Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           c6grid_00;
99     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     real             *vdwgridparam;
101     __m128           one_half  = _mm_set1_ps(0.5);
102     __m128           minus_one = _mm_set1_ps(-1.0);
103     __m128i          ewitab;
104     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126     vdwgridparam     = fr->ljpme_c6grid;
127     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
128     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
129     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
140
141     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
142     rvdw             = _mm_set1_ps(fr->rvdw);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179
180         /* Load parameters for i particles */
181         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
182         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216
217             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             r00              = _mm_mul_ps(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_ps(iq0,jq0);
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
245                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
246                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
247                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
248
249             /* EWALD ELECTROSTATICS */
250
251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252             ewrt             = _mm_mul_ps(r00,ewtabscale);
253             ewitab           = _mm_cvttps_epi32(ewrt);
254             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
255             ewitab           = _mm_slli_epi32(ewitab,2);
256             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
257             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
258             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
259             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
260             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
261             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
262             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
263             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
264             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
265
266             /* Analytical LJ-PME */
267             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
268             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
269             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
270             exponent         = gmx_simd_exp_r(ewcljrsq);
271             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
272             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
273             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
274             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
275             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
276             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
277                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
278             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
279             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
280
281             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_and_ps(velec,cutoff_mask);
285             velecsum         = _mm_add_ps(velecsum,velec);
286             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
287             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
288
289             fscal            = _mm_add_ps(felec,fvdw);
290
291             fscal            = _mm_and_ps(fscal,cutoff_mask);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308
309             }
310
311             /* Inner loop uses 82 flops */
312         }
313
314         if(jidx<j_index_end)
315         {
316
317             /* Get j neighbor index, and coordinate index */
318             jnrlistA         = jjnr[jidx];
319             jnrlistB         = jjnr[jidx+1];
320             jnrlistC         = jjnr[jidx+2];
321             jnrlistD         = jjnr[jidx+3];
322             /* Sign of each element will be negative for non-real atoms.
323              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
325              */
326             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
327             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
328             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
329             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
330             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
331             j_coord_offsetA  = DIM*jnrA;
332             j_coord_offsetB  = DIM*jnrB;
333             j_coord_offsetC  = DIM*jnrC;
334             j_coord_offsetD  = DIM*jnrD;
335
336             /* load j atom coordinates */
337             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
338                                               x+j_coord_offsetC,x+j_coord_offsetD,
339                                               &jx0,&jy0,&jz0);
340
341             /* Calculate displacement vector */
342             dx00             = _mm_sub_ps(ix0,jx0);
343             dy00             = _mm_sub_ps(iy0,jy0);
344             dz00             = _mm_sub_ps(iz0,jz0);
345
346             /* Calculate squared distance and things based on it */
347             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
348
349             rinv00           = gmx_mm_invsqrt_ps(rsq00);
350
351             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
352
353             /* Load parameters for j particles */
354             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
355                                                               charge+jnrC+0,charge+jnrD+0);
356             vdwjidx0A        = 2*vdwtype[jnrA+0];
357             vdwjidx0B        = 2*vdwtype[jnrB+0];
358             vdwjidx0C        = 2*vdwtype[jnrC+0];
359             vdwjidx0D        = 2*vdwtype[jnrD+0];
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq00,rcutoff2))
366             {
367
368             r00              = _mm_mul_ps(rsq00,rinv00);
369             r00              = _mm_andnot_ps(dummy_mask,r00);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq00             = _mm_mul_ps(iq0,jq0);
373             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
374                                          vdwparam+vdwioffset0+vdwjidx0B,
375                                          vdwparam+vdwioffset0+vdwjidx0C,
376                                          vdwparam+vdwioffset0+vdwjidx0D,
377                                          &c6_00,&c12_00);
378
379             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
380                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
381                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
382                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm_mul_ps(r00,ewtabscale);
388             ewitab           = _mm_cvttps_epi32(ewrt);
389             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
390             ewitab           = _mm_slli_epi32(ewitab,2);
391             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
392             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
393             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
394             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
395             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
396             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
397             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
398             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
399             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
400
401             /* Analytical LJ-PME */
402             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
403             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
404             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
405             exponent         = gmx_simd_exp_r(ewcljrsq);
406             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
407             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
408             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
409             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
410             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
411             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
412                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
413             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
414             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
415
416             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_and_ps(velec,cutoff_mask);
420             velec            = _mm_andnot_ps(dummy_mask,velec);
421             velecsum         = _mm_add_ps(velecsum,velec);
422             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
423             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
424             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
425
426             fscal            = _mm_add_ps(felec,fvdw);
427
428             fscal            = _mm_and_ps(fscal,cutoff_mask);
429
430             fscal            = _mm_andnot_ps(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm_mul_ps(fscal,dx00);
434             ty               = _mm_mul_ps(fscal,dy00);
435             tz               = _mm_mul_ps(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm_add_ps(fix0,tx);
439             fiy0             = _mm_add_ps(fiy0,ty);
440             fiz0             = _mm_add_ps(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
447
448             }
449
450             /* Inner loop uses 83 flops */
451         }
452
453         /* End of innermost loop */
454
455         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
456                                               f+i_coord_offset,fshift+i_shift_offset);
457
458         ggid                        = gid[iidx];
459         /* Update potential energies */
460         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
461         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
462
463         /* Increment number of inner iterations */
464         inneriter                  += j_index_end - j_index_start;
465
466         /* Outer loop uses 9 flops */
467     }
468
469     /* Increment number of outer iterations */
470     outeriter        += nri;
471
472     /* Update outer/inner flops */
473
474     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
475 }
476 /*
477  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
478  * Electrostatics interaction: Ewald
479  * VdW interaction:            LJEwald
480  * Geometry:                   Particle-Particle
481  * Calculate force/pot:        Force
482  */
483 void
484 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_single
485                     (t_nblist                    * gmx_restrict       nlist,
486                      rvec                        * gmx_restrict          xx,
487                      rvec                        * gmx_restrict          ff,
488                      t_forcerec                  * gmx_restrict          fr,
489                      t_mdatoms                   * gmx_restrict     mdatoms,
490                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
491                      t_nrnb                      * gmx_restrict        nrnb)
492 {
493     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
494      * just 0 for non-waters.
495      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
496      * jnr indices corresponding to data put in the four positions in the SIMD register.
497      */
498     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
499     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
500     int              jnrA,jnrB,jnrC,jnrD;
501     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
502     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
503     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
504     real             rcutoff_scalar;
505     real             *shiftvec,*fshift,*x,*f;
506     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
507     real             scratch[4*DIM];
508     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
509     int              vdwioffset0;
510     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
511     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
512     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
513     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
514     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
515     real             *charge;
516     int              nvdwtype;
517     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
518     int              *vdwtype;
519     real             *vdwparam;
520     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
521     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
522     __m128           c6grid_00;
523     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
524     real             *vdwgridparam;
525     __m128           one_half  = _mm_set1_ps(0.5);
526     __m128           minus_one = _mm_set1_ps(-1.0);
527     __m128i          ewitab;
528     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
529     real             *ewtab;
530     __m128           dummy_mask,cutoff_mask;
531     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
532     __m128           one     = _mm_set1_ps(1.0);
533     __m128           two     = _mm_set1_ps(2.0);
534     x                = xx[0];
535     f                = ff[0];
536
537     nri              = nlist->nri;
538     iinr             = nlist->iinr;
539     jindex           = nlist->jindex;
540     jjnr             = nlist->jjnr;
541     shiftidx         = nlist->shift;
542     gid              = nlist->gid;
543     shiftvec         = fr->shift_vec[0];
544     fshift           = fr->fshift[0];
545     facel            = _mm_set1_ps(fr->epsfac);
546     charge           = mdatoms->chargeA;
547     nvdwtype         = fr->ntype;
548     vdwparam         = fr->nbfp;
549     vdwtype          = mdatoms->typeA;
550     vdwgridparam     = fr->ljpme_c6grid;
551     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
552     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
553     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
554
555     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
556     ewtab            = fr->ic->tabq_coul_F;
557     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
558     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
559
560     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
561     rcutoff_scalar   = fr->rcoulomb;
562     rcutoff          = _mm_set1_ps(rcutoff_scalar);
563     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
564
565     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
566     rvdw             = _mm_set1_ps(fr->rvdw);
567
568     /* Avoid stupid compiler warnings */
569     jnrA = jnrB = jnrC = jnrD = 0;
570     j_coord_offsetA = 0;
571     j_coord_offsetB = 0;
572     j_coord_offsetC = 0;
573     j_coord_offsetD = 0;
574
575     outeriter        = 0;
576     inneriter        = 0;
577
578     for(iidx=0;iidx<4*DIM;iidx++)
579     {
580         scratch[iidx] = 0.0;
581     }
582
583     /* Start outer loop over neighborlists */
584     for(iidx=0; iidx<nri; iidx++)
585     {
586         /* Load shift vector for this list */
587         i_shift_offset   = DIM*shiftidx[iidx];
588
589         /* Load limits for loop over neighbors */
590         j_index_start    = jindex[iidx];
591         j_index_end      = jindex[iidx+1];
592
593         /* Get outer coordinate index */
594         inr              = iinr[iidx];
595         i_coord_offset   = DIM*inr;
596
597         /* Load i particle coords and add shift vector */
598         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
599
600         fix0             = _mm_setzero_ps();
601         fiy0             = _mm_setzero_ps();
602         fiz0             = _mm_setzero_ps();
603
604         /* Load parameters for i particles */
605         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
606         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
607
608         /* Start inner kernel loop */
609         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
610         {
611
612             /* Get j neighbor index, and coordinate index */
613             jnrA             = jjnr[jidx];
614             jnrB             = jjnr[jidx+1];
615             jnrC             = jjnr[jidx+2];
616             jnrD             = jjnr[jidx+3];
617             j_coord_offsetA  = DIM*jnrA;
618             j_coord_offsetB  = DIM*jnrB;
619             j_coord_offsetC  = DIM*jnrC;
620             j_coord_offsetD  = DIM*jnrD;
621
622             /* load j atom coordinates */
623             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
624                                               x+j_coord_offsetC,x+j_coord_offsetD,
625                                               &jx0,&jy0,&jz0);
626
627             /* Calculate displacement vector */
628             dx00             = _mm_sub_ps(ix0,jx0);
629             dy00             = _mm_sub_ps(iy0,jy0);
630             dz00             = _mm_sub_ps(iz0,jz0);
631
632             /* Calculate squared distance and things based on it */
633             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
634
635             rinv00           = gmx_mm_invsqrt_ps(rsq00);
636
637             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
638
639             /* Load parameters for j particles */
640             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
641                                                               charge+jnrC+0,charge+jnrD+0);
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643             vdwjidx0B        = 2*vdwtype[jnrB+0];
644             vdwjidx0C        = 2*vdwtype[jnrC+0];
645             vdwjidx0D        = 2*vdwtype[jnrD+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq00,rcutoff2))
652             {
653
654             r00              = _mm_mul_ps(rsq00,rinv00);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq00             = _mm_mul_ps(iq0,jq0);
658             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
659                                          vdwparam+vdwioffset0+vdwjidx0B,
660                                          vdwparam+vdwioffset0+vdwjidx0C,
661                                          vdwparam+vdwioffset0+vdwjidx0D,
662                                          &c6_00,&c12_00);
663
664             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
665                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
666                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
667                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
668
669             /* EWALD ELECTROSTATICS */
670
671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
672             ewrt             = _mm_mul_ps(r00,ewtabscale);
673             ewitab           = _mm_cvttps_epi32(ewrt);
674             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
675             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
676                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
677                                          &ewtabF,&ewtabFn);
678             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
679             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
680
681             /* Analytical LJ-PME */
682             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
683             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
684             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
685             exponent         = gmx_simd_exp_r(ewcljrsq);
686             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
687             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
688             /* f6A = 6 * C6grid * (1 - poly) */
689             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
690             /* f6B = C6grid * exponent * beta^6 */
691             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
692             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
693             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
694
695             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
696
697             fscal            = _mm_add_ps(felec,fvdw);
698
699             fscal            = _mm_and_ps(fscal,cutoff_mask);
700
701             /* Calculate temporary vectorial force */
702             tx               = _mm_mul_ps(fscal,dx00);
703             ty               = _mm_mul_ps(fscal,dy00);
704             tz               = _mm_mul_ps(fscal,dz00);
705
706             /* Update vectorial force */
707             fix0             = _mm_add_ps(fix0,tx);
708             fiy0             = _mm_add_ps(fiy0,ty);
709             fiz0             = _mm_add_ps(fiz0,tz);
710
711             fjptrA             = f+j_coord_offsetA;
712             fjptrB             = f+j_coord_offsetB;
713             fjptrC             = f+j_coord_offsetC;
714             fjptrD             = f+j_coord_offsetD;
715             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
716
717             }
718
719             /* Inner loop uses 62 flops */
720         }
721
722         if(jidx<j_index_end)
723         {
724
725             /* Get j neighbor index, and coordinate index */
726             jnrlistA         = jjnr[jidx];
727             jnrlistB         = jjnr[jidx+1];
728             jnrlistC         = jjnr[jidx+2];
729             jnrlistD         = jjnr[jidx+3];
730             /* Sign of each element will be negative for non-real atoms.
731              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
732              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
733              */
734             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
735             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
736             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
737             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
738             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743
744             /* load j atom coordinates */
745             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
746                                               x+j_coord_offsetC,x+j_coord_offsetD,
747                                               &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm_sub_ps(ix0,jx0);
751             dy00             = _mm_sub_ps(iy0,jy0);
752             dz00             = _mm_sub_ps(iz0,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
756
757             rinv00           = gmx_mm_invsqrt_ps(rsq00);
758
759             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
760
761             /* Load parameters for j particles */
762             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
763                                                               charge+jnrC+0,charge+jnrD+0);
764             vdwjidx0A        = 2*vdwtype[jnrA+0];
765             vdwjidx0B        = 2*vdwtype[jnrB+0];
766             vdwjidx0C        = 2*vdwtype[jnrC+0];
767             vdwjidx0D        = 2*vdwtype[jnrD+0];
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             if (gmx_mm_any_lt(rsq00,rcutoff2))
774             {
775
776             r00              = _mm_mul_ps(rsq00,rinv00);
777             r00              = _mm_andnot_ps(dummy_mask,r00);
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq00             = _mm_mul_ps(iq0,jq0);
781             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
782                                          vdwparam+vdwioffset0+vdwjidx0B,
783                                          vdwparam+vdwioffset0+vdwjidx0C,
784                                          vdwparam+vdwioffset0+vdwjidx0D,
785                                          &c6_00,&c12_00);
786
787             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
788                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
789                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
790                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
791
792             /* EWALD ELECTROSTATICS */
793
794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
795             ewrt             = _mm_mul_ps(r00,ewtabscale);
796             ewitab           = _mm_cvttps_epi32(ewrt);
797             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
798             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
799                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
800                                          &ewtabF,&ewtabFn);
801             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
802             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
803
804             /* Analytical LJ-PME */
805             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
806             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
807             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
808             exponent         = gmx_simd_exp_r(ewcljrsq);
809             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
810             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
811             /* f6A = 6 * C6grid * (1 - poly) */
812             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
813             /* f6B = C6grid * exponent * beta^6 */
814             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
815             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
816             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
817
818             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
819
820             fscal            = _mm_add_ps(felec,fvdw);
821
822             fscal            = _mm_and_ps(fscal,cutoff_mask);
823
824             fscal            = _mm_andnot_ps(dummy_mask,fscal);
825
826             /* Calculate temporary vectorial force */
827             tx               = _mm_mul_ps(fscal,dx00);
828             ty               = _mm_mul_ps(fscal,dy00);
829             tz               = _mm_mul_ps(fscal,dz00);
830
831             /* Update vectorial force */
832             fix0             = _mm_add_ps(fix0,tx);
833             fiy0             = _mm_add_ps(fiy0,ty);
834             fiz0             = _mm_add_ps(fiz0,tz);
835
836             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
837             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
838             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
839             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
840             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
841
842             }
843
844             /* Inner loop uses 63 flops */
845         }
846
847         /* End of innermost loop */
848
849         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
850                                               f+i_coord_offset,fshift+i_shift_offset);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 7 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
864 }