Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_ps(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
125     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
126     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165         fix1             = _mm_setzero_ps();
166         fiy1             = _mm_setzero_ps();
167         fiz1             = _mm_setzero_ps();
168         fix2             = _mm_setzero_ps();
169         fiy2             = _mm_setzero_ps();
170         fiz2             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
208             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
210
211             rinv00           = sse41_invsqrt_f(rsq00);
212             rinv10           = sse41_invsqrt_f(rsq10);
213             rinv20           = sse41_invsqrt_f(rsq20);
214
215             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
216             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
217             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             fjx0             = _mm_setzero_ps();
228             fjy0             = _mm_setzero_ps();
229             fjz0             = _mm_setzero_ps();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_ps(iq0,jq0);
237             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,
239                                          vdwparam+vdwioffset0+vdwjidx0C,
240                                          vdwparam+vdwioffset0+vdwjidx0D,
241                                          &c6_00,&c12_00);
242
243             /* COULOMB ELECTROSTATICS */
244             velec            = _mm_mul_ps(qq00,rinv00);
245             felec            = _mm_mul_ps(velec,rinvsq00);
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
251             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
252             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
253             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             velecsum         = _mm_add_ps(velecsum,velec);
257             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
258
259             fscal            = _mm_add_ps(felec,fvdw);
260
261             /* Calculate temporary vectorial force */
262             tx               = _mm_mul_ps(fscal,dx00);
263             ty               = _mm_mul_ps(fscal,dy00);
264             tz               = _mm_mul_ps(fscal,dz00);
265
266             /* Update vectorial force */
267             fix0             = _mm_add_ps(fix0,tx);
268             fiy0             = _mm_add_ps(fiy0,ty);
269             fiz0             = _mm_add_ps(fiz0,tz);
270
271             fjx0             = _mm_add_ps(fjx0,tx);
272             fjy0             = _mm_add_ps(fjy0,ty);
273             fjz0             = _mm_add_ps(fjz0,tz);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq10             = _mm_mul_ps(iq1,jq0);
281
282             /* COULOMB ELECTROSTATICS */
283             velec            = _mm_mul_ps(qq10,rinv10);
284             felec            = _mm_mul_ps(velec,rinvsq10);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm_add_ps(velecsum,velec);
288
289             fscal            = felec;
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_ps(fscal,dx10);
293             ty               = _mm_mul_ps(fscal,dy10);
294             tz               = _mm_mul_ps(fscal,dz10);
295
296             /* Update vectorial force */
297             fix1             = _mm_add_ps(fix1,tx);
298             fiy1             = _mm_add_ps(fiy1,ty);
299             fiz1             = _mm_add_ps(fiz1,tz);
300
301             fjx0             = _mm_add_ps(fjx0,tx);
302             fjy0             = _mm_add_ps(fjy0,ty);
303             fjz0             = _mm_add_ps(fjz0,tz);
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq20             = _mm_mul_ps(iq2,jq0);
311
312             /* COULOMB ELECTROSTATICS */
313             velec            = _mm_mul_ps(qq20,rinv20);
314             felec            = _mm_mul_ps(velec,rinvsq20);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm_add_ps(velecsum,velec);
318
319             fscal            = felec;
320
321             /* Calculate temporary vectorial force */
322             tx               = _mm_mul_ps(fscal,dx20);
323             ty               = _mm_mul_ps(fscal,dy20);
324             tz               = _mm_mul_ps(fscal,dz20);
325
326             /* Update vectorial force */
327             fix2             = _mm_add_ps(fix2,tx);
328             fiy2             = _mm_add_ps(fiy2,ty);
329             fiz2             = _mm_add_ps(fiz2,tz);
330
331             fjx0             = _mm_add_ps(fjx0,tx);
332             fjy0             = _mm_add_ps(fjy0,ty);
333             fjz0             = _mm_add_ps(fjz0,tz);
334
335             fjptrA             = f+j_coord_offsetA;
336             fjptrB             = f+j_coord_offsetB;
337             fjptrC             = f+j_coord_offsetC;
338             fjptrD             = f+j_coord_offsetD;
339
340             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
341
342             /* Inner loop uses 96 flops */
343         }
344
345         if(jidx<j_index_end)
346         {
347
348             /* Get j neighbor index, and coordinate index */
349             jnrlistA         = jjnr[jidx];
350             jnrlistB         = jjnr[jidx+1];
351             jnrlistC         = jjnr[jidx+2];
352             jnrlistD         = jjnr[jidx+3];
353             /* Sign of each element will be negative for non-real atoms.
354              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
355              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
356              */
357             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
358             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
359             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
360             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
361             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
362             j_coord_offsetA  = DIM*jnrA;
363             j_coord_offsetB  = DIM*jnrB;
364             j_coord_offsetC  = DIM*jnrC;
365             j_coord_offsetD  = DIM*jnrD;
366
367             /* load j atom coordinates */
368             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
369                                               x+j_coord_offsetC,x+j_coord_offsetD,
370                                               &jx0,&jy0,&jz0);
371
372             /* Calculate displacement vector */
373             dx00             = _mm_sub_ps(ix0,jx0);
374             dy00             = _mm_sub_ps(iy0,jy0);
375             dz00             = _mm_sub_ps(iz0,jz0);
376             dx10             = _mm_sub_ps(ix1,jx0);
377             dy10             = _mm_sub_ps(iy1,jy0);
378             dz10             = _mm_sub_ps(iz1,jz0);
379             dx20             = _mm_sub_ps(ix2,jx0);
380             dy20             = _mm_sub_ps(iy2,jy0);
381             dz20             = _mm_sub_ps(iz2,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
385             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
386             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
387
388             rinv00           = sse41_invsqrt_f(rsq00);
389             rinv10           = sse41_invsqrt_f(rsq10);
390             rinv20           = sse41_invsqrt_f(rsq20);
391
392             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
393             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
394             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
395
396             /* Load parameters for j particles */
397             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
398                                                               charge+jnrC+0,charge+jnrD+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400             vdwjidx0B        = 2*vdwtype[jnrB+0];
401             vdwjidx0C        = 2*vdwtype[jnrC+0];
402             vdwjidx0D        = 2*vdwtype[jnrD+0];
403
404             fjx0             = _mm_setzero_ps();
405             fjy0             = _mm_setzero_ps();
406             fjz0             = _mm_setzero_ps();
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq00             = _mm_mul_ps(iq0,jq0);
414             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
415                                          vdwparam+vdwioffset0+vdwjidx0B,
416                                          vdwparam+vdwioffset0+vdwjidx0C,
417                                          vdwparam+vdwioffset0+vdwjidx0D,
418                                          &c6_00,&c12_00);
419
420             /* COULOMB ELECTROSTATICS */
421             velec            = _mm_mul_ps(qq00,rinv00);
422             felec            = _mm_mul_ps(velec,rinvsq00);
423
424             /* LENNARD-JONES DISPERSION/REPULSION */
425
426             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
427             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
428             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
429             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
430             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm_andnot_ps(dummy_mask,velec);
434             velecsum         = _mm_add_ps(velecsum,velec);
435             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
436             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
437
438             fscal            = _mm_add_ps(felec,fvdw);
439
440             fscal            = _mm_andnot_ps(dummy_mask,fscal);
441
442             /* Calculate temporary vectorial force */
443             tx               = _mm_mul_ps(fscal,dx00);
444             ty               = _mm_mul_ps(fscal,dy00);
445             tz               = _mm_mul_ps(fscal,dz00);
446
447             /* Update vectorial force */
448             fix0             = _mm_add_ps(fix0,tx);
449             fiy0             = _mm_add_ps(fiy0,ty);
450             fiz0             = _mm_add_ps(fiz0,tz);
451
452             fjx0             = _mm_add_ps(fjx0,tx);
453             fjy0             = _mm_add_ps(fjy0,ty);
454             fjz0             = _mm_add_ps(fjz0,tz);
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             /* Compute parameters for interactions between i and j atoms */
461             qq10             = _mm_mul_ps(iq1,jq0);
462
463             /* COULOMB ELECTROSTATICS */
464             velec            = _mm_mul_ps(qq10,rinv10);
465             felec            = _mm_mul_ps(velec,rinvsq10);
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velec            = _mm_andnot_ps(dummy_mask,velec);
469             velecsum         = _mm_add_ps(velecsum,velec);
470
471             fscal            = felec;
472
473             fscal            = _mm_andnot_ps(dummy_mask,fscal);
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm_mul_ps(fscal,dx10);
477             ty               = _mm_mul_ps(fscal,dy10);
478             tz               = _mm_mul_ps(fscal,dz10);
479
480             /* Update vectorial force */
481             fix1             = _mm_add_ps(fix1,tx);
482             fiy1             = _mm_add_ps(fiy1,ty);
483             fiz1             = _mm_add_ps(fiz1,tz);
484
485             fjx0             = _mm_add_ps(fjx0,tx);
486             fjy0             = _mm_add_ps(fjy0,ty);
487             fjz0             = _mm_add_ps(fjz0,tz);
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq20             = _mm_mul_ps(iq2,jq0);
495
496             /* COULOMB ELECTROSTATICS */
497             velec            = _mm_mul_ps(qq20,rinv20);
498             felec            = _mm_mul_ps(velec,rinvsq20);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm_andnot_ps(dummy_mask,velec);
502             velecsum         = _mm_add_ps(velecsum,velec);
503
504             fscal            = felec;
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx20);
510             ty               = _mm_mul_ps(fscal,dy20);
511             tz               = _mm_mul_ps(fscal,dz20);
512
513             /* Update vectorial force */
514             fix2             = _mm_add_ps(fix2,tx);
515             fiy2             = _mm_add_ps(fiy2,ty);
516             fiz2             = _mm_add_ps(fiz2,tz);
517
518             fjx0             = _mm_add_ps(fjx0,tx);
519             fjy0             = _mm_add_ps(fjy0,ty);
520             fjz0             = _mm_add_ps(fjz0,tz);
521
522             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
523             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
524             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
525             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
526
527             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
528
529             /* Inner loop uses 96 flops */
530         }
531
532         /* End of innermost loop */
533
534         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
535                                               f+i_coord_offset,fshift+i_shift_offset);
536
537         ggid                        = gid[iidx];
538         /* Update potential energies */
539         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
540         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
541
542         /* Increment number of inner iterations */
543         inneriter                  += j_index_end - j_index_start;
544
545         /* Outer loop uses 20 flops */
546     }
547
548     /* Increment number of outer iterations */
549     outeriter        += nri;
550
551     /* Update outer/inner flops */
552
553     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
554 }
555 /*
556  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
557  * Electrostatics interaction: Coulomb
558  * VdW interaction:            LennardJones
559  * Geometry:                   Water3-Particle
560  * Calculate force/pot:        Force
561  */
562 void
563 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
564                     (t_nblist                    * gmx_restrict       nlist,
565                      rvec                        * gmx_restrict          xx,
566                      rvec                        * gmx_restrict          ff,
567                      struct t_forcerec           * gmx_restrict          fr,
568                      t_mdatoms                   * gmx_restrict     mdatoms,
569                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
570                      t_nrnb                      * gmx_restrict        nrnb)
571 {
572     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
573      * just 0 for non-waters.
574      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
575      * jnr indices corresponding to data put in the four positions in the SIMD register.
576      */
577     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
578     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
579     int              jnrA,jnrB,jnrC,jnrD;
580     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
581     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
582     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
583     real             rcutoff_scalar;
584     real             *shiftvec,*fshift,*x,*f;
585     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
586     real             scratch[4*DIM];
587     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
588     int              vdwioffset0;
589     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
590     int              vdwioffset1;
591     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
592     int              vdwioffset2;
593     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
594     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
595     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
596     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
597     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
598     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
599     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
600     real             *charge;
601     int              nvdwtype;
602     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
603     int              *vdwtype;
604     real             *vdwparam;
605     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
606     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
607     __m128           dummy_mask,cutoff_mask;
608     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
609     __m128           one     = _mm_set1_ps(1.0);
610     __m128           two     = _mm_set1_ps(2.0);
611     x                = xx[0];
612     f                = ff[0];
613
614     nri              = nlist->nri;
615     iinr             = nlist->iinr;
616     jindex           = nlist->jindex;
617     jjnr             = nlist->jjnr;
618     shiftidx         = nlist->shift;
619     gid              = nlist->gid;
620     shiftvec         = fr->shift_vec[0];
621     fshift           = fr->fshift[0];
622     facel            = _mm_set1_ps(fr->ic->epsfac);
623     charge           = mdatoms->chargeA;
624     nvdwtype         = fr->ntype;
625     vdwparam         = fr->nbfp;
626     vdwtype          = mdatoms->typeA;
627
628     /* Setup water-specific parameters */
629     inr              = nlist->iinr[0];
630     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
631     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
632     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
633     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
634
635     /* Avoid stupid compiler warnings */
636     jnrA = jnrB = jnrC = jnrD = 0;
637     j_coord_offsetA = 0;
638     j_coord_offsetB = 0;
639     j_coord_offsetC = 0;
640     j_coord_offsetD = 0;
641
642     outeriter        = 0;
643     inneriter        = 0;
644
645     for(iidx=0;iidx<4*DIM;iidx++)
646     {
647         scratch[iidx] = 0.0;
648     }
649
650     /* Start outer loop over neighborlists */
651     for(iidx=0; iidx<nri; iidx++)
652     {
653         /* Load shift vector for this list */
654         i_shift_offset   = DIM*shiftidx[iidx];
655
656         /* Load limits for loop over neighbors */
657         j_index_start    = jindex[iidx];
658         j_index_end      = jindex[iidx+1];
659
660         /* Get outer coordinate index */
661         inr              = iinr[iidx];
662         i_coord_offset   = DIM*inr;
663
664         /* Load i particle coords and add shift vector */
665         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
666                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
667
668         fix0             = _mm_setzero_ps();
669         fiy0             = _mm_setzero_ps();
670         fiz0             = _mm_setzero_ps();
671         fix1             = _mm_setzero_ps();
672         fiy1             = _mm_setzero_ps();
673         fiz1             = _mm_setzero_ps();
674         fix2             = _mm_setzero_ps();
675         fiy2             = _mm_setzero_ps();
676         fiz2             = _mm_setzero_ps();
677
678         /* Start inner kernel loop */
679         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
680         {
681
682             /* Get j neighbor index, and coordinate index */
683             jnrA             = jjnr[jidx];
684             jnrB             = jjnr[jidx+1];
685             jnrC             = jjnr[jidx+2];
686             jnrD             = jjnr[jidx+3];
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               x+j_coord_offsetC,x+j_coord_offsetD,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm_sub_ps(ix0,jx0);
699             dy00             = _mm_sub_ps(iy0,jy0);
700             dz00             = _mm_sub_ps(iz0,jz0);
701             dx10             = _mm_sub_ps(ix1,jx0);
702             dy10             = _mm_sub_ps(iy1,jy0);
703             dz10             = _mm_sub_ps(iz1,jz0);
704             dx20             = _mm_sub_ps(ix2,jx0);
705             dy20             = _mm_sub_ps(iy2,jy0);
706             dz20             = _mm_sub_ps(iz2,jz0);
707
708             /* Calculate squared distance and things based on it */
709             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
710             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
711             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
712
713             rinv00           = sse41_invsqrt_f(rsq00);
714             rinv10           = sse41_invsqrt_f(rsq10);
715             rinv20           = sse41_invsqrt_f(rsq20);
716
717             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
718             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
719             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
720
721             /* Load parameters for j particles */
722             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
723                                                               charge+jnrC+0,charge+jnrD+0);
724             vdwjidx0A        = 2*vdwtype[jnrA+0];
725             vdwjidx0B        = 2*vdwtype[jnrB+0];
726             vdwjidx0C        = 2*vdwtype[jnrC+0];
727             vdwjidx0D        = 2*vdwtype[jnrD+0];
728
729             fjx0             = _mm_setzero_ps();
730             fjy0             = _mm_setzero_ps();
731             fjz0             = _mm_setzero_ps();
732
733             /**************************
734              * CALCULATE INTERACTIONS *
735              **************************/
736
737             /* Compute parameters for interactions between i and j atoms */
738             qq00             = _mm_mul_ps(iq0,jq0);
739             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
740                                          vdwparam+vdwioffset0+vdwjidx0B,
741                                          vdwparam+vdwioffset0+vdwjidx0C,
742                                          vdwparam+vdwioffset0+vdwjidx0D,
743                                          &c6_00,&c12_00);
744
745             /* COULOMB ELECTROSTATICS */
746             velec            = _mm_mul_ps(qq00,rinv00);
747             felec            = _mm_mul_ps(velec,rinvsq00);
748
749             /* LENNARD-JONES DISPERSION/REPULSION */
750
751             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
752             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
753
754             fscal            = _mm_add_ps(felec,fvdw);
755
756             /* Calculate temporary vectorial force */
757             tx               = _mm_mul_ps(fscal,dx00);
758             ty               = _mm_mul_ps(fscal,dy00);
759             tz               = _mm_mul_ps(fscal,dz00);
760
761             /* Update vectorial force */
762             fix0             = _mm_add_ps(fix0,tx);
763             fiy0             = _mm_add_ps(fiy0,ty);
764             fiz0             = _mm_add_ps(fiz0,tz);
765
766             fjx0             = _mm_add_ps(fjx0,tx);
767             fjy0             = _mm_add_ps(fjy0,ty);
768             fjz0             = _mm_add_ps(fjz0,tz);
769
770             /**************************
771              * CALCULATE INTERACTIONS *
772              **************************/
773
774             /* Compute parameters for interactions between i and j atoms */
775             qq10             = _mm_mul_ps(iq1,jq0);
776
777             /* COULOMB ELECTROSTATICS */
778             velec            = _mm_mul_ps(qq10,rinv10);
779             felec            = _mm_mul_ps(velec,rinvsq10);
780
781             fscal            = felec;
782
783             /* Calculate temporary vectorial force */
784             tx               = _mm_mul_ps(fscal,dx10);
785             ty               = _mm_mul_ps(fscal,dy10);
786             tz               = _mm_mul_ps(fscal,dz10);
787
788             /* Update vectorial force */
789             fix1             = _mm_add_ps(fix1,tx);
790             fiy1             = _mm_add_ps(fiy1,ty);
791             fiz1             = _mm_add_ps(fiz1,tz);
792
793             fjx0             = _mm_add_ps(fjx0,tx);
794             fjy0             = _mm_add_ps(fjy0,ty);
795             fjz0             = _mm_add_ps(fjz0,tz);
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq20             = _mm_mul_ps(iq2,jq0);
803
804             /* COULOMB ELECTROSTATICS */
805             velec            = _mm_mul_ps(qq20,rinv20);
806             felec            = _mm_mul_ps(velec,rinvsq20);
807
808             fscal            = felec;
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm_mul_ps(fscal,dx20);
812             ty               = _mm_mul_ps(fscal,dy20);
813             tz               = _mm_mul_ps(fscal,dz20);
814
815             /* Update vectorial force */
816             fix2             = _mm_add_ps(fix2,tx);
817             fiy2             = _mm_add_ps(fiy2,ty);
818             fiz2             = _mm_add_ps(fiz2,tz);
819
820             fjx0             = _mm_add_ps(fjx0,tx);
821             fjy0             = _mm_add_ps(fjy0,ty);
822             fjz0             = _mm_add_ps(fjz0,tz);
823
824             fjptrA             = f+j_coord_offsetA;
825             fjptrB             = f+j_coord_offsetB;
826             fjptrC             = f+j_coord_offsetC;
827             fjptrD             = f+j_coord_offsetD;
828
829             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
830
831             /* Inner loop uses 88 flops */
832         }
833
834         if(jidx<j_index_end)
835         {
836
837             /* Get j neighbor index, and coordinate index */
838             jnrlistA         = jjnr[jidx];
839             jnrlistB         = jjnr[jidx+1];
840             jnrlistC         = jjnr[jidx+2];
841             jnrlistD         = jjnr[jidx+3];
842             /* Sign of each element will be negative for non-real atoms.
843              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
844              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
845              */
846             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
847             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
848             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
849             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
850             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853             j_coord_offsetC  = DIM*jnrC;
854             j_coord_offsetD  = DIM*jnrD;
855
856             /* load j atom coordinates */
857             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
858                                               x+j_coord_offsetC,x+j_coord_offsetD,
859                                               &jx0,&jy0,&jz0);
860
861             /* Calculate displacement vector */
862             dx00             = _mm_sub_ps(ix0,jx0);
863             dy00             = _mm_sub_ps(iy0,jy0);
864             dz00             = _mm_sub_ps(iz0,jz0);
865             dx10             = _mm_sub_ps(ix1,jx0);
866             dy10             = _mm_sub_ps(iy1,jy0);
867             dz10             = _mm_sub_ps(iz1,jz0);
868             dx20             = _mm_sub_ps(ix2,jx0);
869             dy20             = _mm_sub_ps(iy2,jy0);
870             dz20             = _mm_sub_ps(iz2,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
874             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
875             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
876
877             rinv00           = sse41_invsqrt_f(rsq00);
878             rinv10           = sse41_invsqrt_f(rsq10);
879             rinv20           = sse41_invsqrt_f(rsq20);
880
881             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
882             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
883             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
884
885             /* Load parameters for j particles */
886             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
887                                                               charge+jnrC+0,charge+jnrD+0);
888             vdwjidx0A        = 2*vdwtype[jnrA+0];
889             vdwjidx0B        = 2*vdwtype[jnrB+0];
890             vdwjidx0C        = 2*vdwtype[jnrC+0];
891             vdwjidx0D        = 2*vdwtype[jnrD+0];
892
893             fjx0             = _mm_setzero_ps();
894             fjy0             = _mm_setzero_ps();
895             fjz0             = _mm_setzero_ps();
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq00             = _mm_mul_ps(iq0,jq0);
903             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
904                                          vdwparam+vdwioffset0+vdwjidx0B,
905                                          vdwparam+vdwioffset0+vdwjidx0C,
906                                          vdwparam+vdwioffset0+vdwjidx0D,
907                                          &c6_00,&c12_00);
908
909             /* COULOMB ELECTROSTATICS */
910             velec            = _mm_mul_ps(qq00,rinv00);
911             felec            = _mm_mul_ps(velec,rinvsq00);
912
913             /* LENNARD-JONES DISPERSION/REPULSION */
914
915             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
916             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
917
918             fscal            = _mm_add_ps(felec,fvdw);
919
920             fscal            = _mm_andnot_ps(dummy_mask,fscal);
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm_mul_ps(fscal,dx00);
924             ty               = _mm_mul_ps(fscal,dy00);
925             tz               = _mm_mul_ps(fscal,dz00);
926
927             /* Update vectorial force */
928             fix0             = _mm_add_ps(fix0,tx);
929             fiy0             = _mm_add_ps(fiy0,ty);
930             fiz0             = _mm_add_ps(fiz0,tz);
931
932             fjx0             = _mm_add_ps(fjx0,tx);
933             fjy0             = _mm_add_ps(fjy0,ty);
934             fjz0             = _mm_add_ps(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm_mul_ps(iq1,jq0);
942
943             /* COULOMB ELECTROSTATICS */
944             velec            = _mm_mul_ps(qq10,rinv10);
945             felec            = _mm_mul_ps(velec,rinvsq10);
946
947             fscal            = felec;
948
949             fscal            = _mm_andnot_ps(dummy_mask,fscal);
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm_mul_ps(fscal,dx10);
953             ty               = _mm_mul_ps(fscal,dy10);
954             tz               = _mm_mul_ps(fscal,dz10);
955
956             /* Update vectorial force */
957             fix1             = _mm_add_ps(fix1,tx);
958             fiy1             = _mm_add_ps(fiy1,ty);
959             fiz1             = _mm_add_ps(fiz1,tz);
960
961             fjx0             = _mm_add_ps(fjx0,tx);
962             fjy0             = _mm_add_ps(fjy0,ty);
963             fjz0             = _mm_add_ps(fjz0,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq20             = _mm_mul_ps(iq2,jq0);
971
972             /* COULOMB ELECTROSTATICS */
973             velec            = _mm_mul_ps(qq20,rinv20);
974             felec            = _mm_mul_ps(velec,rinvsq20);
975
976             fscal            = felec;
977
978             fscal            = _mm_andnot_ps(dummy_mask,fscal);
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm_mul_ps(fscal,dx20);
982             ty               = _mm_mul_ps(fscal,dy20);
983             tz               = _mm_mul_ps(fscal,dz20);
984
985             /* Update vectorial force */
986             fix2             = _mm_add_ps(fix2,tx);
987             fiy2             = _mm_add_ps(fiy2,ty);
988             fiz2             = _mm_add_ps(fiz2,tz);
989
990             fjx0             = _mm_add_ps(fjx0,tx);
991             fjy0             = _mm_add_ps(fjy0,ty);
992             fjz0             = _mm_add_ps(fjz0,tz);
993
994             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
995             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
996             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
997             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
998
999             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1000
1001             /* Inner loop uses 88 flops */
1002         }
1003
1004         /* End of innermost loop */
1005
1006         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1007                                               f+i_coord_offset,fshift+i_shift_offset);
1008
1009         /* Increment number of inner iterations */
1010         inneriter                  += j_index_end - j_index_start;
1011
1012         /* Outer loop uses 18 flops */
1013     }
1014
1015     /* Increment number of outer iterations */
1016     outeriter        += nri;
1017
1018     /* Update outer/inner flops */
1019
1020     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1021 }