Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
128     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168         fix1             = _mm_setzero_ps();
169         fiy1             = _mm_setzero_ps();
170         fiz1             = _mm_setzero_ps();
171         fix2             = _mm_setzero_ps();
172         fiy2             = _mm_setzero_ps();
173         fiz2             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_ps(rsq00);
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217
218             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
219             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
220             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm_setzero_ps();
231             fjy0             = _mm_setzero_ps();
232             fjz0             = _mm_setzero_ps();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_ps(iq0,jq0);
240             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,
242                                          vdwparam+vdwioffset0+vdwjidx0C,
243                                          vdwparam+vdwioffset0+vdwjidx0D,
244                                          &c6_00,&c12_00);
245
246             /* COULOMB ELECTROSTATICS */
247             velec            = _mm_mul_ps(qq00,rinv00);
248             felec            = _mm_mul_ps(velec,rinvsq00);
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
254             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
256             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velecsum         = _mm_add_ps(velecsum,velec);
260             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
261
262             fscal            = _mm_add_ps(felec,fvdw);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm_mul_ps(fscal,dx00);
266             ty               = _mm_mul_ps(fscal,dy00);
267             tz               = _mm_mul_ps(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm_add_ps(fix0,tx);
271             fiy0             = _mm_add_ps(fiy0,ty);
272             fiz0             = _mm_add_ps(fiz0,tz);
273
274             fjx0             = _mm_add_ps(fjx0,tx);
275             fjy0             = _mm_add_ps(fjy0,ty);
276             fjz0             = _mm_add_ps(fjz0,tz);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq10             = _mm_mul_ps(iq1,jq0);
284
285             /* COULOMB ELECTROSTATICS */
286             velec            = _mm_mul_ps(qq10,rinv10);
287             felec            = _mm_mul_ps(velec,rinvsq10);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_ps(velecsum,velec);
291
292             fscal            = felec;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_ps(fscal,dx10);
296             ty               = _mm_mul_ps(fscal,dy10);
297             tz               = _mm_mul_ps(fscal,dz10);
298
299             /* Update vectorial force */
300             fix1             = _mm_add_ps(fix1,tx);
301             fiy1             = _mm_add_ps(fiy1,ty);
302             fiz1             = _mm_add_ps(fiz1,tz);
303
304             fjx0             = _mm_add_ps(fjx0,tx);
305             fjy0             = _mm_add_ps(fjy0,ty);
306             fjz0             = _mm_add_ps(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq20             = _mm_mul_ps(iq2,jq0);
314
315             /* COULOMB ELECTROSTATICS */
316             velec            = _mm_mul_ps(qq20,rinv20);
317             felec            = _mm_mul_ps(velec,rinvsq20);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm_add_ps(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_ps(fscal,dx20);
326             ty               = _mm_mul_ps(fscal,dy20);
327             tz               = _mm_mul_ps(fscal,dz20);
328
329             /* Update vectorial force */
330             fix2             = _mm_add_ps(fix2,tx);
331             fiy2             = _mm_add_ps(fiy2,ty);
332             fiz2             = _mm_add_ps(fiz2,tz);
333
334             fjx0             = _mm_add_ps(fjx0,tx);
335             fjy0             = _mm_add_ps(fjy0,ty);
336             fjz0             = _mm_add_ps(fjz0,tz);
337
338             fjptrA             = f+j_coord_offsetA;
339             fjptrB             = f+j_coord_offsetB;
340             fjptrC             = f+j_coord_offsetC;
341             fjptrD             = f+j_coord_offsetD;
342
343             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
344
345             /* Inner loop uses 96 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             /* Get j neighbor index, and coordinate index */
352             jnrlistA         = jjnr[jidx];
353             jnrlistB         = jjnr[jidx+1];
354             jnrlistC         = jjnr[jidx+2];
355             jnrlistD         = jjnr[jidx+3];
356             /* Sign of each element will be negative for non-real atoms.
357              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
358              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
359              */
360             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
361             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
362             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
363             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
364             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
365             j_coord_offsetA  = DIM*jnrA;
366             j_coord_offsetB  = DIM*jnrB;
367             j_coord_offsetC  = DIM*jnrC;
368             j_coord_offsetD  = DIM*jnrD;
369
370             /* load j atom coordinates */
371             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
372                                               x+j_coord_offsetC,x+j_coord_offsetD,
373                                               &jx0,&jy0,&jz0);
374
375             /* Calculate displacement vector */
376             dx00             = _mm_sub_ps(ix0,jx0);
377             dy00             = _mm_sub_ps(iy0,jy0);
378             dz00             = _mm_sub_ps(iz0,jz0);
379             dx10             = _mm_sub_ps(ix1,jx0);
380             dy10             = _mm_sub_ps(iy1,jy0);
381             dz10             = _mm_sub_ps(iz1,jz0);
382             dx20             = _mm_sub_ps(ix2,jx0);
383             dy20             = _mm_sub_ps(iy2,jy0);
384             dz20             = _mm_sub_ps(iz2,jz0);
385
386             /* Calculate squared distance and things based on it */
387             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
388             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
389             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
390
391             rinv00           = gmx_mm_invsqrt_ps(rsq00);
392             rinv10           = gmx_mm_invsqrt_ps(rsq10);
393             rinv20           = gmx_mm_invsqrt_ps(rsq20);
394
395             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
396             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
397             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
398
399             /* Load parameters for j particles */
400             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
401                                                               charge+jnrC+0,charge+jnrD+0);
402             vdwjidx0A        = 2*vdwtype[jnrA+0];
403             vdwjidx0B        = 2*vdwtype[jnrB+0];
404             vdwjidx0C        = 2*vdwtype[jnrC+0];
405             vdwjidx0D        = 2*vdwtype[jnrD+0];
406
407             fjx0             = _mm_setzero_ps();
408             fjy0             = _mm_setzero_ps();
409             fjz0             = _mm_setzero_ps();
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq00             = _mm_mul_ps(iq0,jq0);
417             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
418                                          vdwparam+vdwioffset0+vdwjidx0B,
419                                          vdwparam+vdwioffset0+vdwjidx0C,
420                                          vdwparam+vdwioffset0+vdwjidx0D,
421                                          &c6_00,&c12_00);
422
423             /* COULOMB ELECTROSTATICS */
424             velec            = _mm_mul_ps(qq00,rinv00);
425             felec            = _mm_mul_ps(velec,rinvsq00);
426
427             /* LENNARD-JONES DISPERSION/REPULSION */
428
429             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
430             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
431             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
432             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
433             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
434
435             /* Update potential sum for this i atom from the interaction with this j atom. */
436             velec            = _mm_andnot_ps(dummy_mask,velec);
437             velecsum         = _mm_add_ps(velecsum,velec);
438             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
439             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
440
441             fscal            = _mm_add_ps(felec,fvdw);
442
443             fscal            = _mm_andnot_ps(dummy_mask,fscal);
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm_mul_ps(fscal,dx00);
447             ty               = _mm_mul_ps(fscal,dy00);
448             tz               = _mm_mul_ps(fscal,dz00);
449
450             /* Update vectorial force */
451             fix0             = _mm_add_ps(fix0,tx);
452             fiy0             = _mm_add_ps(fiy0,ty);
453             fiz0             = _mm_add_ps(fiz0,tz);
454
455             fjx0             = _mm_add_ps(fjx0,tx);
456             fjy0             = _mm_add_ps(fjy0,ty);
457             fjz0             = _mm_add_ps(fjz0,tz);
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             /* Compute parameters for interactions between i and j atoms */
464             qq10             = _mm_mul_ps(iq1,jq0);
465
466             /* COULOMB ELECTROSTATICS */
467             velec            = _mm_mul_ps(qq10,rinv10);
468             felec            = _mm_mul_ps(velec,rinvsq10);
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm_andnot_ps(dummy_mask,velec);
472             velecsum         = _mm_add_ps(velecsum,velec);
473
474             fscal            = felec;
475
476             fscal            = _mm_andnot_ps(dummy_mask,fscal);
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm_mul_ps(fscal,dx10);
480             ty               = _mm_mul_ps(fscal,dy10);
481             tz               = _mm_mul_ps(fscal,dz10);
482
483             /* Update vectorial force */
484             fix1             = _mm_add_ps(fix1,tx);
485             fiy1             = _mm_add_ps(fiy1,ty);
486             fiz1             = _mm_add_ps(fiz1,tz);
487
488             fjx0             = _mm_add_ps(fjx0,tx);
489             fjy0             = _mm_add_ps(fjy0,ty);
490             fjz0             = _mm_add_ps(fjz0,tz);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq20             = _mm_mul_ps(iq2,jq0);
498
499             /* COULOMB ELECTROSTATICS */
500             velec            = _mm_mul_ps(qq20,rinv20);
501             felec            = _mm_mul_ps(velec,rinvsq20);
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_andnot_ps(dummy_mask,velec);
505             velecsum         = _mm_add_ps(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_andnot_ps(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_ps(fscal,dx20);
513             ty               = _mm_mul_ps(fscal,dy20);
514             tz               = _mm_mul_ps(fscal,dz20);
515
516             /* Update vectorial force */
517             fix2             = _mm_add_ps(fix2,tx);
518             fiy2             = _mm_add_ps(fiy2,ty);
519             fiz2             = _mm_add_ps(fiz2,tz);
520
521             fjx0             = _mm_add_ps(fjx0,tx);
522             fjy0             = _mm_add_ps(fjy0,ty);
523             fjz0             = _mm_add_ps(fjz0,tz);
524
525             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
526             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
527             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
528             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
529
530             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
531
532             /* Inner loop uses 96 flops */
533         }
534
535         /* End of innermost loop */
536
537         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
538                                               f+i_coord_offset,fshift+i_shift_offset);
539
540         ggid                        = gid[iidx];
541         /* Update potential energies */
542         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
543         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
544
545         /* Increment number of inner iterations */
546         inneriter                  += j_index_end - j_index_start;
547
548         /* Outer loop uses 20 flops */
549     }
550
551     /* Increment number of outer iterations */
552     outeriter        += nri;
553
554     /* Update outer/inner flops */
555
556     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
557 }
558 /*
559  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
560  * Electrostatics interaction: Coulomb
561  * VdW interaction:            LennardJones
562  * Geometry:                   Water3-Particle
563  * Calculate force/pot:        Force
564  */
565 void
566 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
567                     (t_nblist                    * gmx_restrict       nlist,
568                      rvec                        * gmx_restrict          xx,
569                      rvec                        * gmx_restrict          ff,
570                      t_forcerec                  * gmx_restrict          fr,
571                      t_mdatoms                   * gmx_restrict     mdatoms,
572                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
573                      t_nrnb                      * gmx_restrict        nrnb)
574 {
575     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
576      * just 0 for non-waters.
577      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
578      * jnr indices corresponding to data put in the four positions in the SIMD register.
579      */
580     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
581     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
582     int              jnrA,jnrB,jnrC,jnrD;
583     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
584     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
585     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
586     real             rcutoff_scalar;
587     real             *shiftvec,*fshift,*x,*f;
588     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
589     real             scratch[4*DIM];
590     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
591     int              vdwioffset0;
592     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
593     int              vdwioffset1;
594     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
595     int              vdwioffset2;
596     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
597     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
598     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
599     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
600     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
601     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
602     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
603     real             *charge;
604     int              nvdwtype;
605     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
606     int              *vdwtype;
607     real             *vdwparam;
608     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
609     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
610     __m128           dummy_mask,cutoff_mask;
611     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
612     __m128           one     = _mm_set1_ps(1.0);
613     __m128           two     = _mm_set1_ps(2.0);
614     x                = xx[0];
615     f                = ff[0];
616
617     nri              = nlist->nri;
618     iinr             = nlist->iinr;
619     jindex           = nlist->jindex;
620     jjnr             = nlist->jjnr;
621     shiftidx         = nlist->shift;
622     gid              = nlist->gid;
623     shiftvec         = fr->shift_vec[0];
624     fshift           = fr->fshift[0];
625     facel            = _mm_set1_ps(fr->epsfac);
626     charge           = mdatoms->chargeA;
627     nvdwtype         = fr->ntype;
628     vdwparam         = fr->nbfp;
629     vdwtype          = mdatoms->typeA;
630
631     /* Setup water-specific parameters */
632     inr              = nlist->iinr[0];
633     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
634     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
635     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
636     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
637
638     /* Avoid stupid compiler warnings */
639     jnrA = jnrB = jnrC = jnrD = 0;
640     j_coord_offsetA = 0;
641     j_coord_offsetB = 0;
642     j_coord_offsetC = 0;
643     j_coord_offsetD = 0;
644
645     outeriter        = 0;
646     inneriter        = 0;
647
648     for(iidx=0;iidx<4*DIM;iidx++)
649     {
650         scratch[iidx] = 0.0;
651     }
652
653     /* Start outer loop over neighborlists */
654     for(iidx=0; iidx<nri; iidx++)
655     {
656         /* Load shift vector for this list */
657         i_shift_offset   = DIM*shiftidx[iidx];
658
659         /* Load limits for loop over neighbors */
660         j_index_start    = jindex[iidx];
661         j_index_end      = jindex[iidx+1];
662
663         /* Get outer coordinate index */
664         inr              = iinr[iidx];
665         i_coord_offset   = DIM*inr;
666
667         /* Load i particle coords and add shift vector */
668         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
669                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
670
671         fix0             = _mm_setzero_ps();
672         fiy0             = _mm_setzero_ps();
673         fiz0             = _mm_setzero_ps();
674         fix1             = _mm_setzero_ps();
675         fiy1             = _mm_setzero_ps();
676         fiz1             = _mm_setzero_ps();
677         fix2             = _mm_setzero_ps();
678         fiy2             = _mm_setzero_ps();
679         fiz2             = _mm_setzero_ps();
680
681         /* Start inner kernel loop */
682         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
683         {
684
685             /* Get j neighbor index, and coordinate index */
686             jnrA             = jjnr[jidx];
687             jnrB             = jjnr[jidx+1];
688             jnrC             = jjnr[jidx+2];
689             jnrD             = jjnr[jidx+3];
690             j_coord_offsetA  = DIM*jnrA;
691             j_coord_offsetB  = DIM*jnrB;
692             j_coord_offsetC  = DIM*jnrC;
693             j_coord_offsetD  = DIM*jnrD;
694
695             /* load j atom coordinates */
696             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
697                                               x+j_coord_offsetC,x+j_coord_offsetD,
698                                               &jx0,&jy0,&jz0);
699
700             /* Calculate displacement vector */
701             dx00             = _mm_sub_ps(ix0,jx0);
702             dy00             = _mm_sub_ps(iy0,jy0);
703             dz00             = _mm_sub_ps(iz0,jz0);
704             dx10             = _mm_sub_ps(ix1,jx0);
705             dy10             = _mm_sub_ps(iy1,jy0);
706             dz10             = _mm_sub_ps(iz1,jz0);
707             dx20             = _mm_sub_ps(ix2,jx0);
708             dy20             = _mm_sub_ps(iy2,jy0);
709             dz20             = _mm_sub_ps(iz2,jz0);
710
711             /* Calculate squared distance and things based on it */
712             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
713             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
714             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
715
716             rinv00           = gmx_mm_invsqrt_ps(rsq00);
717             rinv10           = gmx_mm_invsqrt_ps(rsq10);
718             rinv20           = gmx_mm_invsqrt_ps(rsq20);
719
720             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
721             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
722             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
723
724             /* Load parameters for j particles */
725             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
726                                                               charge+jnrC+0,charge+jnrD+0);
727             vdwjidx0A        = 2*vdwtype[jnrA+0];
728             vdwjidx0B        = 2*vdwtype[jnrB+0];
729             vdwjidx0C        = 2*vdwtype[jnrC+0];
730             vdwjidx0D        = 2*vdwtype[jnrD+0];
731
732             fjx0             = _mm_setzero_ps();
733             fjy0             = _mm_setzero_ps();
734             fjz0             = _mm_setzero_ps();
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             /* Compute parameters for interactions between i and j atoms */
741             qq00             = _mm_mul_ps(iq0,jq0);
742             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
743                                          vdwparam+vdwioffset0+vdwjidx0B,
744                                          vdwparam+vdwioffset0+vdwjidx0C,
745                                          vdwparam+vdwioffset0+vdwjidx0D,
746                                          &c6_00,&c12_00);
747
748             /* COULOMB ELECTROSTATICS */
749             velec            = _mm_mul_ps(qq00,rinv00);
750             felec            = _mm_mul_ps(velec,rinvsq00);
751
752             /* LENNARD-JONES DISPERSION/REPULSION */
753
754             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
755             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
756
757             fscal            = _mm_add_ps(felec,fvdw);
758
759             /* Calculate temporary vectorial force */
760             tx               = _mm_mul_ps(fscal,dx00);
761             ty               = _mm_mul_ps(fscal,dy00);
762             tz               = _mm_mul_ps(fscal,dz00);
763
764             /* Update vectorial force */
765             fix0             = _mm_add_ps(fix0,tx);
766             fiy0             = _mm_add_ps(fiy0,ty);
767             fiz0             = _mm_add_ps(fiz0,tz);
768
769             fjx0             = _mm_add_ps(fjx0,tx);
770             fjy0             = _mm_add_ps(fjy0,ty);
771             fjz0             = _mm_add_ps(fjz0,tz);
772
773             /**************************
774              * CALCULATE INTERACTIONS *
775              **************************/
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq10             = _mm_mul_ps(iq1,jq0);
779
780             /* COULOMB ELECTROSTATICS */
781             velec            = _mm_mul_ps(qq10,rinv10);
782             felec            = _mm_mul_ps(velec,rinvsq10);
783
784             fscal            = felec;
785
786             /* Calculate temporary vectorial force */
787             tx               = _mm_mul_ps(fscal,dx10);
788             ty               = _mm_mul_ps(fscal,dy10);
789             tz               = _mm_mul_ps(fscal,dz10);
790
791             /* Update vectorial force */
792             fix1             = _mm_add_ps(fix1,tx);
793             fiy1             = _mm_add_ps(fiy1,ty);
794             fiz1             = _mm_add_ps(fiz1,tz);
795
796             fjx0             = _mm_add_ps(fjx0,tx);
797             fjy0             = _mm_add_ps(fjy0,ty);
798             fjz0             = _mm_add_ps(fjz0,tz);
799
800             /**************************
801              * CALCULATE INTERACTIONS *
802              **************************/
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq20             = _mm_mul_ps(iq2,jq0);
806
807             /* COULOMB ELECTROSTATICS */
808             velec            = _mm_mul_ps(qq20,rinv20);
809             felec            = _mm_mul_ps(velec,rinvsq20);
810
811             fscal            = felec;
812
813             /* Calculate temporary vectorial force */
814             tx               = _mm_mul_ps(fscal,dx20);
815             ty               = _mm_mul_ps(fscal,dy20);
816             tz               = _mm_mul_ps(fscal,dz20);
817
818             /* Update vectorial force */
819             fix2             = _mm_add_ps(fix2,tx);
820             fiy2             = _mm_add_ps(fiy2,ty);
821             fiz2             = _mm_add_ps(fiz2,tz);
822
823             fjx0             = _mm_add_ps(fjx0,tx);
824             fjy0             = _mm_add_ps(fjy0,ty);
825             fjz0             = _mm_add_ps(fjz0,tz);
826
827             fjptrA             = f+j_coord_offsetA;
828             fjptrB             = f+j_coord_offsetB;
829             fjptrC             = f+j_coord_offsetC;
830             fjptrD             = f+j_coord_offsetD;
831
832             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
833
834             /* Inner loop uses 88 flops */
835         }
836
837         if(jidx<j_index_end)
838         {
839
840             /* Get j neighbor index, and coordinate index */
841             jnrlistA         = jjnr[jidx];
842             jnrlistB         = jjnr[jidx+1];
843             jnrlistC         = jjnr[jidx+2];
844             jnrlistD         = jjnr[jidx+3];
845             /* Sign of each element will be negative for non-real atoms.
846              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
847              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
848              */
849             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
850             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
851             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
852             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
853             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
854             j_coord_offsetA  = DIM*jnrA;
855             j_coord_offsetB  = DIM*jnrB;
856             j_coord_offsetC  = DIM*jnrC;
857             j_coord_offsetD  = DIM*jnrD;
858
859             /* load j atom coordinates */
860             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
861                                               x+j_coord_offsetC,x+j_coord_offsetD,
862                                               &jx0,&jy0,&jz0);
863
864             /* Calculate displacement vector */
865             dx00             = _mm_sub_ps(ix0,jx0);
866             dy00             = _mm_sub_ps(iy0,jy0);
867             dz00             = _mm_sub_ps(iz0,jz0);
868             dx10             = _mm_sub_ps(ix1,jx0);
869             dy10             = _mm_sub_ps(iy1,jy0);
870             dz10             = _mm_sub_ps(iz1,jz0);
871             dx20             = _mm_sub_ps(ix2,jx0);
872             dy20             = _mm_sub_ps(iy2,jy0);
873             dz20             = _mm_sub_ps(iz2,jz0);
874
875             /* Calculate squared distance and things based on it */
876             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
877             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
878             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
879
880             rinv00           = gmx_mm_invsqrt_ps(rsq00);
881             rinv10           = gmx_mm_invsqrt_ps(rsq10);
882             rinv20           = gmx_mm_invsqrt_ps(rsq20);
883
884             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
885             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
886             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
887
888             /* Load parameters for j particles */
889             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
890                                                               charge+jnrC+0,charge+jnrD+0);
891             vdwjidx0A        = 2*vdwtype[jnrA+0];
892             vdwjidx0B        = 2*vdwtype[jnrB+0];
893             vdwjidx0C        = 2*vdwtype[jnrC+0];
894             vdwjidx0D        = 2*vdwtype[jnrD+0];
895
896             fjx0             = _mm_setzero_ps();
897             fjy0             = _mm_setzero_ps();
898             fjz0             = _mm_setzero_ps();
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq00             = _mm_mul_ps(iq0,jq0);
906             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
907                                          vdwparam+vdwioffset0+vdwjidx0B,
908                                          vdwparam+vdwioffset0+vdwjidx0C,
909                                          vdwparam+vdwioffset0+vdwjidx0D,
910                                          &c6_00,&c12_00);
911
912             /* COULOMB ELECTROSTATICS */
913             velec            = _mm_mul_ps(qq00,rinv00);
914             felec            = _mm_mul_ps(velec,rinvsq00);
915
916             /* LENNARD-JONES DISPERSION/REPULSION */
917
918             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
919             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
920
921             fscal            = _mm_add_ps(felec,fvdw);
922
923             fscal            = _mm_andnot_ps(dummy_mask,fscal);
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm_mul_ps(fscal,dx00);
927             ty               = _mm_mul_ps(fscal,dy00);
928             tz               = _mm_mul_ps(fscal,dz00);
929
930             /* Update vectorial force */
931             fix0             = _mm_add_ps(fix0,tx);
932             fiy0             = _mm_add_ps(fiy0,ty);
933             fiz0             = _mm_add_ps(fiz0,tz);
934
935             fjx0             = _mm_add_ps(fjx0,tx);
936             fjy0             = _mm_add_ps(fjy0,ty);
937             fjz0             = _mm_add_ps(fjz0,tz);
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq10             = _mm_mul_ps(iq1,jq0);
945
946             /* COULOMB ELECTROSTATICS */
947             velec            = _mm_mul_ps(qq10,rinv10);
948             felec            = _mm_mul_ps(velec,rinvsq10);
949
950             fscal            = felec;
951
952             fscal            = _mm_andnot_ps(dummy_mask,fscal);
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm_mul_ps(fscal,dx10);
956             ty               = _mm_mul_ps(fscal,dy10);
957             tz               = _mm_mul_ps(fscal,dz10);
958
959             /* Update vectorial force */
960             fix1             = _mm_add_ps(fix1,tx);
961             fiy1             = _mm_add_ps(fiy1,ty);
962             fiz1             = _mm_add_ps(fiz1,tz);
963
964             fjx0             = _mm_add_ps(fjx0,tx);
965             fjy0             = _mm_add_ps(fjy0,ty);
966             fjz0             = _mm_add_ps(fjz0,tz);
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq20             = _mm_mul_ps(iq2,jq0);
974
975             /* COULOMB ELECTROSTATICS */
976             velec            = _mm_mul_ps(qq20,rinv20);
977             felec            = _mm_mul_ps(velec,rinvsq20);
978
979             fscal            = felec;
980
981             fscal            = _mm_andnot_ps(dummy_mask,fscal);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_ps(fscal,dx20);
985             ty               = _mm_mul_ps(fscal,dy20);
986             tz               = _mm_mul_ps(fscal,dz20);
987
988             /* Update vectorial force */
989             fix2             = _mm_add_ps(fix2,tx);
990             fiy2             = _mm_add_ps(fiy2,ty);
991             fiz2             = _mm_add_ps(fiz2,tz);
992
993             fjx0             = _mm_add_ps(fjx0,tx);
994             fjy0             = _mm_add_ps(fjy0,ty);
995             fjz0             = _mm_add_ps(fjz0,tz);
996
997             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
998             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
999             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1000             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1001
1002             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1003
1004             /* Inner loop uses 88 flops */
1005         }
1006
1007         /* End of innermost loop */
1008
1009         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1010                                               f+i_coord_offset,fshift+i_shift_offset);
1011
1012         /* Increment number of inner iterations */
1013         inneriter                  += j_index_end - j_index_start;
1014
1015         /* Outer loop uses 18 flops */
1016     }
1017
1018     /* Increment number of outer iterations */
1019     outeriter        += nri;
1020
1021     /* Update outer/inner flops */
1022
1023     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1024 }