Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166         fix1             = _mm_setzero_ps();
167         fiy1             = _mm_setzero_ps();
168         fiz1             = _mm_setzero_ps();
169         fix2             = _mm_setzero_ps();
170         fiy2             = _mm_setzero_ps();
171         fiz2             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_ps(rsq00);
213             rinv10           = gmx_mm_invsqrt_ps(rsq10);
214             rinv20           = gmx_mm_invsqrt_ps(rsq20);
215
216             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
217             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
218             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                               charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             fjx0             = _mm_setzero_ps();
229             fjy0             = _mm_setzero_ps();
230             fjz0             = _mm_setzero_ps();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_ps(iq0,jq0);
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* COULOMB ELECTROSTATICS */
245             velec            = _mm_mul_ps(qq00,rinv00);
246             felec            = _mm_mul_ps(velec,rinvsq00);
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
252             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
253             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
254             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velecsum         = _mm_add_ps(velecsum,velec);
258             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
259
260             fscal            = _mm_add_ps(felec,fvdw);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm_mul_ps(fscal,dx00);
264             ty               = _mm_mul_ps(fscal,dy00);
265             tz               = _mm_mul_ps(fscal,dz00);
266
267             /* Update vectorial force */
268             fix0             = _mm_add_ps(fix0,tx);
269             fiy0             = _mm_add_ps(fiy0,ty);
270             fiz0             = _mm_add_ps(fiz0,tz);
271
272             fjx0             = _mm_add_ps(fjx0,tx);
273             fjy0             = _mm_add_ps(fjy0,ty);
274             fjz0             = _mm_add_ps(fjz0,tz);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq10             = _mm_mul_ps(iq1,jq0);
282
283             /* COULOMB ELECTROSTATICS */
284             velec            = _mm_mul_ps(qq10,rinv10);
285             felec            = _mm_mul_ps(velec,rinvsq10);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm_add_ps(velecsum,velec);
289
290             fscal            = felec;
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_ps(fscal,dx10);
294             ty               = _mm_mul_ps(fscal,dy10);
295             tz               = _mm_mul_ps(fscal,dz10);
296
297             /* Update vectorial force */
298             fix1             = _mm_add_ps(fix1,tx);
299             fiy1             = _mm_add_ps(fiy1,ty);
300             fiz1             = _mm_add_ps(fiz1,tz);
301
302             fjx0             = _mm_add_ps(fjx0,tx);
303             fjy0             = _mm_add_ps(fjy0,ty);
304             fjz0             = _mm_add_ps(fjz0,tz);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq20             = _mm_mul_ps(iq2,jq0);
312
313             /* COULOMB ELECTROSTATICS */
314             velec            = _mm_mul_ps(qq20,rinv20);
315             felec            = _mm_mul_ps(velec,rinvsq20);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_ps(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_ps(fscal,dx20);
324             ty               = _mm_mul_ps(fscal,dy20);
325             tz               = _mm_mul_ps(fscal,dz20);
326
327             /* Update vectorial force */
328             fix2             = _mm_add_ps(fix2,tx);
329             fiy2             = _mm_add_ps(fiy2,ty);
330             fiz2             = _mm_add_ps(fiz2,tz);
331
332             fjx0             = _mm_add_ps(fjx0,tx);
333             fjy0             = _mm_add_ps(fjy0,ty);
334             fjz0             = _mm_add_ps(fjz0,tz);
335
336             fjptrA             = f+j_coord_offsetA;
337             fjptrB             = f+j_coord_offsetB;
338             fjptrC             = f+j_coord_offsetC;
339             fjptrD             = f+j_coord_offsetD;
340
341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
342
343             /* Inner loop uses 96 flops */
344         }
345
346         if(jidx<j_index_end)
347         {
348
349             /* Get j neighbor index, and coordinate index */
350             jnrlistA         = jjnr[jidx];
351             jnrlistB         = jjnr[jidx+1];
352             jnrlistC         = jjnr[jidx+2];
353             jnrlistD         = jjnr[jidx+3];
354             /* Sign of each element will be negative for non-real atoms.
355              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
356              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
357              */
358             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
359             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
360             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
361             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
362             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
363             j_coord_offsetA  = DIM*jnrA;
364             j_coord_offsetB  = DIM*jnrB;
365             j_coord_offsetC  = DIM*jnrC;
366             j_coord_offsetD  = DIM*jnrD;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
370                                               x+j_coord_offsetC,x+j_coord_offsetD,
371                                               &jx0,&jy0,&jz0);
372
373             /* Calculate displacement vector */
374             dx00             = _mm_sub_ps(ix0,jx0);
375             dy00             = _mm_sub_ps(iy0,jy0);
376             dz00             = _mm_sub_ps(iz0,jz0);
377             dx10             = _mm_sub_ps(ix1,jx0);
378             dy10             = _mm_sub_ps(iy1,jy0);
379             dz10             = _mm_sub_ps(iz1,jz0);
380             dx20             = _mm_sub_ps(ix2,jx0);
381             dy20             = _mm_sub_ps(iy2,jy0);
382             dz20             = _mm_sub_ps(iz2,jz0);
383
384             /* Calculate squared distance and things based on it */
385             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
386             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
387             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
388
389             rinv00           = gmx_mm_invsqrt_ps(rsq00);
390             rinv10           = gmx_mm_invsqrt_ps(rsq10);
391             rinv20           = gmx_mm_invsqrt_ps(rsq20);
392
393             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
394             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
395             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
396
397             /* Load parameters for j particles */
398             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
399                                                               charge+jnrC+0,charge+jnrD+0);
400             vdwjidx0A        = 2*vdwtype[jnrA+0];
401             vdwjidx0B        = 2*vdwtype[jnrB+0];
402             vdwjidx0C        = 2*vdwtype[jnrC+0];
403             vdwjidx0D        = 2*vdwtype[jnrD+0];
404
405             fjx0             = _mm_setzero_ps();
406             fjy0             = _mm_setzero_ps();
407             fjz0             = _mm_setzero_ps();
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq00             = _mm_mul_ps(iq0,jq0);
415             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
416                                          vdwparam+vdwioffset0+vdwjidx0B,
417                                          vdwparam+vdwioffset0+vdwjidx0C,
418                                          vdwparam+vdwioffset0+vdwjidx0D,
419                                          &c6_00,&c12_00);
420
421             /* COULOMB ELECTROSTATICS */
422             velec            = _mm_mul_ps(qq00,rinv00);
423             felec            = _mm_mul_ps(velec,rinvsq00);
424
425             /* LENNARD-JONES DISPERSION/REPULSION */
426
427             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
428             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
429             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
430             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
431             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_andnot_ps(dummy_mask,velec);
435             velecsum         = _mm_add_ps(velecsum,velec);
436             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
437             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
438
439             fscal            = _mm_add_ps(felec,fvdw);
440
441             fscal            = _mm_andnot_ps(dummy_mask,fscal);
442
443             /* Calculate temporary vectorial force */
444             tx               = _mm_mul_ps(fscal,dx00);
445             ty               = _mm_mul_ps(fscal,dy00);
446             tz               = _mm_mul_ps(fscal,dz00);
447
448             /* Update vectorial force */
449             fix0             = _mm_add_ps(fix0,tx);
450             fiy0             = _mm_add_ps(fiy0,ty);
451             fiz0             = _mm_add_ps(fiz0,tz);
452
453             fjx0             = _mm_add_ps(fjx0,tx);
454             fjy0             = _mm_add_ps(fjy0,ty);
455             fjz0             = _mm_add_ps(fjz0,tz);
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq10             = _mm_mul_ps(iq1,jq0);
463
464             /* COULOMB ELECTROSTATICS */
465             velec            = _mm_mul_ps(qq10,rinv10);
466             felec            = _mm_mul_ps(velec,rinvsq10);
467
468             /* Update potential sum for this i atom from the interaction with this j atom. */
469             velec            = _mm_andnot_ps(dummy_mask,velec);
470             velecsum         = _mm_add_ps(velecsum,velec);
471
472             fscal            = felec;
473
474             fscal            = _mm_andnot_ps(dummy_mask,fscal);
475
476             /* Calculate temporary vectorial force */
477             tx               = _mm_mul_ps(fscal,dx10);
478             ty               = _mm_mul_ps(fscal,dy10);
479             tz               = _mm_mul_ps(fscal,dz10);
480
481             /* Update vectorial force */
482             fix1             = _mm_add_ps(fix1,tx);
483             fiy1             = _mm_add_ps(fiy1,ty);
484             fiz1             = _mm_add_ps(fiz1,tz);
485
486             fjx0             = _mm_add_ps(fjx0,tx);
487             fjy0             = _mm_add_ps(fjy0,ty);
488             fjz0             = _mm_add_ps(fjz0,tz);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq20             = _mm_mul_ps(iq2,jq0);
496
497             /* COULOMB ELECTROSTATICS */
498             velec            = _mm_mul_ps(qq20,rinv20);
499             felec            = _mm_mul_ps(velec,rinvsq20);
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velec            = _mm_andnot_ps(dummy_mask,velec);
503             velecsum         = _mm_add_ps(velecsum,velec);
504
505             fscal            = felec;
506
507             fscal            = _mm_andnot_ps(dummy_mask,fscal);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_ps(fscal,dx20);
511             ty               = _mm_mul_ps(fscal,dy20);
512             tz               = _mm_mul_ps(fscal,dz20);
513
514             /* Update vectorial force */
515             fix2             = _mm_add_ps(fix2,tx);
516             fiy2             = _mm_add_ps(fiy2,ty);
517             fiz2             = _mm_add_ps(fiz2,tz);
518
519             fjx0             = _mm_add_ps(fjx0,tx);
520             fjy0             = _mm_add_ps(fjy0,ty);
521             fjz0             = _mm_add_ps(fjz0,tz);
522
523             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
524             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
525             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
526             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
527
528             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
529
530             /* Inner loop uses 96 flops */
531         }
532
533         /* End of innermost loop */
534
535         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
536                                               f+i_coord_offset,fshift+i_shift_offset);
537
538         ggid                        = gid[iidx];
539         /* Update potential energies */
540         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
541         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
542
543         /* Increment number of inner iterations */
544         inneriter                  += j_index_end - j_index_start;
545
546         /* Outer loop uses 20 flops */
547     }
548
549     /* Increment number of outer iterations */
550     outeriter        += nri;
551
552     /* Update outer/inner flops */
553
554     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
555 }
556 /*
557  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
558  * Electrostatics interaction: Coulomb
559  * VdW interaction:            LennardJones
560  * Geometry:                   Water3-Particle
561  * Calculate force/pot:        Force
562  */
563 void
564 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_single
565                     (t_nblist                    * gmx_restrict       nlist,
566                      rvec                        * gmx_restrict          xx,
567                      rvec                        * gmx_restrict          ff,
568                      t_forcerec                  * gmx_restrict          fr,
569                      t_mdatoms                   * gmx_restrict     mdatoms,
570                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
571                      t_nrnb                      * gmx_restrict        nrnb)
572 {
573     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
574      * just 0 for non-waters.
575      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
576      * jnr indices corresponding to data put in the four positions in the SIMD register.
577      */
578     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
579     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
580     int              jnrA,jnrB,jnrC,jnrD;
581     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
582     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
583     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
584     real             rcutoff_scalar;
585     real             *shiftvec,*fshift,*x,*f;
586     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
587     real             scratch[4*DIM];
588     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
589     int              vdwioffset0;
590     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
591     int              vdwioffset1;
592     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
593     int              vdwioffset2;
594     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
595     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
596     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
597     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
598     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
599     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
600     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
601     real             *charge;
602     int              nvdwtype;
603     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
604     int              *vdwtype;
605     real             *vdwparam;
606     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
607     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
608     __m128           dummy_mask,cutoff_mask;
609     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
610     __m128           one     = _mm_set1_ps(1.0);
611     __m128           two     = _mm_set1_ps(2.0);
612     x                = xx[0];
613     f                = ff[0];
614
615     nri              = nlist->nri;
616     iinr             = nlist->iinr;
617     jindex           = nlist->jindex;
618     jjnr             = nlist->jjnr;
619     shiftidx         = nlist->shift;
620     gid              = nlist->gid;
621     shiftvec         = fr->shift_vec[0];
622     fshift           = fr->fshift[0];
623     facel            = _mm_set1_ps(fr->epsfac);
624     charge           = mdatoms->chargeA;
625     nvdwtype         = fr->ntype;
626     vdwparam         = fr->nbfp;
627     vdwtype          = mdatoms->typeA;
628
629     /* Setup water-specific parameters */
630     inr              = nlist->iinr[0];
631     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
632     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
633     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
634     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
635
636     /* Avoid stupid compiler warnings */
637     jnrA = jnrB = jnrC = jnrD = 0;
638     j_coord_offsetA = 0;
639     j_coord_offsetB = 0;
640     j_coord_offsetC = 0;
641     j_coord_offsetD = 0;
642
643     outeriter        = 0;
644     inneriter        = 0;
645
646     for(iidx=0;iidx<4*DIM;iidx++)
647     {
648         scratch[iidx] = 0.0;
649     }
650
651     /* Start outer loop over neighborlists */
652     for(iidx=0; iidx<nri; iidx++)
653     {
654         /* Load shift vector for this list */
655         i_shift_offset   = DIM*shiftidx[iidx];
656
657         /* Load limits for loop over neighbors */
658         j_index_start    = jindex[iidx];
659         j_index_end      = jindex[iidx+1];
660
661         /* Get outer coordinate index */
662         inr              = iinr[iidx];
663         i_coord_offset   = DIM*inr;
664
665         /* Load i particle coords and add shift vector */
666         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
667                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
668
669         fix0             = _mm_setzero_ps();
670         fiy0             = _mm_setzero_ps();
671         fiz0             = _mm_setzero_ps();
672         fix1             = _mm_setzero_ps();
673         fiy1             = _mm_setzero_ps();
674         fiz1             = _mm_setzero_ps();
675         fix2             = _mm_setzero_ps();
676         fiy2             = _mm_setzero_ps();
677         fiz2             = _mm_setzero_ps();
678
679         /* Start inner kernel loop */
680         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
681         {
682
683             /* Get j neighbor index, and coordinate index */
684             jnrA             = jjnr[jidx];
685             jnrB             = jjnr[jidx+1];
686             jnrC             = jjnr[jidx+2];
687             jnrD             = jjnr[jidx+3];
688             j_coord_offsetA  = DIM*jnrA;
689             j_coord_offsetB  = DIM*jnrB;
690             j_coord_offsetC  = DIM*jnrC;
691             j_coord_offsetD  = DIM*jnrD;
692
693             /* load j atom coordinates */
694             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
695                                               x+j_coord_offsetC,x+j_coord_offsetD,
696                                               &jx0,&jy0,&jz0);
697
698             /* Calculate displacement vector */
699             dx00             = _mm_sub_ps(ix0,jx0);
700             dy00             = _mm_sub_ps(iy0,jy0);
701             dz00             = _mm_sub_ps(iz0,jz0);
702             dx10             = _mm_sub_ps(ix1,jx0);
703             dy10             = _mm_sub_ps(iy1,jy0);
704             dz10             = _mm_sub_ps(iz1,jz0);
705             dx20             = _mm_sub_ps(ix2,jx0);
706             dy20             = _mm_sub_ps(iy2,jy0);
707             dz20             = _mm_sub_ps(iz2,jz0);
708
709             /* Calculate squared distance and things based on it */
710             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
711             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
712             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
713
714             rinv00           = gmx_mm_invsqrt_ps(rsq00);
715             rinv10           = gmx_mm_invsqrt_ps(rsq10);
716             rinv20           = gmx_mm_invsqrt_ps(rsq20);
717
718             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
719             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
720             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
721
722             /* Load parameters for j particles */
723             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
724                                                               charge+jnrC+0,charge+jnrD+0);
725             vdwjidx0A        = 2*vdwtype[jnrA+0];
726             vdwjidx0B        = 2*vdwtype[jnrB+0];
727             vdwjidx0C        = 2*vdwtype[jnrC+0];
728             vdwjidx0D        = 2*vdwtype[jnrD+0];
729
730             fjx0             = _mm_setzero_ps();
731             fjy0             = _mm_setzero_ps();
732             fjz0             = _mm_setzero_ps();
733
734             /**************************
735              * CALCULATE INTERACTIONS *
736              **************************/
737
738             /* Compute parameters for interactions between i and j atoms */
739             qq00             = _mm_mul_ps(iq0,jq0);
740             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
741                                          vdwparam+vdwioffset0+vdwjidx0B,
742                                          vdwparam+vdwioffset0+vdwjidx0C,
743                                          vdwparam+vdwioffset0+vdwjidx0D,
744                                          &c6_00,&c12_00);
745
746             /* COULOMB ELECTROSTATICS */
747             velec            = _mm_mul_ps(qq00,rinv00);
748             felec            = _mm_mul_ps(velec,rinvsq00);
749
750             /* LENNARD-JONES DISPERSION/REPULSION */
751
752             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
753             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
754
755             fscal            = _mm_add_ps(felec,fvdw);
756
757             /* Calculate temporary vectorial force */
758             tx               = _mm_mul_ps(fscal,dx00);
759             ty               = _mm_mul_ps(fscal,dy00);
760             tz               = _mm_mul_ps(fscal,dz00);
761
762             /* Update vectorial force */
763             fix0             = _mm_add_ps(fix0,tx);
764             fiy0             = _mm_add_ps(fiy0,ty);
765             fiz0             = _mm_add_ps(fiz0,tz);
766
767             fjx0             = _mm_add_ps(fjx0,tx);
768             fjy0             = _mm_add_ps(fjy0,ty);
769             fjz0             = _mm_add_ps(fjz0,tz);
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq10             = _mm_mul_ps(iq1,jq0);
777
778             /* COULOMB ELECTROSTATICS */
779             velec            = _mm_mul_ps(qq10,rinv10);
780             felec            = _mm_mul_ps(velec,rinvsq10);
781
782             fscal            = felec;
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm_mul_ps(fscal,dx10);
786             ty               = _mm_mul_ps(fscal,dy10);
787             tz               = _mm_mul_ps(fscal,dz10);
788
789             /* Update vectorial force */
790             fix1             = _mm_add_ps(fix1,tx);
791             fiy1             = _mm_add_ps(fiy1,ty);
792             fiz1             = _mm_add_ps(fiz1,tz);
793
794             fjx0             = _mm_add_ps(fjx0,tx);
795             fjy0             = _mm_add_ps(fjy0,ty);
796             fjz0             = _mm_add_ps(fjz0,tz);
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq20             = _mm_mul_ps(iq2,jq0);
804
805             /* COULOMB ELECTROSTATICS */
806             velec            = _mm_mul_ps(qq20,rinv20);
807             felec            = _mm_mul_ps(velec,rinvsq20);
808
809             fscal            = felec;
810
811             /* Calculate temporary vectorial force */
812             tx               = _mm_mul_ps(fscal,dx20);
813             ty               = _mm_mul_ps(fscal,dy20);
814             tz               = _mm_mul_ps(fscal,dz20);
815
816             /* Update vectorial force */
817             fix2             = _mm_add_ps(fix2,tx);
818             fiy2             = _mm_add_ps(fiy2,ty);
819             fiz2             = _mm_add_ps(fiz2,tz);
820
821             fjx0             = _mm_add_ps(fjx0,tx);
822             fjy0             = _mm_add_ps(fjy0,ty);
823             fjz0             = _mm_add_ps(fjz0,tz);
824
825             fjptrA             = f+j_coord_offsetA;
826             fjptrB             = f+j_coord_offsetB;
827             fjptrC             = f+j_coord_offsetC;
828             fjptrD             = f+j_coord_offsetD;
829
830             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
831
832             /* Inner loop uses 88 flops */
833         }
834
835         if(jidx<j_index_end)
836         {
837
838             /* Get j neighbor index, and coordinate index */
839             jnrlistA         = jjnr[jidx];
840             jnrlistB         = jjnr[jidx+1];
841             jnrlistC         = jjnr[jidx+2];
842             jnrlistD         = jjnr[jidx+3];
843             /* Sign of each element will be negative for non-real atoms.
844              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
845              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
846              */
847             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
848             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
849             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
850             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
851             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854             j_coord_offsetC  = DIM*jnrC;
855             j_coord_offsetD  = DIM*jnrD;
856
857             /* load j atom coordinates */
858             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
859                                               x+j_coord_offsetC,x+j_coord_offsetD,
860                                               &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx00             = _mm_sub_ps(ix0,jx0);
864             dy00             = _mm_sub_ps(iy0,jy0);
865             dz00             = _mm_sub_ps(iz0,jz0);
866             dx10             = _mm_sub_ps(ix1,jx0);
867             dy10             = _mm_sub_ps(iy1,jy0);
868             dz10             = _mm_sub_ps(iz1,jz0);
869             dx20             = _mm_sub_ps(ix2,jx0);
870             dy20             = _mm_sub_ps(iy2,jy0);
871             dz20             = _mm_sub_ps(iz2,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
875             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
876             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
877
878             rinv00           = gmx_mm_invsqrt_ps(rsq00);
879             rinv10           = gmx_mm_invsqrt_ps(rsq10);
880             rinv20           = gmx_mm_invsqrt_ps(rsq20);
881
882             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
883             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
884             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
885
886             /* Load parameters for j particles */
887             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
888                                                               charge+jnrC+0,charge+jnrD+0);
889             vdwjidx0A        = 2*vdwtype[jnrA+0];
890             vdwjidx0B        = 2*vdwtype[jnrB+0];
891             vdwjidx0C        = 2*vdwtype[jnrC+0];
892             vdwjidx0D        = 2*vdwtype[jnrD+0];
893
894             fjx0             = _mm_setzero_ps();
895             fjy0             = _mm_setzero_ps();
896             fjz0             = _mm_setzero_ps();
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm_mul_ps(iq0,jq0);
904             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
905                                          vdwparam+vdwioffset0+vdwjidx0B,
906                                          vdwparam+vdwioffset0+vdwjidx0C,
907                                          vdwparam+vdwioffset0+vdwjidx0D,
908                                          &c6_00,&c12_00);
909
910             /* COULOMB ELECTROSTATICS */
911             velec            = _mm_mul_ps(qq00,rinv00);
912             felec            = _mm_mul_ps(velec,rinvsq00);
913
914             /* LENNARD-JONES DISPERSION/REPULSION */
915
916             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
917             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
918
919             fscal            = _mm_add_ps(felec,fvdw);
920
921             fscal            = _mm_andnot_ps(dummy_mask,fscal);
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm_mul_ps(fscal,dx00);
925             ty               = _mm_mul_ps(fscal,dy00);
926             tz               = _mm_mul_ps(fscal,dz00);
927
928             /* Update vectorial force */
929             fix0             = _mm_add_ps(fix0,tx);
930             fiy0             = _mm_add_ps(fiy0,ty);
931             fiz0             = _mm_add_ps(fiz0,tz);
932
933             fjx0             = _mm_add_ps(fjx0,tx);
934             fjy0             = _mm_add_ps(fjy0,ty);
935             fjz0             = _mm_add_ps(fjz0,tz);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq10             = _mm_mul_ps(iq1,jq0);
943
944             /* COULOMB ELECTROSTATICS */
945             velec            = _mm_mul_ps(qq10,rinv10);
946             felec            = _mm_mul_ps(velec,rinvsq10);
947
948             fscal            = felec;
949
950             fscal            = _mm_andnot_ps(dummy_mask,fscal);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm_mul_ps(fscal,dx10);
954             ty               = _mm_mul_ps(fscal,dy10);
955             tz               = _mm_mul_ps(fscal,dz10);
956
957             /* Update vectorial force */
958             fix1             = _mm_add_ps(fix1,tx);
959             fiy1             = _mm_add_ps(fiy1,ty);
960             fiz1             = _mm_add_ps(fiz1,tz);
961
962             fjx0             = _mm_add_ps(fjx0,tx);
963             fjy0             = _mm_add_ps(fjy0,ty);
964             fjz0             = _mm_add_ps(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq20             = _mm_mul_ps(iq2,jq0);
972
973             /* COULOMB ELECTROSTATICS */
974             velec            = _mm_mul_ps(qq20,rinv20);
975             felec            = _mm_mul_ps(velec,rinvsq20);
976
977             fscal            = felec;
978
979             fscal            = _mm_andnot_ps(dummy_mask,fscal);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx20);
983             ty               = _mm_mul_ps(fscal,dy20);
984             tz               = _mm_mul_ps(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm_add_ps(fix2,tx);
988             fiy2             = _mm_add_ps(fiy2,ty);
989             fiz2             = _mm_add_ps(fiz2,tz);
990
991             fjx0             = _mm_add_ps(fjx0,tx);
992             fjy0             = _mm_add_ps(fjy0,ty);
993             fjz0             = _mm_add_ps(fjz0,tz);
994
995             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
996             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
997             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
998             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
999
1000             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1001
1002             /* Inner loop uses 88 flops */
1003         }
1004
1005         /* End of innermost loop */
1006
1007         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1008                                               f+i_coord_offset,fshift+i_shift_offset);
1009
1010         /* Increment number of inner iterations */
1011         inneriter                  += j_index_end - j_index_start;
1012
1013         /* Outer loop uses 18 flops */
1014     }
1015
1016     /* Increment number of outer iterations */
1017     outeriter        += nri;
1018
1019     /* Update outer/inner flops */
1020
1021     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1022 }