Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
135     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
136     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181         fix3             = _mm_setzero_ps();
182         fiy3             = _mm_setzero_ps();
183         fiz3             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218             dx30             = _mm_sub_ps(ix3,jx0);
219             dy30             = _mm_sub_ps(iy3,jy0);
220             dz30             = _mm_sub_ps(iz3,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
227
228             rinv00           = sse41_invsqrt_f(rsq00);
229             rinv10           = sse41_invsqrt_f(rsq10);
230             rinv20           = sse41_invsqrt_f(rsq20);
231             rinv30           = sse41_invsqrt_f(rsq30);
232
233             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
234             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
235             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r00              = _mm_mul_ps(rsq00,rinv00);
254
255             /* Compute parameters for interactions between i and j atoms */
256             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
257                                          vdwparam+vdwioffset0+vdwjidx0B,
258                                          vdwparam+vdwioffset0+vdwjidx0C,
259                                          vdwparam+vdwioffset0+vdwjidx0D,
260                                          &c6_00,&c12_00);
261
262             /* Calculate table index by multiplying r with table scale and truncate to integer */
263             rt               = _mm_mul_ps(r00,vftabscale);
264             vfitab           = _mm_cvttps_epi32(rt);
265             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
266             vfitab           = _mm_slli_epi32(vfitab,3);
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Heps             = _mm_mul_ps(vfeps,H);
275             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
276             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
277             vvdw6            = _mm_mul_ps(c6_00,VV);
278             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
279             fvdw6            = _mm_mul_ps(c6_00,FF);
280
281             /* CUBIC SPLINE TABLE REPULSION */
282             vfitab           = _mm_add_epi32(vfitab,ifour);
283             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
284             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
285             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
286             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
287             _MM_TRANSPOSE4_PS(Y,F,G,H);
288             Heps             = _mm_mul_ps(vfeps,H);
289             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
290             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
299
300             fscal            = fvdw;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_ps(fscal,dx00);
304             ty               = _mm_mul_ps(fscal,dy00);
305             tz               = _mm_mul_ps(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm_add_ps(fix0,tx);
309             fiy0             = _mm_add_ps(fiy0,ty);
310             fiz0             = _mm_add_ps(fiz0,tz);
311
312             fjx0             = _mm_add_ps(fjx0,tx);
313             fjy0             = _mm_add_ps(fjy0,ty);
314             fjz0             = _mm_add_ps(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* COULOMB ELECTROSTATICS */
324             velec            = _mm_mul_ps(qq10,rinv10);
325             felec            = _mm_mul_ps(velec,rinvsq10);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_ps(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx10);
334             ty               = _mm_mul_ps(fscal,dy10);
335             tz               = _mm_mul_ps(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_ps(fix1,tx);
339             fiy1             = _mm_add_ps(fiy1,ty);
340             fiz1             = _mm_add_ps(fiz1,tz);
341
342             fjx0             = _mm_add_ps(fjx0,tx);
343             fjy0             = _mm_add_ps(fjy0,ty);
344             fjz0             = _mm_add_ps(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_ps(iq2,jq0);
352
353             /* COULOMB ELECTROSTATICS */
354             velec            = _mm_mul_ps(qq20,rinv20);
355             felec            = _mm_mul_ps(velec,rinvsq20);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm_add_ps(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_ps(fscal,dx20);
364             ty               = _mm_mul_ps(fscal,dy20);
365             tz               = _mm_mul_ps(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm_add_ps(fix2,tx);
369             fiy2             = _mm_add_ps(fiy2,ty);
370             fiz2             = _mm_add_ps(fiz2,tz);
371
372             fjx0             = _mm_add_ps(fjx0,tx);
373             fjy0             = _mm_add_ps(fjy0,ty);
374             fjz0             = _mm_add_ps(fjz0,tz);
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq30             = _mm_mul_ps(iq3,jq0);
382
383             /* COULOMB ELECTROSTATICS */
384             velec            = _mm_mul_ps(qq30,rinv30);
385             felec            = _mm_mul_ps(velec,rinvsq30);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_ps(fscal,dx30);
394             ty               = _mm_mul_ps(fscal,dy30);
395             tz               = _mm_mul_ps(fscal,dz30);
396
397             /* Update vectorial force */
398             fix3             = _mm_add_ps(fix3,tx);
399             fiy3             = _mm_add_ps(fiy3,ty);
400             fiz3             = _mm_add_ps(fiz3,tz);
401
402             fjx0             = _mm_add_ps(fjx0,tx);
403             fjy0             = _mm_add_ps(fjy0,ty);
404             fjz0             = _mm_add_ps(fjz0,tz);
405
406             fjptrA             = f+j_coord_offsetA;
407             fjptrB             = f+j_coord_offsetB;
408             fjptrC             = f+j_coord_offsetC;
409             fjptrD             = f+j_coord_offsetD;
410
411             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
412
413             /* Inner loop uses 140 flops */
414         }
415
416         if(jidx<j_index_end)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrlistA         = jjnr[jidx];
421             jnrlistB         = jjnr[jidx+1];
422             jnrlistC         = jjnr[jidx+2];
423             jnrlistD         = jjnr[jidx+3];
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
427              */
428             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
429             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
430             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
431             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
432             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
433             j_coord_offsetA  = DIM*jnrA;
434             j_coord_offsetB  = DIM*jnrB;
435             j_coord_offsetC  = DIM*jnrC;
436             j_coord_offsetD  = DIM*jnrD;
437
438             /* load j atom coordinates */
439             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
440                                               x+j_coord_offsetC,x+j_coord_offsetD,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_ps(ix0,jx0);
445             dy00             = _mm_sub_ps(iy0,jy0);
446             dz00             = _mm_sub_ps(iz0,jz0);
447             dx10             = _mm_sub_ps(ix1,jx0);
448             dy10             = _mm_sub_ps(iy1,jy0);
449             dz10             = _mm_sub_ps(iz1,jz0);
450             dx20             = _mm_sub_ps(ix2,jx0);
451             dy20             = _mm_sub_ps(iy2,jy0);
452             dz20             = _mm_sub_ps(iz2,jz0);
453             dx30             = _mm_sub_ps(ix3,jx0);
454             dy30             = _mm_sub_ps(iy3,jy0);
455             dz30             = _mm_sub_ps(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
462
463             rinv00           = sse41_invsqrt_f(rsq00);
464             rinv10           = sse41_invsqrt_f(rsq10);
465             rinv20           = sse41_invsqrt_f(rsq20);
466             rinv30           = sse41_invsqrt_f(rsq30);
467
468             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
469             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
470             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
474                                                               charge+jnrC+0,charge+jnrD+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479
480             fjx0             = _mm_setzero_ps();
481             fjy0             = _mm_setzero_ps();
482             fjz0             = _mm_setzero_ps();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r00              = _mm_mul_ps(rsq00,rinv00);
489             r00              = _mm_andnot_ps(dummy_mask,r00);
490
491             /* Compute parameters for interactions between i and j atoms */
492             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
493                                          vdwparam+vdwioffset0+vdwjidx0B,
494                                          vdwparam+vdwioffset0+vdwjidx0C,
495                                          vdwparam+vdwioffset0+vdwjidx0D,
496                                          &c6_00,&c12_00);
497
498             /* Calculate table index by multiplying r with table scale and truncate to integer */
499             rt               = _mm_mul_ps(r00,vftabscale);
500             vfitab           = _mm_cvttps_epi32(rt);
501             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
502             vfitab           = _mm_slli_epi32(vfitab,3);
503
504             /* CUBIC SPLINE TABLE DISPERSION */
505             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
506             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
507             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
508             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
509             _MM_TRANSPOSE4_PS(Y,F,G,H);
510             Heps             = _mm_mul_ps(vfeps,H);
511             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
512             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
513             vvdw6            = _mm_mul_ps(c6_00,VV);
514             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
515             fvdw6            = _mm_mul_ps(c6_00,FF);
516
517             /* CUBIC SPLINE TABLE REPULSION */
518             vfitab           = _mm_add_epi32(vfitab,ifour);
519             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
520             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
521             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
522             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
523             _MM_TRANSPOSE4_PS(Y,F,G,H);
524             Heps             = _mm_mul_ps(vfeps,H);
525             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
526             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
527             vvdw12           = _mm_mul_ps(c12_00,VV);
528             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
529             fvdw12           = _mm_mul_ps(c12_00,FF);
530             vvdw             = _mm_add_ps(vvdw12,vvdw6);
531             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
535             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
536
537             fscal            = fvdw;
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx00);
543             ty               = _mm_mul_ps(fscal,dy00);
544             tz               = _mm_mul_ps(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_ps(fix0,tx);
548             fiy0             = _mm_add_ps(fiy0,ty);
549             fiz0             = _mm_add_ps(fiz0,tz);
550
551             fjx0             = _mm_add_ps(fjx0,tx);
552             fjy0             = _mm_add_ps(fjy0,ty);
553             fjz0             = _mm_add_ps(fjz0,tz);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq10             = _mm_mul_ps(iq1,jq0);
561
562             /* COULOMB ELECTROSTATICS */
563             velec            = _mm_mul_ps(qq10,rinv10);
564             felec            = _mm_mul_ps(velec,rinvsq10);
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velec            = _mm_andnot_ps(dummy_mask,velec);
568             velecsum         = _mm_add_ps(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx10);
576             ty               = _mm_mul_ps(fscal,dy10);
577             tz               = _mm_mul_ps(fscal,dz10);
578
579             /* Update vectorial force */
580             fix1             = _mm_add_ps(fix1,tx);
581             fiy1             = _mm_add_ps(fiy1,ty);
582             fiz1             = _mm_add_ps(fiz1,tz);
583
584             fjx0             = _mm_add_ps(fjx0,tx);
585             fjy0             = _mm_add_ps(fjy0,ty);
586             fjz0             = _mm_add_ps(fjz0,tz);
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             /* Compute parameters for interactions between i and j atoms */
593             qq20             = _mm_mul_ps(iq2,jq0);
594
595             /* COULOMB ELECTROSTATICS */
596             velec            = _mm_mul_ps(qq20,rinv20);
597             felec            = _mm_mul_ps(velec,rinvsq20);
598
599             /* Update potential sum for this i atom from the interaction with this j atom. */
600             velec            = _mm_andnot_ps(dummy_mask,velec);
601             velecsum         = _mm_add_ps(velecsum,velec);
602
603             fscal            = felec;
604
605             fscal            = _mm_andnot_ps(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx20);
609             ty               = _mm_mul_ps(fscal,dy20);
610             tz               = _mm_mul_ps(fscal,dz20);
611
612             /* Update vectorial force */
613             fix2             = _mm_add_ps(fix2,tx);
614             fiy2             = _mm_add_ps(fiy2,ty);
615             fiz2             = _mm_add_ps(fiz2,tz);
616
617             fjx0             = _mm_add_ps(fjx0,tx);
618             fjy0             = _mm_add_ps(fjy0,ty);
619             fjz0             = _mm_add_ps(fjz0,tz);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq30             = _mm_mul_ps(iq3,jq0);
627
628             /* COULOMB ELECTROSTATICS */
629             velec            = _mm_mul_ps(qq30,rinv30);
630             felec            = _mm_mul_ps(velec,rinvsq30);
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_andnot_ps(dummy_mask,velec);
634             velecsum         = _mm_add_ps(velecsum,velec);
635
636             fscal            = felec;
637
638             fscal            = _mm_andnot_ps(dummy_mask,fscal);
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm_mul_ps(fscal,dx30);
642             ty               = _mm_mul_ps(fscal,dy30);
643             tz               = _mm_mul_ps(fscal,dz30);
644
645             /* Update vectorial force */
646             fix3             = _mm_add_ps(fix3,tx);
647             fiy3             = _mm_add_ps(fiy3,ty);
648             fiz3             = _mm_add_ps(fiz3,tz);
649
650             fjx0             = _mm_add_ps(fjx0,tx);
651             fjy0             = _mm_add_ps(fjy0,ty);
652             fjz0             = _mm_add_ps(fjz0,tz);
653
654             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
655             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
656             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
657             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
658
659             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
660
661             /* Inner loop uses 141 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
667                                               f+i_coord_offset,fshift+i_shift_offset);
668
669         ggid                        = gid[iidx];
670         /* Update potential energies */
671         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
672         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
673
674         /* Increment number of inner iterations */
675         inneriter                  += j_index_end - j_index_start;
676
677         /* Outer loop uses 26 flops */
678     }
679
680     /* Increment number of outer iterations */
681     outeriter        += nri;
682
683     /* Update outer/inner flops */
684
685     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
686 }
687 /*
688  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_single
689  * Electrostatics interaction: Coulomb
690  * VdW interaction:            CubicSplineTable
691  * Geometry:                   Water4-Particle
692  * Calculate force/pot:        Force
693  */
694 void
695 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_single
696                     (t_nblist                    * gmx_restrict       nlist,
697                      rvec                        * gmx_restrict          xx,
698                      rvec                        * gmx_restrict          ff,
699                      struct t_forcerec           * gmx_restrict          fr,
700                      t_mdatoms                   * gmx_restrict     mdatoms,
701                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
702                      t_nrnb                      * gmx_restrict        nrnb)
703 {
704     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
705      * just 0 for non-waters.
706      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
707      * jnr indices corresponding to data put in the four positions in the SIMD register.
708      */
709     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
710     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
711     int              jnrA,jnrB,jnrC,jnrD;
712     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
713     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
714     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
715     real             rcutoff_scalar;
716     real             *shiftvec,*fshift,*x,*f;
717     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
718     real             scratch[4*DIM];
719     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
720     int              vdwioffset0;
721     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
722     int              vdwioffset1;
723     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
724     int              vdwioffset2;
725     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
726     int              vdwioffset3;
727     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
728     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
729     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
730     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
731     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
732     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
733     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
734     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
735     real             *charge;
736     int              nvdwtype;
737     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
738     int              *vdwtype;
739     real             *vdwparam;
740     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
741     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
742     __m128i          vfitab;
743     __m128i          ifour       = _mm_set1_epi32(4);
744     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
745     real             *vftab;
746     __m128           dummy_mask,cutoff_mask;
747     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
748     __m128           one     = _mm_set1_ps(1.0);
749     __m128           two     = _mm_set1_ps(2.0);
750     x                = xx[0];
751     f                = ff[0];
752
753     nri              = nlist->nri;
754     iinr             = nlist->iinr;
755     jindex           = nlist->jindex;
756     jjnr             = nlist->jjnr;
757     shiftidx         = nlist->shift;
758     gid              = nlist->gid;
759     shiftvec         = fr->shift_vec[0];
760     fshift           = fr->fshift[0];
761     facel            = _mm_set1_ps(fr->ic->epsfac);
762     charge           = mdatoms->chargeA;
763     nvdwtype         = fr->ntype;
764     vdwparam         = fr->nbfp;
765     vdwtype          = mdatoms->typeA;
766
767     vftab            = kernel_data->table_vdw->data;
768     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
769
770     /* Setup water-specific parameters */
771     inr              = nlist->iinr[0];
772     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
773     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
774     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
775     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
776
777     /* Avoid stupid compiler warnings */
778     jnrA = jnrB = jnrC = jnrD = 0;
779     j_coord_offsetA = 0;
780     j_coord_offsetB = 0;
781     j_coord_offsetC = 0;
782     j_coord_offsetD = 0;
783
784     outeriter        = 0;
785     inneriter        = 0;
786
787     for(iidx=0;iidx<4*DIM;iidx++)
788     {
789         scratch[iidx] = 0.0;
790     }
791
792     /* Start outer loop over neighborlists */
793     for(iidx=0; iidx<nri; iidx++)
794     {
795         /* Load shift vector for this list */
796         i_shift_offset   = DIM*shiftidx[iidx];
797
798         /* Load limits for loop over neighbors */
799         j_index_start    = jindex[iidx];
800         j_index_end      = jindex[iidx+1];
801
802         /* Get outer coordinate index */
803         inr              = iinr[iidx];
804         i_coord_offset   = DIM*inr;
805
806         /* Load i particle coords and add shift vector */
807         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
808                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
809
810         fix0             = _mm_setzero_ps();
811         fiy0             = _mm_setzero_ps();
812         fiz0             = _mm_setzero_ps();
813         fix1             = _mm_setzero_ps();
814         fiy1             = _mm_setzero_ps();
815         fiz1             = _mm_setzero_ps();
816         fix2             = _mm_setzero_ps();
817         fiy2             = _mm_setzero_ps();
818         fiz2             = _mm_setzero_ps();
819         fix3             = _mm_setzero_ps();
820         fiy3             = _mm_setzero_ps();
821         fiz3             = _mm_setzero_ps();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             jnrC             = jjnr[jidx+2];
831             jnrD             = jjnr[jidx+3];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836
837             /* load j atom coordinates */
838             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
839                                               x+j_coord_offsetC,x+j_coord_offsetD,
840                                               &jx0,&jy0,&jz0);
841
842             /* Calculate displacement vector */
843             dx00             = _mm_sub_ps(ix0,jx0);
844             dy00             = _mm_sub_ps(iy0,jy0);
845             dz00             = _mm_sub_ps(iz0,jz0);
846             dx10             = _mm_sub_ps(ix1,jx0);
847             dy10             = _mm_sub_ps(iy1,jy0);
848             dz10             = _mm_sub_ps(iz1,jz0);
849             dx20             = _mm_sub_ps(ix2,jx0);
850             dy20             = _mm_sub_ps(iy2,jy0);
851             dz20             = _mm_sub_ps(iz2,jz0);
852             dx30             = _mm_sub_ps(ix3,jx0);
853             dy30             = _mm_sub_ps(iy3,jy0);
854             dz30             = _mm_sub_ps(iz3,jz0);
855
856             /* Calculate squared distance and things based on it */
857             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
858             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
859             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
860             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
861
862             rinv00           = sse41_invsqrt_f(rsq00);
863             rinv10           = sse41_invsqrt_f(rsq10);
864             rinv20           = sse41_invsqrt_f(rsq20);
865             rinv30           = sse41_invsqrt_f(rsq30);
866
867             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
868             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
869             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
870
871             /* Load parameters for j particles */
872             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
873                                                               charge+jnrC+0,charge+jnrD+0);
874             vdwjidx0A        = 2*vdwtype[jnrA+0];
875             vdwjidx0B        = 2*vdwtype[jnrB+0];
876             vdwjidx0C        = 2*vdwtype[jnrC+0];
877             vdwjidx0D        = 2*vdwtype[jnrD+0];
878
879             fjx0             = _mm_setzero_ps();
880             fjy0             = _mm_setzero_ps();
881             fjz0             = _mm_setzero_ps();
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r00              = _mm_mul_ps(rsq00,rinv00);
888
889             /* Compute parameters for interactions between i and j atoms */
890             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
891                                          vdwparam+vdwioffset0+vdwjidx0B,
892                                          vdwparam+vdwioffset0+vdwjidx0C,
893                                          vdwparam+vdwioffset0+vdwjidx0D,
894                                          &c6_00,&c12_00);
895
896             /* Calculate table index by multiplying r with table scale and truncate to integer */
897             rt               = _mm_mul_ps(r00,vftabscale);
898             vfitab           = _mm_cvttps_epi32(rt);
899             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
900             vfitab           = _mm_slli_epi32(vfitab,3);
901
902             /* CUBIC SPLINE TABLE DISPERSION */
903             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
904             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
905             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
906             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
907             _MM_TRANSPOSE4_PS(Y,F,G,H);
908             Heps             = _mm_mul_ps(vfeps,H);
909             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
910             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
911             fvdw6            = _mm_mul_ps(c6_00,FF);
912
913             /* CUBIC SPLINE TABLE REPULSION */
914             vfitab           = _mm_add_epi32(vfitab,ifour);
915             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
916             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
917             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
918             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
919             _MM_TRANSPOSE4_PS(Y,F,G,H);
920             Heps             = _mm_mul_ps(vfeps,H);
921             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
922             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
923             fvdw12           = _mm_mul_ps(c12_00,FF);
924             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
925
926             fscal            = fvdw;
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm_mul_ps(fscal,dx00);
930             ty               = _mm_mul_ps(fscal,dy00);
931             tz               = _mm_mul_ps(fscal,dz00);
932
933             /* Update vectorial force */
934             fix0             = _mm_add_ps(fix0,tx);
935             fiy0             = _mm_add_ps(fiy0,ty);
936             fiz0             = _mm_add_ps(fiz0,tz);
937
938             fjx0             = _mm_add_ps(fjx0,tx);
939             fjy0             = _mm_add_ps(fjy0,ty);
940             fjz0             = _mm_add_ps(fjz0,tz);
941
942             /**************************
943              * CALCULATE INTERACTIONS *
944              **************************/
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq10             = _mm_mul_ps(iq1,jq0);
948
949             /* COULOMB ELECTROSTATICS */
950             velec            = _mm_mul_ps(qq10,rinv10);
951             felec            = _mm_mul_ps(velec,rinvsq10);
952
953             fscal            = felec;
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_ps(fscal,dx10);
957             ty               = _mm_mul_ps(fscal,dy10);
958             tz               = _mm_mul_ps(fscal,dz10);
959
960             /* Update vectorial force */
961             fix1             = _mm_add_ps(fix1,tx);
962             fiy1             = _mm_add_ps(fiy1,ty);
963             fiz1             = _mm_add_ps(fiz1,tz);
964
965             fjx0             = _mm_add_ps(fjx0,tx);
966             fjy0             = _mm_add_ps(fjy0,ty);
967             fjz0             = _mm_add_ps(fjz0,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq20             = _mm_mul_ps(iq2,jq0);
975
976             /* COULOMB ELECTROSTATICS */
977             velec            = _mm_mul_ps(qq20,rinv20);
978             felec            = _mm_mul_ps(velec,rinvsq20);
979
980             fscal            = felec;
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm_mul_ps(fscal,dx20);
984             ty               = _mm_mul_ps(fscal,dy20);
985             tz               = _mm_mul_ps(fscal,dz20);
986
987             /* Update vectorial force */
988             fix2             = _mm_add_ps(fix2,tx);
989             fiy2             = _mm_add_ps(fiy2,ty);
990             fiz2             = _mm_add_ps(fiz2,tz);
991
992             fjx0             = _mm_add_ps(fjx0,tx);
993             fjy0             = _mm_add_ps(fjy0,ty);
994             fjz0             = _mm_add_ps(fjz0,tz);
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq30             = _mm_mul_ps(iq3,jq0);
1002
1003             /* COULOMB ELECTROSTATICS */
1004             velec            = _mm_mul_ps(qq30,rinv30);
1005             felec            = _mm_mul_ps(velec,rinvsq30);
1006
1007             fscal            = felec;
1008
1009             /* Calculate temporary vectorial force */
1010             tx               = _mm_mul_ps(fscal,dx30);
1011             ty               = _mm_mul_ps(fscal,dy30);
1012             tz               = _mm_mul_ps(fscal,dz30);
1013
1014             /* Update vectorial force */
1015             fix3             = _mm_add_ps(fix3,tx);
1016             fiy3             = _mm_add_ps(fiy3,ty);
1017             fiz3             = _mm_add_ps(fiz3,tz);
1018
1019             fjx0             = _mm_add_ps(fjx0,tx);
1020             fjy0             = _mm_add_ps(fjy0,ty);
1021             fjz0             = _mm_add_ps(fjz0,tz);
1022
1023             fjptrA             = f+j_coord_offsetA;
1024             fjptrB             = f+j_coord_offsetB;
1025             fjptrC             = f+j_coord_offsetC;
1026             fjptrD             = f+j_coord_offsetD;
1027
1028             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1029
1030             /* Inner loop uses 129 flops */
1031         }
1032
1033         if(jidx<j_index_end)
1034         {
1035
1036             /* Get j neighbor index, and coordinate index */
1037             jnrlistA         = jjnr[jidx];
1038             jnrlistB         = jjnr[jidx+1];
1039             jnrlistC         = jjnr[jidx+2];
1040             jnrlistD         = jjnr[jidx+3];
1041             /* Sign of each element will be negative for non-real atoms.
1042              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1043              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1044              */
1045             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1046             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1047             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1048             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1049             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1050             j_coord_offsetA  = DIM*jnrA;
1051             j_coord_offsetB  = DIM*jnrB;
1052             j_coord_offsetC  = DIM*jnrC;
1053             j_coord_offsetD  = DIM*jnrD;
1054
1055             /* load j atom coordinates */
1056             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1057                                               x+j_coord_offsetC,x+j_coord_offsetD,
1058                                               &jx0,&jy0,&jz0);
1059
1060             /* Calculate displacement vector */
1061             dx00             = _mm_sub_ps(ix0,jx0);
1062             dy00             = _mm_sub_ps(iy0,jy0);
1063             dz00             = _mm_sub_ps(iz0,jz0);
1064             dx10             = _mm_sub_ps(ix1,jx0);
1065             dy10             = _mm_sub_ps(iy1,jy0);
1066             dz10             = _mm_sub_ps(iz1,jz0);
1067             dx20             = _mm_sub_ps(ix2,jx0);
1068             dy20             = _mm_sub_ps(iy2,jy0);
1069             dz20             = _mm_sub_ps(iz2,jz0);
1070             dx30             = _mm_sub_ps(ix3,jx0);
1071             dy30             = _mm_sub_ps(iy3,jy0);
1072             dz30             = _mm_sub_ps(iz3,jz0);
1073
1074             /* Calculate squared distance and things based on it */
1075             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1076             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1077             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1078             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1079
1080             rinv00           = sse41_invsqrt_f(rsq00);
1081             rinv10           = sse41_invsqrt_f(rsq10);
1082             rinv20           = sse41_invsqrt_f(rsq20);
1083             rinv30           = sse41_invsqrt_f(rsq30);
1084
1085             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1086             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1087             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1088
1089             /* Load parameters for j particles */
1090             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1091                                                               charge+jnrC+0,charge+jnrD+0);
1092             vdwjidx0A        = 2*vdwtype[jnrA+0];
1093             vdwjidx0B        = 2*vdwtype[jnrB+0];
1094             vdwjidx0C        = 2*vdwtype[jnrC+0];
1095             vdwjidx0D        = 2*vdwtype[jnrD+0];
1096
1097             fjx0             = _mm_setzero_ps();
1098             fjy0             = _mm_setzero_ps();
1099             fjz0             = _mm_setzero_ps();
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r00              = _mm_mul_ps(rsq00,rinv00);
1106             r00              = _mm_andnot_ps(dummy_mask,r00);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1110                                          vdwparam+vdwioffset0+vdwjidx0B,
1111                                          vdwparam+vdwioffset0+vdwjidx0C,
1112                                          vdwparam+vdwioffset0+vdwjidx0D,
1113                                          &c6_00,&c12_00);
1114
1115             /* Calculate table index by multiplying r with table scale and truncate to integer */
1116             rt               = _mm_mul_ps(r00,vftabscale);
1117             vfitab           = _mm_cvttps_epi32(rt);
1118             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1119             vfitab           = _mm_slli_epi32(vfitab,3);
1120
1121             /* CUBIC SPLINE TABLE DISPERSION */
1122             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1123             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1124             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1125             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1126             _MM_TRANSPOSE4_PS(Y,F,G,H);
1127             Heps             = _mm_mul_ps(vfeps,H);
1128             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1129             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1130             fvdw6            = _mm_mul_ps(c6_00,FF);
1131
1132             /* CUBIC SPLINE TABLE REPULSION */
1133             vfitab           = _mm_add_epi32(vfitab,ifour);
1134             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1135             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1136             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1137             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1138             _MM_TRANSPOSE4_PS(Y,F,G,H);
1139             Heps             = _mm_mul_ps(vfeps,H);
1140             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1141             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1142             fvdw12           = _mm_mul_ps(c12_00,FF);
1143             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1144
1145             fscal            = fvdw;
1146
1147             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_ps(fscal,dx00);
1151             ty               = _mm_mul_ps(fscal,dy00);
1152             tz               = _mm_mul_ps(fscal,dz00);
1153
1154             /* Update vectorial force */
1155             fix0             = _mm_add_ps(fix0,tx);
1156             fiy0             = _mm_add_ps(fiy0,ty);
1157             fiz0             = _mm_add_ps(fiz0,tz);
1158
1159             fjx0             = _mm_add_ps(fjx0,tx);
1160             fjy0             = _mm_add_ps(fjy0,ty);
1161             fjz0             = _mm_add_ps(fjz0,tz);
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             /* Compute parameters for interactions between i and j atoms */
1168             qq10             = _mm_mul_ps(iq1,jq0);
1169
1170             /* COULOMB ELECTROSTATICS */
1171             velec            = _mm_mul_ps(qq10,rinv10);
1172             felec            = _mm_mul_ps(velec,rinvsq10);
1173
1174             fscal            = felec;
1175
1176             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1177
1178             /* Calculate temporary vectorial force */
1179             tx               = _mm_mul_ps(fscal,dx10);
1180             ty               = _mm_mul_ps(fscal,dy10);
1181             tz               = _mm_mul_ps(fscal,dz10);
1182
1183             /* Update vectorial force */
1184             fix1             = _mm_add_ps(fix1,tx);
1185             fiy1             = _mm_add_ps(fiy1,ty);
1186             fiz1             = _mm_add_ps(fiz1,tz);
1187
1188             fjx0             = _mm_add_ps(fjx0,tx);
1189             fjy0             = _mm_add_ps(fjy0,ty);
1190             fjz0             = _mm_add_ps(fjz0,tz);
1191
1192             /**************************
1193              * CALCULATE INTERACTIONS *
1194              **************************/
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq20             = _mm_mul_ps(iq2,jq0);
1198
1199             /* COULOMB ELECTROSTATICS */
1200             velec            = _mm_mul_ps(qq20,rinv20);
1201             felec            = _mm_mul_ps(velec,rinvsq20);
1202
1203             fscal            = felec;
1204
1205             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm_mul_ps(fscal,dx20);
1209             ty               = _mm_mul_ps(fscal,dy20);
1210             tz               = _mm_mul_ps(fscal,dz20);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm_add_ps(fix2,tx);
1214             fiy2             = _mm_add_ps(fiy2,ty);
1215             fiz2             = _mm_add_ps(fiz2,tz);
1216
1217             fjx0             = _mm_add_ps(fjx0,tx);
1218             fjy0             = _mm_add_ps(fjy0,ty);
1219             fjz0             = _mm_add_ps(fjz0,tz);
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             qq30             = _mm_mul_ps(iq3,jq0);
1227
1228             /* COULOMB ELECTROSTATICS */
1229             velec            = _mm_mul_ps(qq30,rinv30);
1230             felec            = _mm_mul_ps(velec,rinvsq30);
1231
1232             fscal            = felec;
1233
1234             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1235
1236             /* Calculate temporary vectorial force */
1237             tx               = _mm_mul_ps(fscal,dx30);
1238             ty               = _mm_mul_ps(fscal,dy30);
1239             tz               = _mm_mul_ps(fscal,dz30);
1240
1241             /* Update vectorial force */
1242             fix3             = _mm_add_ps(fix3,tx);
1243             fiy3             = _mm_add_ps(fiy3,ty);
1244             fiz3             = _mm_add_ps(fiz3,tz);
1245
1246             fjx0             = _mm_add_ps(fjx0,tx);
1247             fjy0             = _mm_add_ps(fjy0,ty);
1248             fjz0             = _mm_add_ps(fjz0,tz);
1249
1250             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1251             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1252             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1253             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1254
1255             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 130 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 24 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1277 }