dc77d8999ce495d3209c1582fb915cae23f2a5b6
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
225             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
257             vfitab           = _mm_slli_epi32(vfitab,3);
258
259             /* COULOMB ELECTROSTATICS */
260             velec            = _mm_mul_ps(qq00,rinv00);
261             felec            = _mm_mul_ps(velec,rinvsq00);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
267             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm_mul_ps(vfeps,H);
270             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
271             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
272             vvdw6            = _mm_mul_ps(c6_00,VV);
273             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
274             fvdw6            = _mm_mul_ps(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Heps             = _mm_mul_ps(vfeps,H);
284             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
285             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
286             vvdw12           = _mm_mul_ps(c12_00,VV);
287             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
288             fvdw12           = _mm_mul_ps(c12_00,FF);
289             vvdw             = _mm_add_ps(vvdw12,vvdw6);
290             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm_add_ps(velecsum,velec);
294             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
295
296             fscal            = _mm_add_ps(felec,fvdw);
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_ps(fscal,dx00);
300             ty               = _mm_mul_ps(fscal,dy00);
301             tz               = _mm_mul_ps(fscal,dz00);
302
303             /* Update vectorial force */
304             fix0             = _mm_add_ps(fix0,tx);
305             fiy0             = _mm_add_ps(fiy0,ty);
306             fiz0             = _mm_add_ps(fiz0,tz);
307
308             fjx0             = _mm_add_ps(fjx0,tx);
309             fjy0             = _mm_add_ps(fjy0,ty);
310             fjz0             = _mm_add_ps(fjz0,tz);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _mm_mul_ps(iq1,jq0);
318
319             /* COULOMB ELECTROSTATICS */
320             velec            = _mm_mul_ps(qq10,rinv10);
321             felec            = _mm_mul_ps(velec,rinvsq10);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _mm_add_ps(velecsum,velec);
325
326             fscal            = felec;
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_ps(fscal,dx10);
330             ty               = _mm_mul_ps(fscal,dy10);
331             tz               = _mm_mul_ps(fscal,dz10);
332
333             /* Update vectorial force */
334             fix1             = _mm_add_ps(fix1,tx);
335             fiy1             = _mm_add_ps(fiy1,ty);
336             fiz1             = _mm_add_ps(fiz1,tz);
337
338             fjx0             = _mm_add_ps(fjx0,tx);
339             fjy0             = _mm_add_ps(fjy0,ty);
340             fjz0             = _mm_add_ps(fjz0,tz);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_ps(iq2,jq0);
348
349             /* COULOMB ELECTROSTATICS */
350             velec            = _mm_mul_ps(qq20,rinv20);
351             felec            = _mm_mul_ps(velec,rinvsq20);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm_add_ps(velecsum,velec);
355
356             fscal            = felec;
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_ps(fscal,dx20);
360             ty               = _mm_mul_ps(fscal,dy20);
361             tz               = _mm_mul_ps(fscal,dz20);
362
363             /* Update vectorial force */
364             fix2             = _mm_add_ps(fix2,tx);
365             fiy2             = _mm_add_ps(fiy2,ty);
366             fiz2             = _mm_add_ps(fiz2,tz);
367
368             fjx0             = _mm_add_ps(fjx0,tx);
369             fjy0             = _mm_add_ps(fjy0,ty);
370             fjz0             = _mm_add_ps(fjz0,tz);
371
372             fjptrA             = f+j_coord_offsetA;
373             fjptrB             = f+j_coord_offsetB;
374             fjptrC             = f+j_coord_offsetC;
375             fjptrD             = f+j_coord_offsetD;
376
377             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
378
379             /* Inner loop uses 119 flops */
380         }
381
382         if(jidx<j_index_end)
383         {
384
385             /* Get j neighbor index, and coordinate index */
386             jnrlistA         = jjnr[jidx];
387             jnrlistB         = jjnr[jidx+1];
388             jnrlistC         = jjnr[jidx+2];
389             jnrlistD         = jjnr[jidx+3];
390             /* Sign of each element will be negative for non-real atoms.
391              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
392              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
393              */
394             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
395             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
396             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
397             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
398             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
399             j_coord_offsetA  = DIM*jnrA;
400             j_coord_offsetB  = DIM*jnrB;
401             j_coord_offsetC  = DIM*jnrC;
402             j_coord_offsetD  = DIM*jnrD;
403
404             /* load j atom coordinates */
405             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
406                                               x+j_coord_offsetC,x+j_coord_offsetD,
407                                               &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _mm_sub_ps(ix0,jx0);
411             dy00             = _mm_sub_ps(iy0,jy0);
412             dz00             = _mm_sub_ps(iz0,jz0);
413             dx10             = _mm_sub_ps(ix1,jx0);
414             dy10             = _mm_sub_ps(iy1,jy0);
415             dz10             = _mm_sub_ps(iz1,jz0);
416             dx20             = _mm_sub_ps(ix2,jx0);
417             dy20             = _mm_sub_ps(iy2,jy0);
418             dz20             = _mm_sub_ps(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
422             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
423             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
424
425             rinv00           = gmx_mm_invsqrt_ps(rsq00);
426             rinv10           = gmx_mm_invsqrt_ps(rsq10);
427             rinv20           = gmx_mm_invsqrt_ps(rsq20);
428
429             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
430             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
431             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
435                                                               charge+jnrC+0,charge+jnrD+0);
436             vdwjidx0A        = 2*vdwtype[jnrA+0];
437             vdwjidx0B        = 2*vdwtype[jnrB+0];
438             vdwjidx0C        = 2*vdwtype[jnrC+0];
439             vdwjidx0D        = 2*vdwtype[jnrD+0];
440
441             fjx0             = _mm_setzero_ps();
442             fjy0             = _mm_setzero_ps();
443             fjz0             = _mm_setzero_ps();
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r00              = _mm_mul_ps(rsq00,rinv00);
450             r00              = _mm_andnot_ps(dummy_mask,r00);
451
452             /* Compute parameters for interactions between i and j atoms */
453             qq00             = _mm_mul_ps(iq0,jq0);
454             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
455                                          vdwparam+vdwioffset0+vdwjidx0B,
456                                          vdwparam+vdwioffset0+vdwjidx0C,
457                                          vdwparam+vdwioffset0+vdwjidx0D,
458                                          &c6_00,&c12_00);
459
460             /* Calculate table index by multiplying r with table scale and truncate to integer */
461             rt               = _mm_mul_ps(r00,vftabscale);
462             vfitab           = _mm_cvttps_epi32(rt);
463             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
464             vfitab           = _mm_slli_epi32(vfitab,3);
465
466             /* COULOMB ELECTROSTATICS */
467             velec            = _mm_mul_ps(qq00,rinv00);
468             felec            = _mm_mul_ps(velec,rinvsq00);
469
470             /* CUBIC SPLINE TABLE DISPERSION */
471             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
472             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
473             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
474             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
475             _MM_TRANSPOSE4_PS(Y,F,G,H);
476             Heps             = _mm_mul_ps(vfeps,H);
477             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
478             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
479             vvdw6            = _mm_mul_ps(c6_00,VV);
480             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
481             fvdw6            = _mm_mul_ps(c6_00,FF);
482
483             /* CUBIC SPLINE TABLE REPULSION */
484             vfitab           = _mm_add_epi32(vfitab,ifour);
485             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
486             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
487             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
488             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
489             _MM_TRANSPOSE4_PS(Y,F,G,H);
490             Heps             = _mm_mul_ps(vfeps,H);
491             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
492             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
493             vvdw12           = _mm_mul_ps(c12_00,VV);
494             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
495             fvdw12           = _mm_mul_ps(c12_00,FF);
496             vvdw             = _mm_add_ps(vvdw12,vvdw6);
497             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velec            = _mm_andnot_ps(dummy_mask,velec);
501             velecsum         = _mm_add_ps(velecsum,velec);
502             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
503             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
504
505             fscal            = _mm_add_ps(felec,fvdw);
506
507             fscal            = _mm_andnot_ps(dummy_mask,fscal);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_ps(fscal,dx00);
511             ty               = _mm_mul_ps(fscal,dy00);
512             tz               = _mm_mul_ps(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_ps(fix0,tx);
516             fiy0             = _mm_add_ps(fiy0,ty);
517             fiz0             = _mm_add_ps(fiz0,tz);
518
519             fjx0             = _mm_add_ps(fjx0,tx);
520             fjy0             = _mm_add_ps(fjy0,ty);
521             fjz0             = _mm_add_ps(fjz0,tz);
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             /* Compute parameters for interactions between i and j atoms */
528             qq10             = _mm_mul_ps(iq1,jq0);
529
530             /* COULOMB ELECTROSTATICS */
531             velec            = _mm_mul_ps(qq10,rinv10);
532             felec            = _mm_mul_ps(velec,rinvsq10);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_andnot_ps(dummy_mask,velec);
536             velecsum         = _mm_add_ps(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx10);
544             ty               = _mm_mul_ps(fscal,dy10);
545             tz               = _mm_mul_ps(fscal,dz10);
546
547             /* Update vectorial force */
548             fix1             = _mm_add_ps(fix1,tx);
549             fiy1             = _mm_add_ps(fiy1,ty);
550             fiz1             = _mm_add_ps(fiz1,tz);
551
552             fjx0             = _mm_add_ps(fjx0,tx);
553             fjy0             = _mm_add_ps(fjy0,ty);
554             fjz0             = _mm_add_ps(fjz0,tz);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq20             = _mm_mul_ps(iq2,jq0);
562
563             /* COULOMB ELECTROSTATICS */
564             velec            = _mm_mul_ps(qq20,rinv20);
565             felec            = _mm_mul_ps(velec,rinvsq20);
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm_andnot_ps(dummy_mask,velec);
569             velecsum         = _mm_add_ps(velecsum,velec);
570
571             fscal            = felec;
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_ps(fscal,dx20);
577             ty               = _mm_mul_ps(fscal,dy20);
578             tz               = _mm_mul_ps(fscal,dz20);
579
580             /* Update vectorial force */
581             fix2             = _mm_add_ps(fix2,tx);
582             fiy2             = _mm_add_ps(fiy2,ty);
583             fiz2             = _mm_add_ps(fiz2,tz);
584
585             fjx0             = _mm_add_ps(fjx0,tx);
586             fjy0             = _mm_add_ps(fjy0,ty);
587             fjz0             = _mm_add_ps(fjz0,tz);
588
589             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
590             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
591             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
592             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
593
594             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
595
596             /* Inner loop uses 120 flops */
597         }
598
599         /* End of innermost loop */
600
601         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
602                                               f+i_coord_offset,fshift+i_shift_offset);
603
604         ggid                        = gid[iidx];
605         /* Update potential energies */
606         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
607         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
608
609         /* Increment number of inner iterations */
610         inneriter                  += j_index_end - j_index_start;
611
612         /* Outer loop uses 20 flops */
613     }
614
615     /* Increment number of outer iterations */
616     outeriter        += nri;
617
618     /* Update outer/inner flops */
619
620     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
621 }
622 /*
623  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
624  * Electrostatics interaction: Coulomb
625  * VdW interaction:            CubicSplineTable
626  * Geometry:                   Water3-Particle
627  * Calculate force/pot:        Force
628  */
629 void
630 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
631                     (t_nblist                    * gmx_restrict       nlist,
632                      rvec                        * gmx_restrict          xx,
633                      rvec                        * gmx_restrict          ff,
634                      t_forcerec                  * gmx_restrict          fr,
635                      t_mdatoms                   * gmx_restrict     mdatoms,
636                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
637                      t_nrnb                      * gmx_restrict        nrnb)
638 {
639     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
640      * just 0 for non-waters.
641      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
642      * jnr indices corresponding to data put in the four positions in the SIMD register.
643      */
644     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
645     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
646     int              jnrA,jnrB,jnrC,jnrD;
647     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
648     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
649     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
650     real             rcutoff_scalar;
651     real             *shiftvec,*fshift,*x,*f;
652     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
653     real             scratch[4*DIM];
654     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
655     int              vdwioffset0;
656     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
657     int              vdwioffset1;
658     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
659     int              vdwioffset2;
660     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
661     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
662     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
663     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
664     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
665     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
666     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
667     real             *charge;
668     int              nvdwtype;
669     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
670     int              *vdwtype;
671     real             *vdwparam;
672     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
673     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
674     __m128i          vfitab;
675     __m128i          ifour       = _mm_set1_epi32(4);
676     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
677     real             *vftab;
678     __m128           dummy_mask,cutoff_mask;
679     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
680     __m128           one     = _mm_set1_ps(1.0);
681     __m128           two     = _mm_set1_ps(2.0);
682     x                = xx[0];
683     f                = ff[0];
684
685     nri              = nlist->nri;
686     iinr             = nlist->iinr;
687     jindex           = nlist->jindex;
688     jjnr             = nlist->jjnr;
689     shiftidx         = nlist->shift;
690     gid              = nlist->gid;
691     shiftvec         = fr->shift_vec[0];
692     fshift           = fr->fshift[0];
693     facel            = _mm_set1_ps(fr->epsfac);
694     charge           = mdatoms->chargeA;
695     nvdwtype         = fr->ntype;
696     vdwparam         = fr->nbfp;
697     vdwtype          = mdatoms->typeA;
698
699     vftab            = kernel_data->table_vdw->data;
700     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
701
702     /* Setup water-specific parameters */
703     inr              = nlist->iinr[0];
704     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
705     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
706     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
707     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
708
709     /* Avoid stupid compiler warnings */
710     jnrA = jnrB = jnrC = jnrD = 0;
711     j_coord_offsetA = 0;
712     j_coord_offsetB = 0;
713     j_coord_offsetC = 0;
714     j_coord_offsetD = 0;
715
716     outeriter        = 0;
717     inneriter        = 0;
718
719     for(iidx=0;iidx<4*DIM;iidx++)
720     {
721         scratch[iidx] = 0.0;
722     }
723
724     /* Start outer loop over neighborlists */
725     for(iidx=0; iidx<nri; iidx++)
726     {
727         /* Load shift vector for this list */
728         i_shift_offset   = DIM*shiftidx[iidx];
729
730         /* Load limits for loop over neighbors */
731         j_index_start    = jindex[iidx];
732         j_index_end      = jindex[iidx+1];
733
734         /* Get outer coordinate index */
735         inr              = iinr[iidx];
736         i_coord_offset   = DIM*inr;
737
738         /* Load i particle coords and add shift vector */
739         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
740                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
741
742         fix0             = _mm_setzero_ps();
743         fiy0             = _mm_setzero_ps();
744         fiz0             = _mm_setzero_ps();
745         fix1             = _mm_setzero_ps();
746         fiy1             = _mm_setzero_ps();
747         fiz1             = _mm_setzero_ps();
748         fix2             = _mm_setzero_ps();
749         fiy2             = _mm_setzero_ps();
750         fiz2             = _mm_setzero_ps();
751
752         /* Start inner kernel loop */
753         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
754         {
755
756             /* Get j neighbor index, and coordinate index */
757             jnrA             = jjnr[jidx];
758             jnrB             = jjnr[jidx+1];
759             jnrC             = jjnr[jidx+2];
760             jnrD             = jjnr[jidx+3];
761             j_coord_offsetA  = DIM*jnrA;
762             j_coord_offsetB  = DIM*jnrB;
763             j_coord_offsetC  = DIM*jnrC;
764             j_coord_offsetD  = DIM*jnrD;
765
766             /* load j atom coordinates */
767             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
768                                               x+j_coord_offsetC,x+j_coord_offsetD,
769                                               &jx0,&jy0,&jz0);
770
771             /* Calculate displacement vector */
772             dx00             = _mm_sub_ps(ix0,jx0);
773             dy00             = _mm_sub_ps(iy0,jy0);
774             dz00             = _mm_sub_ps(iz0,jz0);
775             dx10             = _mm_sub_ps(ix1,jx0);
776             dy10             = _mm_sub_ps(iy1,jy0);
777             dz10             = _mm_sub_ps(iz1,jz0);
778             dx20             = _mm_sub_ps(ix2,jx0);
779             dy20             = _mm_sub_ps(iy2,jy0);
780             dz20             = _mm_sub_ps(iz2,jz0);
781
782             /* Calculate squared distance and things based on it */
783             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
784             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
785             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
786
787             rinv00           = gmx_mm_invsqrt_ps(rsq00);
788             rinv10           = gmx_mm_invsqrt_ps(rsq10);
789             rinv20           = gmx_mm_invsqrt_ps(rsq20);
790
791             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
792             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
793             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
794
795             /* Load parameters for j particles */
796             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
797                                                               charge+jnrC+0,charge+jnrD+0);
798             vdwjidx0A        = 2*vdwtype[jnrA+0];
799             vdwjidx0B        = 2*vdwtype[jnrB+0];
800             vdwjidx0C        = 2*vdwtype[jnrC+0];
801             vdwjidx0D        = 2*vdwtype[jnrD+0];
802
803             fjx0             = _mm_setzero_ps();
804             fjy0             = _mm_setzero_ps();
805             fjz0             = _mm_setzero_ps();
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             r00              = _mm_mul_ps(rsq00,rinv00);
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq00             = _mm_mul_ps(iq0,jq0);
815             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
816                                          vdwparam+vdwioffset0+vdwjidx0B,
817                                          vdwparam+vdwioffset0+vdwjidx0C,
818                                          vdwparam+vdwioffset0+vdwjidx0D,
819                                          &c6_00,&c12_00);
820
821             /* Calculate table index by multiplying r with table scale and truncate to integer */
822             rt               = _mm_mul_ps(r00,vftabscale);
823             vfitab           = _mm_cvttps_epi32(rt);
824             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
825             vfitab           = _mm_slli_epi32(vfitab,3);
826
827             /* COULOMB ELECTROSTATICS */
828             velec            = _mm_mul_ps(qq00,rinv00);
829             felec            = _mm_mul_ps(velec,rinvsq00);
830
831             /* CUBIC SPLINE TABLE DISPERSION */
832             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
833             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
834             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
835             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
836             _MM_TRANSPOSE4_PS(Y,F,G,H);
837             Heps             = _mm_mul_ps(vfeps,H);
838             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
839             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
840             fvdw6            = _mm_mul_ps(c6_00,FF);
841
842             /* CUBIC SPLINE TABLE REPULSION */
843             vfitab           = _mm_add_epi32(vfitab,ifour);
844             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
845             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
846             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
847             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
848             _MM_TRANSPOSE4_PS(Y,F,G,H);
849             Heps             = _mm_mul_ps(vfeps,H);
850             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
851             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
852             fvdw12           = _mm_mul_ps(c12_00,FF);
853             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
854
855             fscal            = _mm_add_ps(felec,fvdw);
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm_mul_ps(fscal,dx00);
859             ty               = _mm_mul_ps(fscal,dy00);
860             tz               = _mm_mul_ps(fscal,dz00);
861
862             /* Update vectorial force */
863             fix0             = _mm_add_ps(fix0,tx);
864             fiy0             = _mm_add_ps(fiy0,ty);
865             fiz0             = _mm_add_ps(fiz0,tz);
866
867             fjx0             = _mm_add_ps(fjx0,tx);
868             fjy0             = _mm_add_ps(fjy0,ty);
869             fjz0             = _mm_add_ps(fjz0,tz);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq10             = _mm_mul_ps(iq1,jq0);
877
878             /* COULOMB ELECTROSTATICS */
879             velec            = _mm_mul_ps(qq10,rinv10);
880             felec            = _mm_mul_ps(velec,rinvsq10);
881
882             fscal            = felec;
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_ps(fscal,dx10);
886             ty               = _mm_mul_ps(fscal,dy10);
887             tz               = _mm_mul_ps(fscal,dz10);
888
889             /* Update vectorial force */
890             fix1             = _mm_add_ps(fix1,tx);
891             fiy1             = _mm_add_ps(fiy1,ty);
892             fiz1             = _mm_add_ps(fiz1,tz);
893
894             fjx0             = _mm_add_ps(fjx0,tx);
895             fjy0             = _mm_add_ps(fjy0,ty);
896             fjz0             = _mm_add_ps(fjz0,tz);
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq20             = _mm_mul_ps(iq2,jq0);
904
905             /* COULOMB ELECTROSTATICS */
906             velec            = _mm_mul_ps(qq20,rinv20);
907             felec            = _mm_mul_ps(velec,rinvsq20);
908
909             fscal            = felec;
910
911             /* Calculate temporary vectorial force */
912             tx               = _mm_mul_ps(fscal,dx20);
913             ty               = _mm_mul_ps(fscal,dy20);
914             tz               = _mm_mul_ps(fscal,dz20);
915
916             /* Update vectorial force */
917             fix2             = _mm_add_ps(fix2,tx);
918             fiy2             = _mm_add_ps(fiy2,ty);
919             fiz2             = _mm_add_ps(fiz2,tz);
920
921             fjx0             = _mm_add_ps(fjx0,tx);
922             fjy0             = _mm_add_ps(fjy0,ty);
923             fjz0             = _mm_add_ps(fjz0,tz);
924
925             fjptrA             = f+j_coord_offsetA;
926             fjptrB             = f+j_coord_offsetB;
927             fjptrC             = f+j_coord_offsetC;
928             fjptrD             = f+j_coord_offsetD;
929
930             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
931
932             /* Inner loop uses 108 flops */
933         }
934
935         if(jidx<j_index_end)
936         {
937
938             /* Get j neighbor index, and coordinate index */
939             jnrlistA         = jjnr[jidx];
940             jnrlistB         = jjnr[jidx+1];
941             jnrlistC         = jjnr[jidx+2];
942             jnrlistD         = jjnr[jidx+3];
943             /* Sign of each element will be negative for non-real atoms.
944              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
945              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
946              */
947             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
948             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
949             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
950             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
951             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
952             j_coord_offsetA  = DIM*jnrA;
953             j_coord_offsetB  = DIM*jnrB;
954             j_coord_offsetC  = DIM*jnrC;
955             j_coord_offsetD  = DIM*jnrD;
956
957             /* load j atom coordinates */
958             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
959                                               x+j_coord_offsetC,x+j_coord_offsetD,
960                                               &jx0,&jy0,&jz0);
961
962             /* Calculate displacement vector */
963             dx00             = _mm_sub_ps(ix0,jx0);
964             dy00             = _mm_sub_ps(iy0,jy0);
965             dz00             = _mm_sub_ps(iz0,jz0);
966             dx10             = _mm_sub_ps(ix1,jx0);
967             dy10             = _mm_sub_ps(iy1,jy0);
968             dz10             = _mm_sub_ps(iz1,jz0);
969             dx20             = _mm_sub_ps(ix2,jx0);
970             dy20             = _mm_sub_ps(iy2,jy0);
971             dz20             = _mm_sub_ps(iz2,jz0);
972
973             /* Calculate squared distance and things based on it */
974             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
975             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
976             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
977
978             rinv00           = gmx_mm_invsqrt_ps(rsq00);
979             rinv10           = gmx_mm_invsqrt_ps(rsq10);
980             rinv20           = gmx_mm_invsqrt_ps(rsq20);
981
982             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
983             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
984             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
988                                                               charge+jnrC+0,charge+jnrD+0);
989             vdwjidx0A        = 2*vdwtype[jnrA+0];
990             vdwjidx0B        = 2*vdwtype[jnrB+0];
991             vdwjidx0C        = 2*vdwtype[jnrC+0];
992             vdwjidx0D        = 2*vdwtype[jnrD+0];
993
994             fjx0             = _mm_setzero_ps();
995             fjy0             = _mm_setzero_ps();
996             fjz0             = _mm_setzero_ps();
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             r00              = _mm_mul_ps(rsq00,rinv00);
1003             r00              = _mm_andnot_ps(dummy_mask,r00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm_mul_ps(iq0,jq0);
1007             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1008                                          vdwparam+vdwioffset0+vdwjidx0B,
1009                                          vdwparam+vdwioffset0+vdwjidx0C,
1010                                          vdwparam+vdwioffset0+vdwjidx0D,
1011                                          &c6_00,&c12_00);
1012
1013             /* Calculate table index by multiplying r with table scale and truncate to integer */
1014             rt               = _mm_mul_ps(r00,vftabscale);
1015             vfitab           = _mm_cvttps_epi32(rt);
1016             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1017             vfitab           = _mm_slli_epi32(vfitab,3);
1018
1019             /* COULOMB ELECTROSTATICS */
1020             velec            = _mm_mul_ps(qq00,rinv00);
1021             felec            = _mm_mul_ps(velec,rinvsq00);
1022
1023             /* CUBIC SPLINE TABLE DISPERSION */
1024             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1025             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1026             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1027             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1028             _MM_TRANSPOSE4_PS(Y,F,G,H);
1029             Heps             = _mm_mul_ps(vfeps,H);
1030             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1031             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1032             fvdw6            = _mm_mul_ps(c6_00,FF);
1033
1034             /* CUBIC SPLINE TABLE REPULSION */
1035             vfitab           = _mm_add_epi32(vfitab,ifour);
1036             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1037             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1038             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1039             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1040             _MM_TRANSPOSE4_PS(Y,F,G,H);
1041             Heps             = _mm_mul_ps(vfeps,H);
1042             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1043             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1044             fvdw12           = _mm_mul_ps(c12_00,FF);
1045             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1046
1047             fscal            = _mm_add_ps(felec,fvdw);
1048
1049             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm_mul_ps(fscal,dx00);
1053             ty               = _mm_mul_ps(fscal,dy00);
1054             tz               = _mm_mul_ps(fscal,dz00);
1055
1056             /* Update vectorial force */
1057             fix0             = _mm_add_ps(fix0,tx);
1058             fiy0             = _mm_add_ps(fiy0,ty);
1059             fiz0             = _mm_add_ps(fiz0,tz);
1060
1061             fjx0             = _mm_add_ps(fjx0,tx);
1062             fjy0             = _mm_add_ps(fjy0,ty);
1063             fjz0             = _mm_add_ps(fjz0,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq10             = _mm_mul_ps(iq1,jq0);
1071
1072             /* COULOMB ELECTROSTATICS */
1073             velec            = _mm_mul_ps(qq10,rinv10);
1074             felec            = _mm_mul_ps(velec,rinvsq10);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm_mul_ps(fscal,dx10);
1082             ty               = _mm_mul_ps(fscal,dy10);
1083             tz               = _mm_mul_ps(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm_add_ps(fix1,tx);
1087             fiy1             = _mm_add_ps(fiy1,ty);
1088             fiz1             = _mm_add_ps(fiz1,tz);
1089
1090             fjx0             = _mm_add_ps(fjx0,tx);
1091             fjy0             = _mm_add_ps(fjy0,ty);
1092             fjz0             = _mm_add_ps(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm_mul_ps(iq2,jq0);
1100
1101             /* COULOMB ELECTROSTATICS */
1102             velec            = _mm_mul_ps(qq20,rinv20);
1103             felec            = _mm_mul_ps(velec,rinvsq20);
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_ps(fscal,dx20);
1111             ty               = _mm_mul_ps(fscal,dy20);
1112             tz               = _mm_mul_ps(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm_add_ps(fix2,tx);
1116             fiy2             = _mm_add_ps(fiy2,ty);
1117             fiz2             = _mm_add_ps(fiz2,tz);
1118
1119             fjx0             = _mm_add_ps(fjx0,tx);
1120             fjy0             = _mm_add_ps(fjy0,ty);
1121             fjz0             = _mm_add_ps(fjz0,tz);
1122
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 109 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1136                                               f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 18 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1150 }