Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
132     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
133     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = sse41_invsqrt_f(rsq00);
219             rinv10           = sse41_invsqrt_f(rsq10);
220             rinv20           = sse41_invsqrt_f(rsq20);
221
222             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
223             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
228                                                               charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             fjx0             = _mm_setzero_ps();
235             fjy0             = _mm_setzero_ps();
236             fjz0             = _mm_setzero_ps();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _mm_mul_ps(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm_mul_ps(iq0,jq0);
246             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,
248                                          vdwparam+vdwioffset0+vdwjidx0C,
249                                          vdwparam+vdwioffset0+vdwjidx0D,
250                                          &c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_ps(r00,vftabscale);
254             vfitab           = _mm_cvttps_epi32(rt);
255             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
256             vfitab           = _mm_slli_epi32(vfitab,3);
257
258             /* COULOMB ELECTROSTATICS */
259             velec            = _mm_mul_ps(qq00,rinv00);
260             felec            = _mm_mul_ps(velec,rinvsq00);
261
262             /* CUBIC SPLINE TABLE DISPERSION */
263             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
265             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
266             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
267             _MM_TRANSPOSE4_PS(Y,F,G,H);
268             Heps             = _mm_mul_ps(vfeps,H);
269             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
270             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
271             vvdw6            = _mm_mul_ps(c6_00,VV);
272             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
273             fvdw6            = _mm_mul_ps(c6_00,FF);
274
275             /* CUBIC SPLINE TABLE REPULSION */
276             vfitab           = _mm_add_epi32(vfitab,ifour);
277             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
279             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
280             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
281             _MM_TRANSPOSE4_PS(Y,F,G,H);
282             Heps             = _mm_mul_ps(vfeps,H);
283             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
284             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
285             vvdw12           = _mm_mul_ps(c12_00,VV);
286             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
287             fvdw12           = _mm_mul_ps(c12_00,FF);
288             vvdw             = _mm_add_ps(vvdw12,vvdw6);
289             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velecsum         = _mm_add_ps(velecsum,velec);
293             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
294
295             fscal            = _mm_add_ps(felec,fvdw);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjx0             = _mm_add_ps(fjx0,tx);
308             fjy0             = _mm_add_ps(fjy0,ty);
309             fjz0             = _mm_add_ps(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_ps(iq1,jq0);
317
318             /* COULOMB ELECTROSTATICS */
319             velec            = _mm_mul_ps(qq10,rinv10);
320             felec            = _mm_mul_ps(velec,rinvsq10);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm_add_ps(velecsum,velec);
324
325             fscal            = felec;
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm_mul_ps(fscal,dx10);
329             ty               = _mm_mul_ps(fscal,dy10);
330             tz               = _mm_mul_ps(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm_add_ps(fix1,tx);
334             fiy1             = _mm_add_ps(fiy1,ty);
335             fiz1             = _mm_add_ps(fiz1,tz);
336
337             fjx0             = _mm_add_ps(fjx0,tx);
338             fjy0             = _mm_add_ps(fjy0,ty);
339             fjz0             = _mm_add_ps(fjz0,tz);
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _mm_mul_ps(iq2,jq0);
347
348             /* COULOMB ELECTROSTATICS */
349             velec            = _mm_mul_ps(qq20,rinv20);
350             felec            = _mm_mul_ps(velec,rinvsq20);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velecsum         = _mm_add_ps(velecsum,velec);
354
355             fscal            = felec;
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm_mul_ps(fscal,dx20);
359             ty               = _mm_mul_ps(fscal,dy20);
360             tz               = _mm_mul_ps(fscal,dz20);
361
362             /* Update vectorial force */
363             fix2             = _mm_add_ps(fix2,tx);
364             fiy2             = _mm_add_ps(fiy2,ty);
365             fiz2             = _mm_add_ps(fiz2,tz);
366
367             fjx0             = _mm_add_ps(fjx0,tx);
368             fjy0             = _mm_add_ps(fjy0,ty);
369             fjz0             = _mm_add_ps(fjz0,tz);
370
371             fjptrA             = f+j_coord_offsetA;
372             fjptrB             = f+j_coord_offsetB;
373             fjptrC             = f+j_coord_offsetC;
374             fjptrD             = f+j_coord_offsetD;
375
376             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
377
378             /* Inner loop uses 119 flops */
379         }
380
381         if(jidx<j_index_end)
382         {
383
384             /* Get j neighbor index, and coordinate index */
385             jnrlistA         = jjnr[jidx];
386             jnrlistB         = jjnr[jidx+1];
387             jnrlistC         = jjnr[jidx+2];
388             jnrlistD         = jjnr[jidx+3];
389             /* Sign of each element will be negative for non-real atoms.
390              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
391              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
392              */
393             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
394             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
395             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
396             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
397             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
398             j_coord_offsetA  = DIM*jnrA;
399             j_coord_offsetB  = DIM*jnrB;
400             j_coord_offsetC  = DIM*jnrC;
401             j_coord_offsetD  = DIM*jnrD;
402
403             /* load j atom coordinates */
404             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
405                                               x+j_coord_offsetC,x+j_coord_offsetD,
406                                               &jx0,&jy0,&jz0);
407
408             /* Calculate displacement vector */
409             dx00             = _mm_sub_ps(ix0,jx0);
410             dy00             = _mm_sub_ps(iy0,jy0);
411             dz00             = _mm_sub_ps(iz0,jz0);
412             dx10             = _mm_sub_ps(ix1,jx0);
413             dy10             = _mm_sub_ps(iy1,jy0);
414             dz10             = _mm_sub_ps(iz1,jz0);
415             dx20             = _mm_sub_ps(ix2,jx0);
416             dy20             = _mm_sub_ps(iy2,jy0);
417             dz20             = _mm_sub_ps(iz2,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
421             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
422             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
423
424             rinv00           = sse41_invsqrt_f(rsq00);
425             rinv10           = sse41_invsqrt_f(rsq10);
426             rinv20           = sse41_invsqrt_f(rsq20);
427
428             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
429             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
430             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
431
432             /* Load parameters for j particles */
433             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
434                                                               charge+jnrC+0,charge+jnrD+0);
435             vdwjidx0A        = 2*vdwtype[jnrA+0];
436             vdwjidx0B        = 2*vdwtype[jnrB+0];
437             vdwjidx0C        = 2*vdwtype[jnrC+0];
438             vdwjidx0D        = 2*vdwtype[jnrD+0];
439
440             fjx0             = _mm_setzero_ps();
441             fjy0             = _mm_setzero_ps();
442             fjz0             = _mm_setzero_ps();
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             r00              = _mm_mul_ps(rsq00,rinv00);
449             r00              = _mm_andnot_ps(dummy_mask,r00);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq00             = _mm_mul_ps(iq0,jq0);
453             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
454                                          vdwparam+vdwioffset0+vdwjidx0B,
455                                          vdwparam+vdwioffset0+vdwjidx0C,
456                                          vdwparam+vdwioffset0+vdwjidx0D,
457                                          &c6_00,&c12_00);
458
459             /* Calculate table index by multiplying r with table scale and truncate to integer */
460             rt               = _mm_mul_ps(r00,vftabscale);
461             vfitab           = _mm_cvttps_epi32(rt);
462             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
463             vfitab           = _mm_slli_epi32(vfitab,3);
464
465             /* COULOMB ELECTROSTATICS */
466             velec            = _mm_mul_ps(qq00,rinv00);
467             felec            = _mm_mul_ps(velec,rinvsq00);
468
469             /* CUBIC SPLINE TABLE DISPERSION */
470             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
471             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
472             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
473             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
474             _MM_TRANSPOSE4_PS(Y,F,G,H);
475             Heps             = _mm_mul_ps(vfeps,H);
476             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
477             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
478             vvdw6            = _mm_mul_ps(c6_00,VV);
479             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
480             fvdw6            = _mm_mul_ps(c6_00,FF);
481
482             /* CUBIC SPLINE TABLE REPULSION */
483             vfitab           = _mm_add_epi32(vfitab,ifour);
484             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
485             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
486             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
487             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
488             _MM_TRANSPOSE4_PS(Y,F,G,H);
489             Heps             = _mm_mul_ps(vfeps,H);
490             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
491             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
492             vvdw12           = _mm_mul_ps(c12_00,VV);
493             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
494             fvdw12           = _mm_mul_ps(c12_00,FF);
495             vvdw             = _mm_add_ps(vvdw12,vvdw6);
496             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm_andnot_ps(dummy_mask,velec);
500             velecsum         = _mm_add_ps(velecsum,velec);
501             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
502             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
503
504             fscal            = _mm_add_ps(felec,fvdw);
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx00);
510             ty               = _mm_mul_ps(fscal,dy00);
511             tz               = _mm_mul_ps(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm_add_ps(fix0,tx);
515             fiy0             = _mm_add_ps(fiy0,ty);
516             fiz0             = _mm_add_ps(fiz0,tz);
517
518             fjx0             = _mm_add_ps(fjx0,tx);
519             fjy0             = _mm_add_ps(fjy0,ty);
520             fjz0             = _mm_add_ps(fjz0,tz);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq10             = _mm_mul_ps(iq1,jq0);
528
529             /* COULOMB ELECTROSTATICS */
530             velec            = _mm_mul_ps(qq10,rinv10);
531             felec            = _mm_mul_ps(velec,rinvsq10);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velec            = _mm_andnot_ps(dummy_mask,velec);
535             velecsum         = _mm_add_ps(velecsum,velec);
536
537             fscal            = felec;
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx10);
543             ty               = _mm_mul_ps(fscal,dy10);
544             tz               = _mm_mul_ps(fscal,dz10);
545
546             /* Update vectorial force */
547             fix1             = _mm_add_ps(fix1,tx);
548             fiy1             = _mm_add_ps(fiy1,ty);
549             fiz1             = _mm_add_ps(fiz1,tz);
550
551             fjx0             = _mm_add_ps(fjx0,tx);
552             fjy0             = _mm_add_ps(fjy0,ty);
553             fjz0             = _mm_add_ps(fjz0,tz);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq20             = _mm_mul_ps(iq2,jq0);
561
562             /* COULOMB ELECTROSTATICS */
563             velec            = _mm_mul_ps(qq20,rinv20);
564             felec            = _mm_mul_ps(velec,rinvsq20);
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velec            = _mm_andnot_ps(dummy_mask,velec);
568             velecsum         = _mm_add_ps(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx20);
576             ty               = _mm_mul_ps(fscal,dy20);
577             tz               = _mm_mul_ps(fscal,dz20);
578
579             /* Update vectorial force */
580             fix2             = _mm_add_ps(fix2,tx);
581             fiy2             = _mm_add_ps(fiy2,ty);
582             fiz2             = _mm_add_ps(fiz2,tz);
583
584             fjx0             = _mm_add_ps(fjx0,tx);
585             fjy0             = _mm_add_ps(fjy0,ty);
586             fjz0             = _mm_add_ps(fjz0,tz);
587
588             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
589             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
590             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
591             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
592
593             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
594
595             /* Inner loop uses 120 flops */
596         }
597
598         /* End of innermost loop */
599
600         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
601                                               f+i_coord_offset,fshift+i_shift_offset);
602
603         ggid                        = gid[iidx];
604         /* Update potential energies */
605         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
606         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
607
608         /* Increment number of inner iterations */
609         inneriter                  += j_index_end - j_index_start;
610
611         /* Outer loop uses 20 flops */
612     }
613
614     /* Increment number of outer iterations */
615     outeriter        += nri;
616
617     /* Update outer/inner flops */
618
619     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
620 }
621 /*
622  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
623  * Electrostatics interaction: Coulomb
624  * VdW interaction:            CubicSplineTable
625  * Geometry:                   Water3-Particle
626  * Calculate force/pot:        Force
627  */
628 void
629 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
630                     (t_nblist                    * gmx_restrict       nlist,
631                      rvec                        * gmx_restrict          xx,
632                      rvec                        * gmx_restrict          ff,
633                      struct t_forcerec           * gmx_restrict          fr,
634                      t_mdatoms                   * gmx_restrict     mdatoms,
635                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
636                      t_nrnb                      * gmx_restrict        nrnb)
637 {
638     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
639      * just 0 for non-waters.
640      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
641      * jnr indices corresponding to data put in the four positions in the SIMD register.
642      */
643     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
644     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
645     int              jnrA,jnrB,jnrC,jnrD;
646     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
647     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
648     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
649     real             rcutoff_scalar;
650     real             *shiftvec,*fshift,*x,*f;
651     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
652     real             scratch[4*DIM];
653     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
654     int              vdwioffset0;
655     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
656     int              vdwioffset1;
657     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
658     int              vdwioffset2;
659     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
660     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
661     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
662     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
663     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
664     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
665     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
666     real             *charge;
667     int              nvdwtype;
668     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
669     int              *vdwtype;
670     real             *vdwparam;
671     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
672     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
673     __m128i          vfitab;
674     __m128i          ifour       = _mm_set1_epi32(4);
675     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
676     real             *vftab;
677     __m128           dummy_mask,cutoff_mask;
678     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
679     __m128           one     = _mm_set1_ps(1.0);
680     __m128           two     = _mm_set1_ps(2.0);
681     x                = xx[0];
682     f                = ff[0];
683
684     nri              = nlist->nri;
685     iinr             = nlist->iinr;
686     jindex           = nlist->jindex;
687     jjnr             = nlist->jjnr;
688     shiftidx         = nlist->shift;
689     gid              = nlist->gid;
690     shiftvec         = fr->shift_vec[0];
691     fshift           = fr->fshift[0];
692     facel            = _mm_set1_ps(fr->ic->epsfac);
693     charge           = mdatoms->chargeA;
694     nvdwtype         = fr->ntype;
695     vdwparam         = fr->nbfp;
696     vdwtype          = mdatoms->typeA;
697
698     vftab            = kernel_data->table_vdw->data;
699     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
700
701     /* Setup water-specific parameters */
702     inr              = nlist->iinr[0];
703     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
704     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
705     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
706     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
707
708     /* Avoid stupid compiler warnings */
709     jnrA = jnrB = jnrC = jnrD = 0;
710     j_coord_offsetA = 0;
711     j_coord_offsetB = 0;
712     j_coord_offsetC = 0;
713     j_coord_offsetD = 0;
714
715     outeriter        = 0;
716     inneriter        = 0;
717
718     for(iidx=0;iidx<4*DIM;iidx++)
719     {
720         scratch[iidx] = 0.0;
721     }
722
723     /* Start outer loop over neighborlists */
724     for(iidx=0; iidx<nri; iidx++)
725     {
726         /* Load shift vector for this list */
727         i_shift_offset   = DIM*shiftidx[iidx];
728
729         /* Load limits for loop over neighbors */
730         j_index_start    = jindex[iidx];
731         j_index_end      = jindex[iidx+1];
732
733         /* Get outer coordinate index */
734         inr              = iinr[iidx];
735         i_coord_offset   = DIM*inr;
736
737         /* Load i particle coords and add shift vector */
738         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
739                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
740
741         fix0             = _mm_setzero_ps();
742         fiy0             = _mm_setzero_ps();
743         fiz0             = _mm_setzero_ps();
744         fix1             = _mm_setzero_ps();
745         fiy1             = _mm_setzero_ps();
746         fiz1             = _mm_setzero_ps();
747         fix2             = _mm_setzero_ps();
748         fiy2             = _mm_setzero_ps();
749         fiz2             = _mm_setzero_ps();
750
751         /* Start inner kernel loop */
752         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
753         {
754
755             /* Get j neighbor index, and coordinate index */
756             jnrA             = jjnr[jidx];
757             jnrB             = jjnr[jidx+1];
758             jnrC             = jjnr[jidx+2];
759             jnrD             = jjnr[jidx+3];
760             j_coord_offsetA  = DIM*jnrA;
761             j_coord_offsetB  = DIM*jnrB;
762             j_coord_offsetC  = DIM*jnrC;
763             j_coord_offsetD  = DIM*jnrD;
764
765             /* load j atom coordinates */
766             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
767                                               x+j_coord_offsetC,x+j_coord_offsetD,
768                                               &jx0,&jy0,&jz0);
769
770             /* Calculate displacement vector */
771             dx00             = _mm_sub_ps(ix0,jx0);
772             dy00             = _mm_sub_ps(iy0,jy0);
773             dz00             = _mm_sub_ps(iz0,jz0);
774             dx10             = _mm_sub_ps(ix1,jx0);
775             dy10             = _mm_sub_ps(iy1,jy0);
776             dz10             = _mm_sub_ps(iz1,jz0);
777             dx20             = _mm_sub_ps(ix2,jx0);
778             dy20             = _mm_sub_ps(iy2,jy0);
779             dz20             = _mm_sub_ps(iz2,jz0);
780
781             /* Calculate squared distance and things based on it */
782             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
783             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
784             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
785
786             rinv00           = sse41_invsqrt_f(rsq00);
787             rinv10           = sse41_invsqrt_f(rsq10);
788             rinv20           = sse41_invsqrt_f(rsq20);
789
790             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
791             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
792             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
793
794             /* Load parameters for j particles */
795             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
796                                                               charge+jnrC+0,charge+jnrD+0);
797             vdwjidx0A        = 2*vdwtype[jnrA+0];
798             vdwjidx0B        = 2*vdwtype[jnrB+0];
799             vdwjidx0C        = 2*vdwtype[jnrC+0];
800             vdwjidx0D        = 2*vdwtype[jnrD+0];
801
802             fjx0             = _mm_setzero_ps();
803             fjy0             = _mm_setzero_ps();
804             fjz0             = _mm_setzero_ps();
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             r00              = _mm_mul_ps(rsq00,rinv00);
811
812             /* Compute parameters for interactions between i and j atoms */
813             qq00             = _mm_mul_ps(iq0,jq0);
814             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
815                                          vdwparam+vdwioffset0+vdwjidx0B,
816                                          vdwparam+vdwioffset0+vdwjidx0C,
817                                          vdwparam+vdwioffset0+vdwjidx0D,
818                                          &c6_00,&c12_00);
819
820             /* Calculate table index by multiplying r with table scale and truncate to integer */
821             rt               = _mm_mul_ps(r00,vftabscale);
822             vfitab           = _mm_cvttps_epi32(rt);
823             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
824             vfitab           = _mm_slli_epi32(vfitab,3);
825
826             /* COULOMB ELECTROSTATICS */
827             velec            = _mm_mul_ps(qq00,rinv00);
828             felec            = _mm_mul_ps(velec,rinvsq00);
829
830             /* CUBIC SPLINE TABLE DISPERSION */
831             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
832             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
833             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
834             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
835             _MM_TRANSPOSE4_PS(Y,F,G,H);
836             Heps             = _mm_mul_ps(vfeps,H);
837             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
838             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
839             fvdw6            = _mm_mul_ps(c6_00,FF);
840
841             /* CUBIC SPLINE TABLE REPULSION */
842             vfitab           = _mm_add_epi32(vfitab,ifour);
843             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
844             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
845             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
846             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
847             _MM_TRANSPOSE4_PS(Y,F,G,H);
848             Heps             = _mm_mul_ps(vfeps,H);
849             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
850             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
851             fvdw12           = _mm_mul_ps(c12_00,FF);
852             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
853
854             fscal            = _mm_add_ps(felec,fvdw);
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm_mul_ps(fscal,dx00);
858             ty               = _mm_mul_ps(fscal,dy00);
859             tz               = _mm_mul_ps(fscal,dz00);
860
861             /* Update vectorial force */
862             fix0             = _mm_add_ps(fix0,tx);
863             fiy0             = _mm_add_ps(fiy0,ty);
864             fiz0             = _mm_add_ps(fiz0,tz);
865
866             fjx0             = _mm_add_ps(fjx0,tx);
867             fjy0             = _mm_add_ps(fjy0,ty);
868             fjz0             = _mm_add_ps(fjz0,tz);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq10             = _mm_mul_ps(iq1,jq0);
876
877             /* COULOMB ELECTROSTATICS */
878             velec            = _mm_mul_ps(qq10,rinv10);
879             felec            = _mm_mul_ps(velec,rinvsq10);
880
881             fscal            = felec;
882
883             /* Calculate temporary vectorial force */
884             tx               = _mm_mul_ps(fscal,dx10);
885             ty               = _mm_mul_ps(fscal,dy10);
886             tz               = _mm_mul_ps(fscal,dz10);
887
888             /* Update vectorial force */
889             fix1             = _mm_add_ps(fix1,tx);
890             fiy1             = _mm_add_ps(fiy1,ty);
891             fiz1             = _mm_add_ps(fiz1,tz);
892
893             fjx0             = _mm_add_ps(fjx0,tx);
894             fjy0             = _mm_add_ps(fjy0,ty);
895             fjz0             = _mm_add_ps(fjz0,tz);
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq20             = _mm_mul_ps(iq2,jq0);
903
904             /* COULOMB ELECTROSTATICS */
905             velec            = _mm_mul_ps(qq20,rinv20);
906             felec            = _mm_mul_ps(velec,rinvsq20);
907
908             fscal            = felec;
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm_mul_ps(fscal,dx20);
912             ty               = _mm_mul_ps(fscal,dy20);
913             tz               = _mm_mul_ps(fscal,dz20);
914
915             /* Update vectorial force */
916             fix2             = _mm_add_ps(fix2,tx);
917             fiy2             = _mm_add_ps(fiy2,ty);
918             fiz2             = _mm_add_ps(fiz2,tz);
919
920             fjx0             = _mm_add_ps(fjx0,tx);
921             fjy0             = _mm_add_ps(fjy0,ty);
922             fjz0             = _mm_add_ps(fjz0,tz);
923
924             fjptrA             = f+j_coord_offsetA;
925             fjptrB             = f+j_coord_offsetB;
926             fjptrC             = f+j_coord_offsetC;
927             fjptrD             = f+j_coord_offsetD;
928
929             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
930
931             /* Inner loop uses 108 flops */
932         }
933
934         if(jidx<j_index_end)
935         {
936
937             /* Get j neighbor index, and coordinate index */
938             jnrlistA         = jjnr[jidx];
939             jnrlistB         = jjnr[jidx+1];
940             jnrlistC         = jjnr[jidx+2];
941             jnrlistD         = jjnr[jidx+3];
942             /* Sign of each element will be negative for non-real atoms.
943              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
944              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
945              */
946             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
947             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
948             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
949             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
950             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
951             j_coord_offsetA  = DIM*jnrA;
952             j_coord_offsetB  = DIM*jnrB;
953             j_coord_offsetC  = DIM*jnrC;
954             j_coord_offsetD  = DIM*jnrD;
955
956             /* load j atom coordinates */
957             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
958                                               x+j_coord_offsetC,x+j_coord_offsetD,
959                                               &jx0,&jy0,&jz0);
960
961             /* Calculate displacement vector */
962             dx00             = _mm_sub_ps(ix0,jx0);
963             dy00             = _mm_sub_ps(iy0,jy0);
964             dz00             = _mm_sub_ps(iz0,jz0);
965             dx10             = _mm_sub_ps(ix1,jx0);
966             dy10             = _mm_sub_ps(iy1,jy0);
967             dz10             = _mm_sub_ps(iz1,jz0);
968             dx20             = _mm_sub_ps(ix2,jx0);
969             dy20             = _mm_sub_ps(iy2,jy0);
970             dz20             = _mm_sub_ps(iz2,jz0);
971
972             /* Calculate squared distance and things based on it */
973             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
974             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
975             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
976
977             rinv00           = sse41_invsqrt_f(rsq00);
978             rinv10           = sse41_invsqrt_f(rsq10);
979             rinv20           = sse41_invsqrt_f(rsq20);
980
981             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
982             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
983             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
984
985             /* Load parameters for j particles */
986             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
987                                                               charge+jnrC+0,charge+jnrD+0);
988             vdwjidx0A        = 2*vdwtype[jnrA+0];
989             vdwjidx0B        = 2*vdwtype[jnrB+0];
990             vdwjidx0C        = 2*vdwtype[jnrC+0];
991             vdwjidx0D        = 2*vdwtype[jnrD+0];
992
993             fjx0             = _mm_setzero_ps();
994             fjy0             = _mm_setzero_ps();
995             fjz0             = _mm_setzero_ps();
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             r00              = _mm_mul_ps(rsq00,rinv00);
1002             r00              = _mm_andnot_ps(dummy_mask,r00);
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq00             = _mm_mul_ps(iq0,jq0);
1006             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1007                                          vdwparam+vdwioffset0+vdwjidx0B,
1008                                          vdwparam+vdwioffset0+vdwjidx0C,
1009                                          vdwparam+vdwioffset0+vdwjidx0D,
1010                                          &c6_00,&c12_00);
1011
1012             /* Calculate table index by multiplying r with table scale and truncate to integer */
1013             rt               = _mm_mul_ps(r00,vftabscale);
1014             vfitab           = _mm_cvttps_epi32(rt);
1015             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1016             vfitab           = _mm_slli_epi32(vfitab,3);
1017
1018             /* COULOMB ELECTROSTATICS */
1019             velec            = _mm_mul_ps(qq00,rinv00);
1020             felec            = _mm_mul_ps(velec,rinvsq00);
1021
1022             /* CUBIC SPLINE TABLE DISPERSION */
1023             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1024             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1025             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1026             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1027             _MM_TRANSPOSE4_PS(Y,F,G,H);
1028             Heps             = _mm_mul_ps(vfeps,H);
1029             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1030             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1031             fvdw6            = _mm_mul_ps(c6_00,FF);
1032
1033             /* CUBIC SPLINE TABLE REPULSION */
1034             vfitab           = _mm_add_epi32(vfitab,ifour);
1035             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1036             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1037             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1038             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1039             _MM_TRANSPOSE4_PS(Y,F,G,H);
1040             Heps             = _mm_mul_ps(vfeps,H);
1041             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1042             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1043             fvdw12           = _mm_mul_ps(c12_00,FF);
1044             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1045
1046             fscal            = _mm_add_ps(felec,fvdw);
1047
1048             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm_mul_ps(fscal,dx00);
1052             ty               = _mm_mul_ps(fscal,dy00);
1053             tz               = _mm_mul_ps(fscal,dz00);
1054
1055             /* Update vectorial force */
1056             fix0             = _mm_add_ps(fix0,tx);
1057             fiy0             = _mm_add_ps(fiy0,ty);
1058             fiz0             = _mm_add_ps(fiz0,tz);
1059
1060             fjx0             = _mm_add_ps(fjx0,tx);
1061             fjy0             = _mm_add_ps(fjy0,ty);
1062             fjz0             = _mm_add_ps(fjz0,tz);
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq10             = _mm_mul_ps(iq1,jq0);
1070
1071             /* COULOMB ELECTROSTATICS */
1072             velec            = _mm_mul_ps(qq10,rinv10);
1073             felec            = _mm_mul_ps(velec,rinvsq10);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm_mul_ps(fscal,dx10);
1081             ty               = _mm_mul_ps(fscal,dy10);
1082             tz               = _mm_mul_ps(fscal,dz10);
1083
1084             /* Update vectorial force */
1085             fix1             = _mm_add_ps(fix1,tx);
1086             fiy1             = _mm_add_ps(fiy1,ty);
1087             fiz1             = _mm_add_ps(fiz1,tz);
1088
1089             fjx0             = _mm_add_ps(fjx0,tx);
1090             fjy0             = _mm_add_ps(fjy0,ty);
1091             fjz0             = _mm_add_ps(fjz0,tz);
1092
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             qq20             = _mm_mul_ps(iq2,jq0);
1099
1100             /* COULOMB ELECTROSTATICS */
1101             velec            = _mm_mul_ps(qq20,rinv20);
1102             felec            = _mm_mul_ps(velec,rinvsq20);
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm_mul_ps(fscal,dx20);
1110             ty               = _mm_mul_ps(fscal,dy20);
1111             tz               = _mm_mul_ps(fscal,dz20);
1112
1113             /* Update vectorial force */
1114             fix2             = _mm_add_ps(fix2,tx);
1115             fiy2             = _mm_add_ps(fiy2,ty);
1116             fiz2             = _mm_add_ps(fiz2,tz);
1117
1118             fjx0             = _mm_add_ps(fjx0,tx);
1119             fjy0             = _mm_add_ps(fjy0,ty);
1120             fjz0             = _mm_add_ps(fjz0,tz);
1121
1122             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1123             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1124             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1125             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1126
1127             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1128
1129             /* Inner loop uses 109 flops */
1130         }
1131
1132         /* End of innermost loop */
1133
1134         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1135                                               f+i_coord_offset,fshift+i_shift_offset);
1136
1137         /* Increment number of inner iterations */
1138         inneriter                  += j_index_end - j_index_start;
1139
1140         /* Outer loop uses 18 flops */
1141     }
1142
1143     /* Increment number of outer iterations */
1144     outeriter        += nri;
1145
1146     /* Update outer/inner flops */
1147
1148     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1149 }