6fef7b28037d80610c239dc3657dfcd24711e731
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = jnrC = jnrD = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112     j_coord_offsetC = 0;
113     j_coord_offsetD = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     for(iidx=0;iidx<4*DIM;iidx++)
119     {
120         scratch[iidx] = 0.0;
121     }
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_ps();
141         fiy0             = _mm_setzero_ps();
142         fiz0             = _mm_setzero_ps();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_ps();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             jnrC             = jjnr[jidx+2];
158             jnrD             = jjnr[jidx+3];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161             j_coord_offsetC  = DIM*jnrC;
162             j_coord_offsetD  = DIM*jnrD;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               x+j_coord_offsetC,x+j_coord_offsetD,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _mm_sub_ps(ix0,jx0);
171             dy00             = _mm_sub_ps(iy0,jy0);
172             dz00             = _mm_sub_ps(iz0,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
176
177             rinv00           = gmx_mm_invsqrt_ps(rsq00);
178
179             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
183                                                               charge+jnrC+0,charge+jnrD+0);
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             /* Compute parameters for interactions between i and j atoms */
190             qq00             = _mm_mul_ps(iq0,jq0);
191
192             /* COULOMB ELECTROSTATICS */
193             velec            = _mm_mul_ps(qq00,rinv00);
194             felec            = _mm_mul_ps(velec,rinvsq00);
195
196             /* Update potential sum for this i atom from the interaction with this j atom. */
197             velecsum         = _mm_add_ps(velecsum,velec);
198
199             fscal            = felec;
200
201             /* Calculate temporary vectorial force */
202             tx               = _mm_mul_ps(fscal,dx00);
203             ty               = _mm_mul_ps(fscal,dy00);
204             tz               = _mm_mul_ps(fscal,dz00);
205
206             /* Update vectorial force */
207             fix0             = _mm_add_ps(fix0,tx);
208             fiy0             = _mm_add_ps(fiy0,ty);
209             fiz0             = _mm_add_ps(fiz0,tz);
210
211             fjptrA             = f+j_coord_offsetA;
212             fjptrB             = f+j_coord_offsetB;
213             fjptrC             = f+j_coord_offsetC;
214             fjptrD             = f+j_coord_offsetD;
215             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
216
217             /* Inner loop uses 28 flops */
218         }
219
220         if(jidx<j_index_end)
221         {
222
223             /* Get j neighbor index, and coordinate index */
224             jnrlistA         = jjnr[jidx];
225             jnrlistB         = jjnr[jidx+1];
226             jnrlistC         = jjnr[jidx+2];
227             jnrlistD         = jjnr[jidx+3];
228             /* Sign of each element will be negative for non-real atoms.
229              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
230              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
231              */
232             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
233             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
234             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
235             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
236             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
237             j_coord_offsetA  = DIM*jnrA;
238             j_coord_offsetB  = DIM*jnrB;
239             j_coord_offsetC  = DIM*jnrC;
240             j_coord_offsetD  = DIM*jnrD;
241
242             /* load j atom coordinates */
243             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
244                                               x+j_coord_offsetC,x+j_coord_offsetD,
245                                               &jx0,&jy0,&jz0);
246
247             /* Calculate displacement vector */
248             dx00             = _mm_sub_ps(ix0,jx0);
249             dy00             = _mm_sub_ps(iy0,jy0);
250             dz00             = _mm_sub_ps(iz0,jz0);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
254
255             rinv00           = gmx_mm_invsqrt_ps(rsq00);
256
257             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                               charge+jnrC+0,charge+jnrD+0);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm_mul_ps(iq0,jq0);
269
270             /* COULOMB ELECTROSTATICS */
271             velec            = _mm_mul_ps(qq00,rinv00);
272             felec            = _mm_mul_ps(velec,rinvsq00);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm_andnot_ps(dummy_mask,velec);
276             velecsum         = _mm_add_ps(velecsum,velec);
277
278             fscal            = felec;
279
280             fscal            = _mm_andnot_ps(dummy_mask,fscal);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_ps(fscal,dx00);
284             ty               = _mm_mul_ps(fscal,dy00);
285             tz               = _mm_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_ps(fix0,tx);
289             fiy0             = _mm_add_ps(fiy0,ty);
290             fiz0             = _mm_add_ps(fiz0,tz);
291
292             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
293             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
294             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
295             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
297
298             /* Inner loop uses 28 flops */
299         }
300
301         /* End of innermost loop */
302
303         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
304                                               f+i_coord_offset,fshift+i_shift_offset);
305
306         ggid                        = gid[iidx];
307         /* Update potential energies */
308         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
309
310         /* Increment number of inner iterations */
311         inneriter                  += j_index_end - j_index_start;
312
313         /* Outer loop uses 8 flops */
314     }
315
316     /* Increment number of outer iterations */
317     outeriter        += nri;
318
319     /* Update outer/inner flops */
320
321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*28);
322 }
323 /*
324  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse4_1_single
325  * Electrostatics interaction: Coulomb
326  * VdW interaction:            None
327  * Geometry:                   Particle-Particle
328  * Calculate force/pot:        Force
329  */
330 void
331 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse4_1_single
332                     (t_nblist                    * gmx_restrict       nlist,
333                      rvec                        * gmx_restrict          xx,
334                      rvec                        * gmx_restrict          ff,
335                      t_forcerec                  * gmx_restrict          fr,
336                      t_mdatoms                   * gmx_restrict     mdatoms,
337                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
338                      t_nrnb                      * gmx_restrict        nrnb)
339 {
340     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
341      * just 0 for non-waters.
342      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
343      * jnr indices corresponding to data put in the four positions in the SIMD register.
344      */
345     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
346     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
347     int              jnrA,jnrB,jnrC,jnrD;
348     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
349     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
350     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
351     real             rcutoff_scalar;
352     real             *shiftvec,*fshift,*x,*f;
353     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
354     real             scratch[4*DIM];
355     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
356     int              vdwioffset0;
357     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
358     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
359     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
360     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
361     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
362     real             *charge;
363     __m128           dummy_mask,cutoff_mask;
364     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
365     __m128           one     = _mm_set1_ps(1.0);
366     __m128           two     = _mm_set1_ps(2.0);
367     x                = xx[0];
368     f                = ff[0];
369
370     nri              = nlist->nri;
371     iinr             = nlist->iinr;
372     jindex           = nlist->jindex;
373     jjnr             = nlist->jjnr;
374     shiftidx         = nlist->shift;
375     gid              = nlist->gid;
376     shiftvec         = fr->shift_vec[0];
377     fshift           = fr->fshift[0];
378     facel            = _mm_set1_ps(fr->epsfac);
379     charge           = mdatoms->chargeA;
380
381     /* Avoid stupid compiler warnings */
382     jnrA = jnrB = jnrC = jnrD = 0;
383     j_coord_offsetA = 0;
384     j_coord_offsetB = 0;
385     j_coord_offsetC = 0;
386     j_coord_offsetD = 0;
387
388     outeriter        = 0;
389     inneriter        = 0;
390
391     for(iidx=0;iidx<4*DIM;iidx++)
392     {
393         scratch[iidx] = 0.0;
394     }
395
396     /* Start outer loop over neighborlists */
397     for(iidx=0; iidx<nri; iidx++)
398     {
399         /* Load shift vector for this list */
400         i_shift_offset   = DIM*shiftidx[iidx];
401
402         /* Load limits for loop over neighbors */
403         j_index_start    = jindex[iidx];
404         j_index_end      = jindex[iidx+1];
405
406         /* Get outer coordinate index */
407         inr              = iinr[iidx];
408         i_coord_offset   = DIM*inr;
409
410         /* Load i particle coords and add shift vector */
411         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
412
413         fix0             = _mm_setzero_ps();
414         fiy0             = _mm_setzero_ps();
415         fiz0             = _mm_setzero_ps();
416
417         /* Load parameters for i particles */
418         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
419
420         /* Start inner kernel loop */
421         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrA             = jjnr[jidx];
426             jnrB             = jjnr[jidx+1];
427             jnrC             = jjnr[jidx+2];
428             jnrD             = jjnr[jidx+3];
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431             j_coord_offsetC  = DIM*jnrC;
432             j_coord_offsetD  = DIM*jnrD;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
436                                               x+j_coord_offsetC,x+j_coord_offsetD,
437                                               &jx0,&jy0,&jz0);
438
439             /* Calculate displacement vector */
440             dx00             = _mm_sub_ps(ix0,jx0);
441             dy00             = _mm_sub_ps(iy0,jy0);
442             dz00             = _mm_sub_ps(iz0,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
446
447             rinv00           = gmx_mm_invsqrt_ps(rsq00);
448
449             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
450
451             /* Load parameters for j particles */
452             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
453                                                               charge+jnrC+0,charge+jnrD+0);
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             /* Compute parameters for interactions between i and j atoms */
460             qq00             = _mm_mul_ps(iq0,jq0);
461
462             /* COULOMB ELECTROSTATICS */
463             velec            = _mm_mul_ps(qq00,rinv00);
464             felec            = _mm_mul_ps(velec,rinvsq00);
465
466             fscal            = felec;
467
468             /* Calculate temporary vectorial force */
469             tx               = _mm_mul_ps(fscal,dx00);
470             ty               = _mm_mul_ps(fscal,dy00);
471             tz               = _mm_mul_ps(fscal,dz00);
472
473             /* Update vectorial force */
474             fix0             = _mm_add_ps(fix0,tx);
475             fiy0             = _mm_add_ps(fiy0,ty);
476             fiz0             = _mm_add_ps(fiz0,tz);
477
478             fjptrA             = f+j_coord_offsetA;
479             fjptrB             = f+j_coord_offsetB;
480             fjptrC             = f+j_coord_offsetC;
481             fjptrD             = f+j_coord_offsetD;
482             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
483
484             /* Inner loop uses 27 flops */
485         }
486
487         if(jidx<j_index_end)
488         {
489
490             /* Get j neighbor index, and coordinate index */
491             jnrlistA         = jjnr[jidx];
492             jnrlistB         = jjnr[jidx+1];
493             jnrlistC         = jjnr[jidx+2];
494             jnrlistD         = jjnr[jidx+3];
495             /* Sign of each element will be negative for non-real atoms.
496              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
497              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
498              */
499             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
500             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
501             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
502             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
503             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506             j_coord_offsetC  = DIM*jnrC;
507             j_coord_offsetD  = DIM*jnrD;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               x+j_coord_offsetC,x+j_coord_offsetD,
512                                               &jx0,&jy0,&jz0);
513
514             /* Calculate displacement vector */
515             dx00             = _mm_sub_ps(ix0,jx0);
516             dy00             = _mm_sub_ps(iy0,jy0);
517             dz00             = _mm_sub_ps(iz0,jz0);
518
519             /* Calculate squared distance and things based on it */
520             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
521
522             rinv00           = gmx_mm_invsqrt_ps(rsq00);
523
524             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
525
526             /* Load parameters for j particles */
527             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
528                                                               charge+jnrC+0,charge+jnrD+0);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm_mul_ps(iq0,jq0);
536
537             /* COULOMB ELECTROSTATICS */
538             velec            = _mm_mul_ps(qq00,rinv00);
539             felec            = _mm_mul_ps(velec,rinvsq00);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx00);
547             ty               = _mm_mul_ps(fscal,dy00);
548             tz               = _mm_mul_ps(fscal,dz00);
549
550             /* Update vectorial force */
551             fix0             = _mm_add_ps(fix0,tx);
552             fiy0             = _mm_add_ps(fiy0,ty);
553             fiz0             = _mm_add_ps(fiz0,tz);
554
555             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
556             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
557             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
558             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
560
561             /* Inner loop uses 27 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
567                                               f+i_coord_offset,fshift+i_shift_offset);
568
569         /* Increment number of inner iterations */
570         inneriter                  += j_index_end - j_index_start;
571
572         /* Outer loop uses 7 flops */
573     }
574
575     /* Increment number of outer iterations */
576     outeriter        += nri;
577
578     /* Update outer/inner flops */
579
580     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27);
581 }