge+jnrC+0,charge+jnrD+0);
640             vdwjidx0A        = 2*vdwtype[jnrA+0];
641             vdwjidx0B        = 2*vdwtype[jnrB+0];
642             vdwjidx0C        = 2*vdwtype[jnrC+0];
643             vdwjidx0D        = 2*vdwtype[jnrD+0];
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (gmx_mm_any_lt(rsq00,rcutoff2))
650             {
651
652             r00              = _mm_mul_ps(rsq00,rinv00);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq00             = _mm_mul_ps(iq0,jq0);
656             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
657                                          vdwparam+vdwioffset0+vdwjidx0B,
658                                          vdwparam+vdwioffset0+vdwjidx0C,
659                                          vdwparam+vdwioffset0+vdwjidx0D,
660                                          &c6_00,&c12_00);
661
662             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
663                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
664                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
665                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
666
667             /* EWALD ELECTROSTATICS */
668
669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
670             ewrt             = _mm_mul_ps(r00,ewtabscale);
671             ewitab           = _mm_cvttps_epi32(ewrt);
672             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
673             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
674                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
675                                          &ewtabF,&ewtabFn);
676             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
677             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
678
679             /* Analytical LJ-PME */
680             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
681             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
682             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
683             exponent         = gmx_simd_exp_r(ewcljrsq);
684             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
685             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
686             /* f6A = 6 * C6grid * (1 - poly) */
687             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
688             /* f6B = C6grid * exponent * beta^6 */
689             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
690             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
691             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
692
693             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
694
695             fscal            = _mm_add_ps(felec,fvdw);
696
697             fscal            = _mm_and_ps(fscal,cutoff_mask);
698
699             /* Calculate temporary vectorial force */
700             tx               = _mm_mul_ps(fscal,dx00);
701             ty               = _mm_mul_ps(fscal,dy00);
702             tz               = _mm_mul_ps(fscal,dz00);
703
704             /* Update vectorial force */
705             fix0             = _mm_add_ps(fix0,tx);
706             fiy0             = _mm_add_ps(fiy0,ty);
707             fiz0             = _mm_add_ps(fiz0,tz);
708
709             fjptrA             = f+j_coord_offsetA;
710             fjptrB             = f+j_coord_offsetB;
711             fjptrC             = f+j_coord_offsetC;
712             fjptrD             = f+j_coord_offsetD;
713             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
714
715             }
716
717             /* Inner loop uses 62 flops */
718         }
719
720         if(jidx<j_index_end)
721         {
722
723             /* Get j neighbor index, and coordinate index */
724             jnrlistA         = jjnr[jidx];
725             jnrlistB         = jjnr[jidx+1];
726             jnrlistC         = jjnr[jidx+2];
727             jnrlistD         = jjnr[jidx+3];
728             /* Sign of each element will be negative for non-real atoms.
729              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
730              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
731              */
732             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
733             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
734             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
735             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
736             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               x+j_coord_offsetC,x+j_coord_offsetD,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_ps(ix0,jx0);
749             dy00             = _mm_sub_ps(iy0,jy0);
750             dz00             = _mm_sub_ps(iz0,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
754
755             rinv00           = gmx_mm_invsqrt_ps(rsq00);
756
757             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
758
759             /* Load parameters for j particles */
760             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
761                                                               charge+jnrC+0,charge+jnrD+0);
762             vdwjidx0A        = 2*vdwtype[jnrA+0];
763             vdwjidx0B        = 2*vdwtype[jnrB+0];
764             vdwjidx0C        = 2*vdwtype[jnrC+0];
765             vdwjidx0D        = 2*vdwtype[jnrD+0];
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             if (gmx_mm_any_lt(rsq00,rcutoff2))
772             {
773
774             r00              = _mm_mul_ps(rsq00,rinv00);
775             r00              = _mm_andnot_ps(dummy_mask,r00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm_mul_ps(iq0,jq0);
779             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
780                                          vdwparam+vdwioffset0+vdwjidx0B,
781                                          vdwparam+vdwioffset0+vdwjidx0C,
782                                          vdwparam+vdwioffset0+vdwjidx0D,
783                                          &c6_00,&c12_00);
784
785             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
786                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
787                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
788                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
789
790             /* EWALD ELECTROSTATICS */
791
792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
793             ewrt             = _mm_mul_ps(r00,ewtabscale);
794             ewitab           = _mm_cvttps_epi32(ewrt);
795             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
796             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
797                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
798                                          &ewtabF,&ewtabFn);
799             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
800             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
801
802             /* Analytical LJ-PME */
803             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
804             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
805             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
806             exponent         = gmx_simd_exp_r(ewcljrsq);
807             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
808             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
809             /* f6A = 6 * C6grid * (1 - poly) */
810             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
811             /* f6B = C6grid * exponent * beta^6 */
812             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
813             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
814             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
815
816             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
817
818             fscal            = _mm_add_ps(felec,fvdw);
819
820             fscal            = _mm_and_ps(fscal,cutoff_mask);
821
822             fscal            = _mm_andnot_ps(dummy_mask,fscal);
823
824             /* Calculate temporary vectorial force */
825             tx               = _mm_mul_ps(fscal,dx00);
826             ty               = _mm_mul_ps(fscal,dy00);
827             tz               = _mm_mul_ps(fscal,dz00);
828
829             /* Update vectorial force */
830             fix0             = _mm_add_ps(fix0,tx);
831             fiy0             = _mm_add_ps(fiy0,ty);
832             fiz0             = _mm_add_ps(fiz0,tz);
833
834             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
835             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
836             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
837             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
838             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
839
840             }
841
842             /* Inner loop uses 63 flops */
843         }
844
845         /* End of innermost loop */
846
847         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
848                                               f+i_coord_offset,fshift+i_shift_offset);
849
850         /* Increment number of inner iterations */
851         inneriter                  += j_index_end - j_index_start;
852
853         /* Outer loop uses 7 flops */
854     }
855
856     /* Increment number of outer iterations */
857     outeriter        += nri;
858
859     /* Update outer/inner flops */
860
861     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
862 }