Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159         fix1             = _mm_setzero_ps();
160         fiy1             = _mm_setzero_ps();
161         fiz1             = _mm_setzero_ps();
162         fix2             = _mm_setzero_ps();
163         fiy2             = _mm_setzero_ps();
164         fiz2             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206             rinv10           = gmx_mm_invsqrt_ps(rsq10);
207             rinv20           = gmx_mm_invsqrt_ps(rsq20);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
211             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             fjx0             = _mm_setzero_ps();
222             fjy0             = _mm_setzero_ps();
223             fjz0             = _mm_setzero_ps();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* Calculate table index by multiplying r with table scale and truncate to integer */
240             rt               = _mm_mul_ps(r00,vftabscale);
241             vfitab           = _mm_cvttps_epi32(rt);
242             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* COULOMB ELECTROSTATICS */
246             velec            = _mm_mul_ps(qq00,rinv00);
247             felec            = _mm_mul_ps(velec,rinvsq00);
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
252             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
253             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
254             _MM_TRANSPOSE4_PS(Y,F,G,H);
255             Heps             = _mm_mul_ps(vfeps,H);
256             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
257             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
258             vvdw6            = _mm_mul_ps(c6_00,VV);
259             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
260             fvdw6            = _mm_mul_ps(c6_00,FF);
261
262             /* CUBIC SPLINE TABLE REPULSION */
263             vfitab           = _mm_add_epi32(vfitab,ifour);
264             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
267             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm_mul_ps(vfeps,H);
270             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
271             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
272             vvdw12           = _mm_mul_ps(c12_00,VV);
273             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
274             fvdw12           = _mm_mul_ps(c12_00,FF);
275             vvdw             = _mm_add_ps(vvdw12,vvdw6);
276             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_ps(velecsum,velec);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm_add_ps(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_ps(fscal,dx00);
286             ty               = _mm_mul_ps(fscal,dy00);
287             tz               = _mm_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_ps(fix0,tx);
291             fiy0             = _mm_add_ps(fiy0,ty);
292             fiz0             = _mm_add_ps(fiz0,tz);
293
294             fjx0             = _mm_add_ps(fjx0,tx);
295             fjy0             = _mm_add_ps(fjy0,ty);
296             fjz0             = _mm_add_ps(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm_mul_ps(iq1,jq0);
304
305             /* COULOMB ELECTROSTATICS */
306             velec            = _mm_mul_ps(qq10,rinv10);
307             felec            = _mm_mul_ps(velec,rinvsq10);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_ps(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_ps(fscal,dx10);
316             ty               = _mm_mul_ps(fscal,dy10);
317             tz               = _mm_mul_ps(fscal,dz10);
318
319             /* Update vectorial force */
320             fix1             = _mm_add_ps(fix1,tx);
321             fiy1             = _mm_add_ps(fiy1,ty);
322             fiz1             = _mm_add_ps(fiz1,tz);
323
324             fjx0             = _mm_add_ps(fjx0,tx);
325             fjy0             = _mm_add_ps(fjy0,ty);
326             fjz0             = _mm_add_ps(fjz0,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_ps(iq2,jq0);
334
335             /* COULOMB ELECTROSTATICS */
336             velec            = _mm_mul_ps(qq20,rinv20);
337             felec            = _mm_mul_ps(velec,rinvsq20);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx20);
346             ty               = _mm_mul_ps(fscal,dy20);
347             tz               = _mm_mul_ps(fscal,dz20);
348
349             /* Update vectorial force */
350             fix2             = _mm_add_ps(fix2,tx);
351             fiy2             = _mm_add_ps(fiy2,ty);
352             fiz2             = _mm_add_ps(fiz2,tz);
353
354             fjx0             = _mm_add_ps(fjx0,tx);
355             fjy0             = _mm_add_ps(fjy0,ty);
356             fjz0             = _mm_add_ps(fjz0,tz);
357
358             fjptrA             = f+j_coord_offsetA;
359             fjptrB             = f+j_coord_offsetB;
360             fjptrC             = f+j_coord_offsetC;
361             fjptrD             = f+j_coord_offsetD;
362
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
364
365             /* Inner loop uses 119 flops */
366         }
367
368         if(jidx<j_index_end)
369         {
370
371             /* Get j neighbor index, and coordinate index */
372             jnrlistA         = jjnr[jidx];
373             jnrlistB         = jjnr[jidx+1];
374             jnrlistC         = jjnr[jidx+2];
375             jnrlistD         = jjnr[jidx+3];
376             /* Sign of each element will be negative for non-real atoms.
377              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
378              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
379              */
380             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
381             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
382             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
383             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
384             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
385             j_coord_offsetA  = DIM*jnrA;
386             j_coord_offsetB  = DIM*jnrB;
387             j_coord_offsetC  = DIM*jnrC;
388             j_coord_offsetD  = DIM*jnrD;
389
390             /* load j atom coordinates */
391             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
392                                               x+j_coord_offsetC,x+j_coord_offsetD,
393                                               &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm_sub_ps(ix0,jx0);
397             dy00             = _mm_sub_ps(iy0,jy0);
398             dz00             = _mm_sub_ps(iz0,jz0);
399             dx10             = _mm_sub_ps(ix1,jx0);
400             dy10             = _mm_sub_ps(iy1,jy0);
401             dz10             = _mm_sub_ps(iz1,jz0);
402             dx20             = _mm_sub_ps(ix2,jx0);
403             dy20             = _mm_sub_ps(iy2,jy0);
404             dz20             = _mm_sub_ps(iz2,jz0);
405
406             /* Calculate squared distance and things based on it */
407             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
408             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
410
411             rinv00           = gmx_mm_invsqrt_ps(rsq00);
412             rinv10           = gmx_mm_invsqrt_ps(rsq10);
413             rinv20           = gmx_mm_invsqrt_ps(rsq20);
414
415             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
416             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
417             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
418
419             /* Load parameters for j particles */
420             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
421                                                               charge+jnrC+0,charge+jnrD+0);
422             vdwjidx0A        = 2*vdwtype[jnrA+0];
423             vdwjidx0B        = 2*vdwtype[jnrB+0];
424             vdwjidx0C        = 2*vdwtype[jnrC+0];
425             vdwjidx0D        = 2*vdwtype[jnrD+0];
426
427             fjx0             = _mm_setzero_ps();
428             fjy0             = _mm_setzero_ps();
429             fjz0             = _mm_setzero_ps();
430
431             /**************************
432              * CALCULATE INTERACTIONS *
433              **************************/
434
435             r00              = _mm_mul_ps(rsq00,rinv00);
436             r00              = _mm_andnot_ps(dummy_mask,r00);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq00             = _mm_mul_ps(iq0,jq0);
440             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
441                                          vdwparam+vdwioffset0+vdwjidx0B,
442                                          vdwparam+vdwioffset0+vdwjidx0C,
443                                          vdwparam+vdwioffset0+vdwjidx0D,
444                                          &c6_00,&c12_00);
445
446             /* Calculate table index by multiplying r with table scale and truncate to integer */
447             rt               = _mm_mul_ps(r00,vftabscale);
448             vfitab           = _mm_cvttps_epi32(rt);
449             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
450             vfitab           = _mm_slli_epi32(vfitab,3);
451
452             /* COULOMB ELECTROSTATICS */
453             velec            = _mm_mul_ps(qq00,rinv00);
454             felec            = _mm_mul_ps(velec,rinvsq00);
455
456             /* CUBIC SPLINE TABLE DISPERSION */
457             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
458             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
459             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
460             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
461             _MM_TRANSPOSE4_PS(Y,F,G,H);
462             Heps             = _mm_mul_ps(vfeps,H);
463             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
464             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
465             vvdw6            = _mm_mul_ps(c6_00,VV);
466             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
467             fvdw6            = _mm_mul_ps(c6_00,FF);
468
469             /* CUBIC SPLINE TABLE REPULSION */
470             vfitab           = _mm_add_epi32(vfitab,ifour);
471             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
472             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
473             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
474             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
475             _MM_TRANSPOSE4_PS(Y,F,G,H);
476             Heps             = _mm_mul_ps(vfeps,H);
477             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
478             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
479             vvdw12           = _mm_mul_ps(c12_00,VV);
480             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
481             fvdw12           = _mm_mul_ps(c12_00,FF);
482             vvdw             = _mm_add_ps(vvdw12,vvdw6);
483             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velec            = _mm_andnot_ps(dummy_mask,velec);
487             velecsum         = _mm_add_ps(velecsum,velec);
488             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
489             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
490
491             fscal            = _mm_add_ps(felec,fvdw);
492
493             fscal            = _mm_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm_mul_ps(fscal,dx00);
497             ty               = _mm_mul_ps(fscal,dy00);
498             tz               = _mm_mul_ps(fscal,dz00);
499
500             /* Update vectorial force */
501             fix0             = _mm_add_ps(fix0,tx);
502             fiy0             = _mm_add_ps(fiy0,ty);
503             fiz0             = _mm_add_ps(fiz0,tz);
504
505             fjx0             = _mm_add_ps(fjx0,tx);
506             fjy0             = _mm_add_ps(fjy0,ty);
507             fjz0             = _mm_add_ps(fjz0,tz);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq10             = _mm_mul_ps(iq1,jq0);
515
516             /* COULOMB ELECTROSTATICS */
517             velec            = _mm_mul_ps(qq10,rinv10);
518             felec            = _mm_mul_ps(velec,rinvsq10);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_andnot_ps(dummy_mask,velec);
522             velecsum         = _mm_add_ps(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_ps(fscal,dx10);
530             ty               = _mm_mul_ps(fscal,dy10);
531             tz               = _mm_mul_ps(fscal,dz10);
532
533             /* Update vectorial force */
534             fix1             = _mm_add_ps(fix1,tx);
535             fiy1             = _mm_add_ps(fiy1,ty);
536             fiz1             = _mm_add_ps(fiz1,tz);
537
538             fjx0             = _mm_add_ps(fjx0,tx);
539             fjy0             = _mm_add_ps(fjy0,ty);
540             fjz0             = _mm_add_ps(fjz0,tz);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq20             = _mm_mul_ps(iq2,jq0);
548
549             /* COULOMB ELECTROSTATICS */
550             velec            = _mm_mul_ps(qq20,rinv20);
551             felec            = _mm_mul_ps(velec,rinvsq20);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx20);
563             ty               = _mm_mul_ps(fscal,dy20);
564             tz               = _mm_mul_ps(fscal,dz20);
565
566             /* Update vectorial force */
567             fix2             = _mm_add_ps(fix2,tx);
568             fiy2             = _mm_add_ps(fiy2,ty);
569             fiz2             = _mm_add_ps(fiz2,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574
575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
579
580             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
581
582             /* Inner loop uses 120 flops */
583         }
584
585         /* End of innermost loop */
586
587         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
588                                               f+i_coord_offset,fshift+i_shift_offset);
589
590         ggid                        = gid[iidx];
591         /* Update potential energies */
592         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
593         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
594
595         /* Increment number of inner iterations */
596         inneriter                  += j_index_end - j_index_start;
597
598         /* Outer loop uses 20 flops */
599     }
600
601     /* Increment number of outer iterations */
602     outeriter        += nri;
603
604     /* Update outer/inner flops */
605
606     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
607 }
608 /*
609  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
610  * Electrostatics interaction: Coulomb
611  * VdW interaction:            CubicSplineTable
612  * Geometry:                   Water3-Particle
613  * Calculate force/pot:        Force
614  */
615 void
616 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
617                     (t_nblist * gmx_restrict                nlist,
618                      rvec * gmx_restrict                    xx,
619                      rvec * gmx_restrict                    ff,
620                      t_forcerec * gmx_restrict              fr,
621                      t_mdatoms * gmx_restrict               mdatoms,
622                      nb_kernel_data_t * gmx_restrict        kernel_data,
623                      t_nrnb * gmx_restrict                  nrnb)
624 {
625     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
626      * just 0 for non-waters.
627      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
628      * jnr indices corresponding to data put in the four positions in the SIMD register.
629      */
630     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
631     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
632     int              jnrA,jnrB,jnrC,jnrD;
633     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
634     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
635     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
636     real             rcutoff_scalar;
637     real             *shiftvec,*fshift,*x,*f;
638     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
639     real             scratch[4*DIM];
640     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
641     int              vdwioffset0;
642     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643     int              vdwioffset1;
644     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
648     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
650     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
651     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
652     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
653     real             *charge;
654     int              nvdwtype;
655     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
656     int              *vdwtype;
657     real             *vdwparam;
658     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
659     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
660     __m128i          vfitab;
661     __m128i          ifour       = _mm_set1_epi32(4);
662     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
663     real             *vftab;
664     __m128           dummy_mask,cutoff_mask;
665     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
666     __m128           one     = _mm_set1_ps(1.0);
667     __m128           two     = _mm_set1_ps(2.0);
668     x                = xx[0];
669     f                = ff[0];
670
671     nri              = nlist->nri;
672     iinr             = nlist->iinr;
673     jindex           = nlist->jindex;
674     jjnr             = nlist->jjnr;
675     shiftidx         = nlist->shift;
676     gid              = nlist->gid;
677     shiftvec         = fr->shift_vec[0];
678     fshift           = fr->fshift[0];
679     facel            = _mm_set1_ps(fr->epsfac);
680     charge           = mdatoms->chargeA;
681     nvdwtype         = fr->ntype;
682     vdwparam         = fr->nbfp;
683     vdwtype          = mdatoms->typeA;
684
685     vftab            = kernel_data->table_vdw->data;
686     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
687
688     /* Setup water-specific parameters */
689     inr              = nlist->iinr[0];
690     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
691     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
692     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
693     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
694
695     /* Avoid stupid compiler warnings */
696     jnrA = jnrB = jnrC = jnrD = 0;
697     j_coord_offsetA = 0;
698     j_coord_offsetB = 0;
699     j_coord_offsetC = 0;
700     j_coord_offsetD = 0;
701
702     outeriter        = 0;
703     inneriter        = 0;
704
705     for(iidx=0;iidx<4*DIM;iidx++)
706     {
707         scratch[iidx] = 0.0;
708     }
709
710     /* Start outer loop over neighborlists */
711     for(iidx=0; iidx<nri; iidx++)
712     {
713         /* Load shift vector for this list */
714         i_shift_offset   = DIM*shiftidx[iidx];
715
716         /* Load limits for loop over neighbors */
717         j_index_start    = jindex[iidx];
718         j_index_end      = jindex[iidx+1];
719
720         /* Get outer coordinate index */
721         inr              = iinr[iidx];
722         i_coord_offset   = DIM*inr;
723
724         /* Load i particle coords and add shift vector */
725         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
726                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
727
728         fix0             = _mm_setzero_ps();
729         fiy0             = _mm_setzero_ps();
730         fiz0             = _mm_setzero_ps();
731         fix1             = _mm_setzero_ps();
732         fiy1             = _mm_setzero_ps();
733         fiz1             = _mm_setzero_ps();
734         fix2             = _mm_setzero_ps();
735         fiy2             = _mm_setzero_ps();
736         fiz2             = _mm_setzero_ps();
737
738         /* Start inner kernel loop */
739         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
740         {
741
742             /* Get j neighbor index, and coordinate index */
743             jnrA             = jjnr[jidx];
744             jnrB             = jjnr[jidx+1];
745             jnrC             = jjnr[jidx+2];
746             jnrD             = jjnr[jidx+3];
747             j_coord_offsetA  = DIM*jnrA;
748             j_coord_offsetB  = DIM*jnrB;
749             j_coord_offsetC  = DIM*jnrC;
750             j_coord_offsetD  = DIM*jnrD;
751
752             /* load j atom coordinates */
753             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
754                                               x+j_coord_offsetC,x+j_coord_offsetD,
755                                               &jx0,&jy0,&jz0);
756
757             /* Calculate displacement vector */
758             dx00             = _mm_sub_ps(ix0,jx0);
759             dy00             = _mm_sub_ps(iy0,jy0);
760             dz00             = _mm_sub_ps(iz0,jz0);
761             dx10             = _mm_sub_ps(ix1,jx0);
762             dy10             = _mm_sub_ps(iy1,jy0);
763             dz10             = _mm_sub_ps(iz1,jz0);
764             dx20             = _mm_sub_ps(ix2,jx0);
765             dy20             = _mm_sub_ps(iy2,jy0);
766             dz20             = _mm_sub_ps(iz2,jz0);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
770             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
771             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
772
773             rinv00           = gmx_mm_invsqrt_ps(rsq00);
774             rinv10           = gmx_mm_invsqrt_ps(rsq10);
775             rinv20           = gmx_mm_invsqrt_ps(rsq20);
776
777             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
778             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
779             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
780
781             /* Load parameters for j particles */
782             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
783                                                               charge+jnrC+0,charge+jnrD+0);
784             vdwjidx0A        = 2*vdwtype[jnrA+0];
785             vdwjidx0B        = 2*vdwtype[jnrB+0];
786             vdwjidx0C        = 2*vdwtype[jnrC+0];
787             vdwjidx0D        = 2*vdwtype[jnrD+0];
788
789             fjx0             = _mm_setzero_ps();
790             fjy0             = _mm_setzero_ps();
791             fjz0             = _mm_setzero_ps();
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             r00              = _mm_mul_ps(rsq00,rinv00);
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq00             = _mm_mul_ps(iq0,jq0);
801             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
802                                          vdwparam+vdwioffset0+vdwjidx0B,
803                                          vdwparam+vdwioffset0+vdwjidx0C,
804                                          vdwparam+vdwioffset0+vdwjidx0D,
805                                          &c6_00,&c12_00);
806
807             /* Calculate table index by multiplying r with table scale and truncate to integer */
808             rt               = _mm_mul_ps(r00,vftabscale);
809             vfitab           = _mm_cvttps_epi32(rt);
810             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
811             vfitab           = _mm_slli_epi32(vfitab,3);
812
813             /* COULOMB ELECTROSTATICS */
814             velec            = _mm_mul_ps(qq00,rinv00);
815             felec            = _mm_mul_ps(velec,rinvsq00);
816
817             /* CUBIC SPLINE TABLE DISPERSION */
818             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
819             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
820             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
821             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
822             _MM_TRANSPOSE4_PS(Y,F,G,H);
823             Heps             = _mm_mul_ps(vfeps,H);
824             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
825             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
826             fvdw6            = _mm_mul_ps(c6_00,FF);
827
828             /* CUBIC SPLINE TABLE REPULSION */
829             vfitab           = _mm_add_epi32(vfitab,ifour);
830             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
831             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
832             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
833             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
834             _MM_TRANSPOSE4_PS(Y,F,G,H);
835             Heps             = _mm_mul_ps(vfeps,H);
836             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
837             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
838             fvdw12           = _mm_mul_ps(c12_00,FF);
839             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
840
841             fscal            = _mm_add_ps(felec,fvdw);
842
843             /* Calculate temporary vectorial force */
844             tx               = _mm_mul_ps(fscal,dx00);
845             ty               = _mm_mul_ps(fscal,dy00);
846             tz               = _mm_mul_ps(fscal,dz00);
847
848             /* Update vectorial force */
849             fix0             = _mm_add_ps(fix0,tx);
850             fiy0             = _mm_add_ps(fiy0,ty);
851             fiz0             = _mm_add_ps(fiz0,tz);
852
853             fjx0             = _mm_add_ps(fjx0,tx);
854             fjy0             = _mm_add_ps(fjy0,ty);
855             fjz0             = _mm_add_ps(fjz0,tz);
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq10             = _mm_mul_ps(iq1,jq0);
863
864             /* COULOMB ELECTROSTATICS */
865             velec            = _mm_mul_ps(qq10,rinv10);
866             felec            = _mm_mul_ps(velec,rinvsq10);
867
868             fscal            = felec;
869
870             /* Calculate temporary vectorial force */
871             tx               = _mm_mul_ps(fscal,dx10);
872             ty               = _mm_mul_ps(fscal,dy10);
873             tz               = _mm_mul_ps(fscal,dz10);
874
875             /* Update vectorial force */
876             fix1             = _mm_add_ps(fix1,tx);
877             fiy1             = _mm_add_ps(fiy1,ty);
878             fiz1             = _mm_add_ps(fiz1,tz);
879
880             fjx0             = _mm_add_ps(fjx0,tx);
881             fjy0             = _mm_add_ps(fjy0,ty);
882             fjz0             = _mm_add_ps(fjz0,tz);
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             /* Compute parameters for interactions between i and j atoms */
889             qq20             = _mm_mul_ps(iq2,jq0);
890
891             /* COULOMB ELECTROSTATICS */
892             velec            = _mm_mul_ps(qq20,rinv20);
893             felec            = _mm_mul_ps(velec,rinvsq20);
894
895             fscal            = felec;
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_ps(fscal,dx20);
899             ty               = _mm_mul_ps(fscal,dy20);
900             tz               = _mm_mul_ps(fscal,dz20);
901
902             /* Update vectorial force */
903             fix2             = _mm_add_ps(fix2,tx);
904             fiy2             = _mm_add_ps(fiy2,ty);
905             fiz2             = _mm_add_ps(fiz2,tz);
906
907             fjx0             = _mm_add_ps(fjx0,tx);
908             fjy0             = _mm_add_ps(fjy0,ty);
909             fjz0             = _mm_add_ps(fjz0,tz);
910
911             fjptrA             = f+j_coord_offsetA;
912             fjptrB             = f+j_coord_offsetB;
913             fjptrC             = f+j_coord_offsetC;
914             fjptrD             = f+j_coord_offsetD;
915
916             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
917
918             /* Inner loop uses 108 flops */
919         }
920
921         if(jidx<j_index_end)
922         {
923
924             /* Get j neighbor index, and coordinate index */
925             jnrlistA         = jjnr[jidx];
926             jnrlistB         = jjnr[jidx+1];
927             jnrlistC         = jjnr[jidx+2];
928             jnrlistD         = jjnr[jidx+3];
929             /* Sign of each element will be negative for non-real atoms.
930              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
931              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
932              */
933             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
934             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
935             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
936             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
937             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
938             j_coord_offsetA  = DIM*jnrA;
939             j_coord_offsetB  = DIM*jnrB;
940             j_coord_offsetC  = DIM*jnrC;
941             j_coord_offsetD  = DIM*jnrD;
942
943             /* load j atom coordinates */
944             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
945                                               x+j_coord_offsetC,x+j_coord_offsetD,
946                                               &jx0,&jy0,&jz0);
947
948             /* Calculate displacement vector */
949             dx00             = _mm_sub_ps(ix0,jx0);
950             dy00             = _mm_sub_ps(iy0,jy0);
951             dz00             = _mm_sub_ps(iz0,jz0);
952             dx10             = _mm_sub_ps(ix1,jx0);
953             dy10             = _mm_sub_ps(iy1,jy0);
954             dz10             = _mm_sub_ps(iz1,jz0);
955             dx20             = _mm_sub_ps(ix2,jx0);
956             dy20             = _mm_sub_ps(iy2,jy0);
957             dz20             = _mm_sub_ps(iz2,jz0);
958
959             /* Calculate squared distance and things based on it */
960             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
961             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
962             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
963
964             rinv00           = gmx_mm_invsqrt_ps(rsq00);
965             rinv10           = gmx_mm_invsqrt_ps(rsq10);
966             rinv20           = gmx_mm_invsqrt_ps(rsq20);
967
968             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
969             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
970             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
971
972             /* Load parameters for j particles */
973             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
974                                                               charge+jnrC+0,charge+jnrD+0);
975             vdwjidx0A        = 2*vdwtype[jnrA+0];
976             vdwjidx0B        = 2*vdwtype[jnrB+0];
977             vdwjidx0C        = 2*vdwtype[jnrC+0];
978             vdwjidx0D        = 2*vdwtype[jnrD+0];
979
980             fjx0             = _mm_setzero_ps();
981             fjy0             = _mm_setzero_ps();
982             fjz0             = _mm_setzero_ps();
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r00              = _mm_mul_ps(rsq00,rinv00);
989             r00              = _mm_andnot_ps(dummy_mask,r00);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq00             = _mm_mul_ps(iq0,jq0);
993             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
994                                          vdwparam+vdwioffset0+vdwjidx0B,
995                                          vdwparam+vdwioffset0+vdwjidx0C,
996                                          vdwparam+vdwioffset0+vdwjidx0D,
997                                          &c6_00,&c12_00);
998
999             /* Calculate table index by multiplying r with table scale and truncate to integer */
1000             rt               = _mm_mul_ps(r00,vftabscale);
1001             vfitab           = _mm_cvttps_epi32(rt);
1002             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1003             vfitab           = _mm_slli_epi32(vfitab,3);
1004
1005             /* COULOMB ELECTROSTATICS */
1006             velec            = _mm_mul_ps(qq00,rinv00);
1007             felec            = _mm_mul_ps(velec,rinvsq00);
1008
1009             /* CUBIC SPLINE TABLE DISPERSION */
1010             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1011             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1012             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1013             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1014             _MM_TRANSPOSE4_PS(Y,F,G,H);
1015             Heps             = _mm_mul_ps(vfeps,H);
1016             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1017             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1018             fvdw6            = _mm_mul_ps(c6_00,FF);
1019
1020             /* CUBIC SPLINE TABLE REPULSION */
1021             vfitab           = _mm_add_epi32(vfitab,ifour);
1022             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1023             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1024             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1025             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1026             _MM_TRANSPOSE4_PS(Y,F,G,H);
1027             Heps             = _mm_mul_ps(vfeps,H);
1028             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1029             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1030             fvdw12           = _mm_mul_ps(c12_00,FF);
1031             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1032
1033             fscal            = _mm_add_ps(felec,fvdw);
1034
1035             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_ps(fscal,dx00);
1039             ty               = _mm_mul_ps(fscal,dy00);
1040             tz               = _mm_mul_ps(fscal,dz00);
1041
1042             /* Update vectorial force */
1043             fix0             = _mm_add_ps(fix0,tx);
1044             fiy0             = _mm_add_ps(fiy0,ty);
1045             fiz0             = _mm_add_ps(fiz0,tz);
1046
1047             fjx0             = _mm_add_ps(fjx0,tx);
1048             fjy0             = _mm_add_ps(fjy0,ty);
1049             fjz0             = _mm_add_ps(fjz0,tz);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq10             = _mm_mul_ps(iq1,jq0);
1057
1058             /* COULOMB ELECTROSTATICS */
1059             velec            = _mm_mul_ps(qq10,rinv10);
1060             felec            = _mm_mul_ps(velec,rinvsq10);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx10);
1068             ty               = _mm_mul_ps(fscal,dy10);
1069             tz               = _mm_mul_ps(fscal,dz10);
1070
1071             /* Update vectorial force */
1072             fix1             = _mm_add_ps(fix1,tx);
1073             fiy1             = _mm_add_ps(fiy1,ty);
1074             fiz1             = _mm_add_ps(fiz1,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq20             = _mm_mul_ps(iq2,jq0);
1086
1087             /* COULOMB ELECTROSTATICS */
1088             velec            = _mm_mul_ps(qq20,rinv20);
1089             felec            = _mm_mul_ps(velec,rinvsq20);
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_ps(fscal,dx20);
1097             ty               = _mm_mul_ps(fscal,dy20);
1098             tz               = _mm_mul_ps(fscal,dz20);
1099
1100             /* Update vectorial force */
1101             fix2             = _mm_add_ps(fix2,tx);
1102             fiy2             = _mm_add_ps(fiy2,ty);
1103             fiz2             = _mm_add_ps(fiz2,tz);
1104
1105             fjx0             = _mm_add_ps(fjx0,tx);
1106             fjy0             = _mm_add_ps(fjy0,ty);
1107             fjz0             = _mm_add_ps(fjz0,tz);
1108
1109             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1110             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1111             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1112             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1113
1114             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1115
1116             /* Inner loop uses 109 flops */
1117         }
1118
1119         /* End of innermost loop */
1120
1121         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1122                                               f+i_coord_offset,fshift+i_shift_offset);
1123
1124         /* Increment number of inner iterations */
1125         inneriter                  += j_index_end - j_index_start;
1126
1127         /* Outer loop uses 18 flops */
1128     }
1129
1130     /* Increment number of outer iterations */
1131     outeriter        += nri;
1132
1133     /* Update outer/inner flops */
1134
1135     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1136 }