Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224
225             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
226             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
227             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                               charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm_setzero_ps();
238             fjy0             = _mm_setzero_ps();
239             fjz0             = _mm_setzero_ps();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r00              = _mm_mul_ps(rsq00,rinv00);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq00             = _mm_mul_ps(iq0,jq0);
249             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,
251                                          vdwparam+vdwioffset0+vdwjidx0C,
252                                          vdwparam+vdwioffset0+vdwjidx0D,
253                                          &c6_00,&c12_00);
254
255             /* Calculate table index by multiplying r with table scale and truncate to integer */
256             rt               = _mm_mul_ps(r00,vftabscale);
257             vfitab           = _mm_cvttps_epi32(rt);
258             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
259             vfitab           = _mm_slli_epi32(vfitab,3);
260
261             /* COULOMB ELECTROSTATICS */
262             velec            = _mm_mul_ps(qq00,rinv00);
263             felec            = _mm_mul_ps(velec,rinvsq00);
264
265             /* CUBIC SPLINE TABLE DISPERSION */
266             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
269             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
270             _MM_TRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm_mul_ps(vfeps,H);
272             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
273             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
274             vvdw6            = _mm_mul_ps(c6_00,VV);
275             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
276             fvdw6            = _mm_mul_ps(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Heps             = _mm_mul_ps(vfeps,H);
286             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
287             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
288             vvdw12           = _mm_mul_ps(c12_00,VV);
289             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
290             fvdw12           = _mm_mul_ps(c12_00,FF);
291             vvdw             = _mm_add_ps(vvdw12,vvdw6);
292             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_ps(velecsum,velec);
296             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
297
298             fscal            = _mm_add_ps(felec,fvdw);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_ps(fscal,dx00);
302             ty               = _mm_mul_ps(fscal,dy00);
303             tz               = _mm_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm_add_ps(fix0,tx);
307             fiy0             = _mm_add_ps(fiy0,ty);
308             fiz0             = _mm_add_ps(fiz0,tz);
309
310             fjx0             = _mm_add_ps(fjx0,tx);
311             fjy0             = _mm_add_ps(fjy0,ty);
312             fjz0             = _mm_add_ps(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm_mul_ps(iq1,jq0);
320
321             /* COULOMB ELECTROSTATICS */
322             velec            = _mm_mul_ps(qq10,rinv10);
323             felec            = _mm_mul_ps(velec,rinvsq10);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_ps(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx10);
332             ty               = _mm_mul_ps(fscal,dy10);
333             tz               = _mm_mul_ps(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_ps(fix1,tx);
337             fiy1             = _mm_add_ps(fiy1,ty);
338             fiz1             = _mm_add_ps(fiz1,tz);
339
340             fjx0             = _mm_add_ps(fjx0,tx);
341             fjy0             = _mm_add_ps(fjy0,ty);
342             fjz0             = _mm_add_ps(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm_mul_ps(iq2,jq0);
350
351             /* COULOMB ELECTROSTATICS */
352             velec            = _mm_mul_ps(qq20,rinv20);
353             felec            = _mm_mul_ps(velec,rinvsq20);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_ps(fscal,dx20);
362             ty               = _mm_mul_ps(fscal,dy20);
363             tz               = _mm_mul_ps(fscal,dz20);
364
365             /* Update vectorial force */
366             fix2             = _mm_add_ps(fix2,tx);
367             fiy2             = _mm_add_ps(fiy2,ty);
368             fiz2             = _mm_add_ps(fiz2,tz);
369
370             fjx0             = _mm_add_ps(fjx0,tx);
371             fjy0             = _mm_add_ps(fjy0,ty);
372             fjz0             = _mm_add_ps(fjz0,tz);
373
374             fjptrA             = f+j_coord_offsetA;
375             fjptrB             = f+j_coord_offsetB;
376             fjptrC             = f+j_coord_offsetC;
377             fjptrD             = f+j_coord_offsetD;
378
379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
380
381             /* Inner loop uses 119 flops */
382         }
383
384         if(jidx<j_index_end)
385         {
386
387             /* Get j neighbor index, and coordinate index */
388             jnrlistA         = jjnr[jidx];
389             jnrlistB         = jjnr[jidx+1];
390             jnrlistC         = jjnr[jidx+2];
391             jnrlistD         = jjnr[jidx+3];
392             /* Sign of each element will be negative for non-real atoms.
393              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
394              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
395              */
396             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
397             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
398             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
399             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
400             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
401             j_coord_offsetA  = DIM*jnrA;
402             j_coord_offsetB  = DIM*jnrB;
403             j_coord_offsetC  = DIM*jnrC;
404             j_coord_offsetD  = DIM*jnrD;
405
406             /* load j atom coordinates */
407             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
408                                               x+j_coord_offsetC,x+j_coord_offsetD,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm_sub_ps(ix0,jx0);
413             dy00             = _mm_sub_ps(iy0,jy0);
414             dz00             = _mm_sub_ps(iz0,jz0);
415             dx10             = _mm_sub_ps(ix1,jx0);
416             dy10             = _mm_sub_ps(iy1,jy0);
417             dz10             = _mm_sub_ps(iz1,jz0);
418             dx20             = _mm_sub_ps(ix2,jx0);
419             dy20             = _mm_sub_ps(iy2,jy0);
420             dz20             = _mm_sub_ps(iz2,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
424             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
425             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
426
427             rinv00           = gmx_mm_invsqrt_ps(rsq00);
428             rinv10           = gmx_mm_invsqrt_ps(rsq10);
429             rinv20           = gmx_mm_invsqrt_ps(rsq20);
430
431             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
432             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
433             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
434
435             /* Load parameters for j particles */
436             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
437                                                               charge+jnrC+0,charge+jnrD+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439             vdwjidx0B        = 2*vdwtype[jnrB+0];
440             vdwjidx0C        = 2*vdwtype[jnrC+0];
441             vdwjidx0D        = 2*vdwtype[jnrD+0];
442
443             fjx0             = _mm_setzero_ps();
444             fjy0             = _mm_setzero_ps();
445             fjz0             = _mm_setzero_ps();
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r00              = _mm_mul_ps(rsq00,rinv00);
452             r00              = _mm_andnot_ps(dummy_mask,r00);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq00             = _mm_mul_ps(iq0,jq0);
456             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
457                                          vdwparam+vdwioffset0+vdwjidx0B,
458                                          vdwparam+vdwioffset0+vdwjidx0C,
459                                          vdwparam+vdwioffset0+vdwjidx0D,
460                                          &c6_00,&c12_00);
461
462             /* Calculate table index by multiplying r with table scale and truncate to integer */
463             rt               = _mm_mul_ps(r00,vftabscale);
464             vfitab           = _mm_cvttps_epi32(rt);
465             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
466             vfitab           = _mm_slli_epi32(vfitab,3);
467
468             /* COULOMB ELECTROSTATICS */
469             velec            = _mm_mul_ps(qq00,rinv00);
470             felec            = _mm_mul_ps(velec,rinvsq00);
471
472             /* CUBIC SPLINE TABLE DISPERSION */
473             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
474             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
475             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
476             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
477             _MM_TRANSPOSE4_PS(Y,F,G,H);
478             Heps             = _mm_mul_ps(vfeps,H);
479             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
480             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
481             vvdw6            = _mm_mul_ps(c6_00,VV);
482             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
483             fvdw6            = _mm_mul_ps(c6_00,FF);
484
485             /* CUBIC SPLINE TABLE REPULSION */
486             vfitab           = _mm_add_epi32(vfitab,ifour);
487             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
488             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
489             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
490             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
491             _MM_TRANSPOSE4_PS(Y,F,G,H);
492             Heps             = _mm_mul_ps(vfeps,H);
493             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
494             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
495             vvdw12           = _mm_mul_ps(c12_00,VV);
496             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
497             fvdw12           = _mm_mul_ps(c12_00,FF);
498             vvdw             = _mm_add_ps(vvdw12,vvdw6);
499             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velec            = _mm_andnot_ps(dummy_mask,velec);
503             velecsum         = _mm_add_ps(velecsum,velec);
504             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
505             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
506
507             fscal            = _mm_add_ps(felec,fvdw);
508
509             fscal            = _mm_andnot_ps(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_ps(fscal,dx00);
513             ty               = _mm_mul_ps(fscal,dy00);
514             tz               = _mm_mul_ps(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm_add_ps(fix0,tx);
518             fiy0             = _mm_add_ps(fiy0,ty);
519             fiz0             = _mm_add_ps(fiz0,tz);
520
521             fjx0             = _mm_add_ps(fjx0,tx);
522             fjy0             = _mm_add_ps(fjy0,ty);
523             fjz0             = _mm_add_ps(fjz0,tz);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq10             = _mm_mul_ps(iq1,jq0);
531
532             /* COULOMB ELECTROSTATICS */
533             velec            = _mm_mul_ps(qq10,rinv10);
534             felec            = _mm_mul_ps(velec,rinvsq10);
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm_andnot_ps(dummy_mask,velec);
538             velecsum         = _mm_add_ps(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _mm_andnot_ps(dummy_mask,fscal);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_ps(fscal,dx10);
546             ty               = _mm_mul_ps(fscal,dy10);
547             tz               = _mm_mul_ps(fscal,dz10);
548
549             /* Update vectorial force */
550             fix1             = _mm_add_ps(fix1,tx);
551             fiy1             = _mm_add_ps(fiy1,ty);
552             fiz1             = _mm_add_ps(fiz1,tz);
553
554             fjx0             = _mm_add_ps(fjx0,tx);
555             fjy0             = _mm_add_ps(fjy0,ty);
556             fjz0             = _mm_add_ps(fjz0,tz);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq20             = _mm_mul_ps(iq2,jq0);
564
565             /* COULOMB ELECTROSTATICS */
566             velec            = _mm_mul_ps(qq20,rinv20);
567             felec            = _mm_mul_ps(velec,rinvsq20);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_andnot_ps(dummy_mask,fscal);
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_ps(fscal,dx20);
579             ty               = _mm_mul_ps(fscal,dy20);
580             tz               = _mm_mul_ps(fscal,dz20);
581
582             /* Update vectorial force */
583             fix2             = _mm_add_ps(fix2,tx);
584             fiy2             = _mm_add_ps(fiy2,ty);
585             fiz2             = _mm_add_ps(fiz2,tz);
586
587             fjx0             = _mm_add_ps(fjx0,tx);
588             fjy0             = _mm_add_ps(fjy0,ty);
589             fjz0             = _mm_add_ps(fjz0,tz);
590
591             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
592             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
593             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
594             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
595
596             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
597
598             /* Inner loop uses 120 flops */
599         }
600
601         /* End of innermost loop */
602
603         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
604                                               f+i_coord_offset,fshift+i_shift_offset);
605
606         ggid                        = gid[iidx];
607         /* Update potential energies */
608         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
609         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
610
611         /* Increment number of inner iterations */
612         inneriter                  += j_index_end - j_index_start;
613
614         /* Outer loop uses 20 flops */
615     }
616
617     /* Increment number of outer iterations */
618     outeriter        += nri;
619
620     /* Update outer/inner flops */
621
622     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
623 }
624 /*
625  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
626  * Electrostatics interaction: Coulomb
627  * VdW interaction:            CubicSplineTable
628  * Geometry:                   Water3-Particle
629  * Calculate force/pot:        Force
630  */
631 void
632 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
633                     (t_nblist                    * gmx_restrict       nlist,
634                      rvec                        * gmx_restrict          xx,
635                      rvec                        * gmx_restrict          ff,
636                      t_forcerec                  * gmx_restrict          fr,
637                      t_mdatoms                   * gmx_restrict     mdatoms,
638                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
639                      t_nrnb                      * gmx_restrict        nrnb)
640 {
641     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
642      * just 0 for non-waters.
643      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
644      * jnr indices corresponding to data put in the four positions in the SIMD register.
645      */
646     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
647     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
648     int              jnrA,jnrB,jnrC,jnrD;
649     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
650     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
651     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
652     real             rcutoff_scalar;
653     real             *shiftvec,*fshift,*x,*f;
654     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
655     real             scratch[4*DIM];
656     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
657     int              vdwioffset0;
658     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
659     int              vdwioffset1;
660     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
661     int              vdwioffset2;
662     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
663     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
664     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
665     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
666     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
667     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
668     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
669     real             *charge;
670     int              nvdwtype;
671     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
672     int              *vdwtype;
673     real             *vdwparam;
674     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
675     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
676     __m128i          vfitab;
677     __m128i          ifour       = _mm_set1_epi32(4);
678     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
679     real             *vftab;
680     __m128           dummy_mask,cutoff_mask;
681     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
682     __m128           one     = _mm_set1_ps(1.0);
683     __m128           two     = _mm_set1_ps(2.0);
684     x                = xx[0];
685     f                = ff[0];
686
687     nri              = nlist->nri;
688     iinr             = nlist->iinr;
689     jindex           = nlist->jindex;
690     jjnr             = nlist->jjnr;
691     shiftidx         = nlist->shift;
692     gid              = nlist->gid;
693     shiftvec         = fr->shift_vec[0];
694     fshift           = fr->fshift[0];
695     facel            = _mm_set1_ps(fr->epsfac);
696     charge           = mdatoms->chargeA;
697     nvdwtype         = fr->ntype;
698     vdwparam         = fr->nbfp;
699     vdwtype          = mdatoms->typeA;
700
701     vftab            = kernel_data->table_vdw->data;
702     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
703
704     /* Setup water-specific parameters */
705     inr              = nlist->iinr[0];
706     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
707     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
708     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
709     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
710
711     /* Avoid stupid compiler warnings */
712     jnrA = jnrB = jnrC = jnrD = 0;
713     j_coord_offsetA = 0;
714     j_coord_offsetB = 0;
715     j_coord_offsetC = 0;
716     j_coord_offsetD = 0;
717
718     outeriter        = 0;
719     inneriter        = 0;
720
721     for(iidx=0;iidx<4*DIM;iidx++)
722     {
723         scratch[iidx] = 0.0;
724     }
725
726     /* Start outer loop over neighborlists */
727     for(iidx=0; iidx<nri; iidx++)
728     {
729         /* Load shift vector for this list */
730         i_shift_offset   = DIM*shiftidx[iidx];
731
732         /* Load limits for loop over neighbors */
733         j_index_start    = jindex[iidx];
734         j_index_end      = jindex[iidx+1];
735
736         /* Get outer coordinate index */
737         inr              = iinr[iidx];
738         i_coord_offset   = DIM*inr;
739
740         /* Load i particle coords and add shift vector */
741         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
742                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
743
744         fix0             = _mm_setzero_ps();
745         fiy0             = _mm_setzero_ps();
746         fiz0             = _mm_setzero_ps();
747         fix1             = _mm_setzero_ps();
748         fiy1             = _mm_setzero_ps();
749         fiz1             = _mm_setzero_ps();
750         fix2             = _mm_setzero_ps();
751         fiy2             = _mm_setzero_ps();
752         fiz2             = _mm_setzero_ps();
753
754         /* Start inner kernel loop */
755         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
756         {
757
758             /* Get j neighbor index, and coordinate index */
759             jnrA             = jjnr[jidx];
760             jnrB             = jjnr[jidx+1];
761             jnrC             = jjnr[jidx+2];
762             jnrD             = jjnr[jidx+3];
763             j_coord_offsetA  = DIM*jnrA;
764             j_coord_offsetB  = DIM*jnrB;
765             j_coord_offsetC  = DIM*jnrC;
766             j_coord_offsetD  = DIM*jnrD;
767
768             /* load j atom coordinates */
769             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
770                                               x+j_coord_offsetC,x+j_coord_offsetD,
771                                               &jx0,&jy0,&jz0);
772
773             /* Calculate displacement vector */
774             dx00             = _mm_sub_ps(ix0,jx0);
775             dy00             = _mm_sub_ps(iy0,jy0);
776             dz00             = _mm_sub_ps(iz0,jz0);
777             dx10             = _mm_sub_ps(ix1,jx0);
778             dy10             = _mm_sub_ps(iy1,jy0);
779             dz10             = _mm_sub_ps(iz1,jz0);
780             dx20             = _mm_sub_ps(ix2,jx0);
781             dy20             = _mm_sub_ps(iy2,jy0);
782             dz20             = _mm_sub_ps(iz2,jz0);
783
784             /* Calculate squared distance and things based on it */
785             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
786             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
787             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
788
789             rinv00           = gmx_mm_invsqrt_ps(rsq00);
790             rinv10           = gmx_mm_invsqrt_ps(rsq10);
791             rinv20           = gmx_mm_invsqrt_ps(rsq20);
792
793             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
794             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
795             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
796
797             /* Load parameters for j particles */
798             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
799                                                               charge+jnrC+0,charge+jnrD+0);
800             vdwjidx0A        = 2*vdwtype[jnrA+0];
801             vdwjidx0B        = 2*vdwtype[jnrB+0];
802             vdwjidx0C        = 2*vdwtype[jnrC+0];
803             vdwjidx0D        = 2*vdwtype[jnrD+0];
804
805             fjx0             = _mm_setzero_ps();
806             fjy0             = _mm_setzero_ps();
807             fjz0             = _mm_setzero_ps();
808
809             /**************************
810              * CALCULATE INTERACTIONS *
811              **************************/
812
813             r00              = _mm_mul_ps(rsq00,rinv00);
814
815             /* Compute parameters for interactions between i and j atoms */
816             qq00             = _mm_mul_ps(iq0,jq0);
817             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
818                                          vdwparam+vdwioffset0+vdwjidx0B,
819                                          vdwparam+vdwioffset0+vdwjidx0C,
820                                          vdwparam+vdwioffset0+vdwjidx0D,
821                                          &c6_00,&c12_00);
822
823             /* Calculate table index by multiplying r with table scale and truncate to integer */
824             rt               = _mm_mul_ps(r00,vftabscale);
825             vfitab           = _mm_cvttps_epi32(rt);
826             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
827             vfitab           = _mm_slli_epi32(vfitab,3);
828
829             /* COULOMB ELECTROSTATICS */
830             velec            = _mm_mul_ps(qq00,rinv00);
831             felec            = _mm_mul_ps(velec,rinvsq00);
832
833             /* CUBIC SPLINE TABLE DISPERSION */
834             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
835             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
836             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
837             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
838             _MM_TRANSPOSE4_PS(Y,F,G,H);
839             Heps             = _mm_mul_ps(vfeps,H);
840             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
841             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
842             fvdw6            = _mm_mul_ps(c6_00,FF);
843
844             /* CUBIC SPLINE TABLE REPULSION */
845             vfitab           = _mm_add_epi32(vfitab,ifour);
846             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
847             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
848             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
849             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
850             _MM_TRANSPOSE4_PS(Y,F,G,H);
851             Heps             = _mm_mul_ps(vfeps,H);
852             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
853             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
854             fvdw12           = _mm_mul_ps(c12_00,FF);
855             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
856
857             fscal            = _mm_add_ps(felec,fvdw);
858
859             /* Calculate temporary vectorial force */
860             tx               = _mm_mul_ps(fscal,dx00);
861             ty               = _mm_mul_ps(fscal,dy00);
862             tz               = _mm_mul_ps(fscal,dz00);
863
864             /* Update vectorial force */
865             fix0             = _mm_add_ps(fix0,tx);
866             fiy0             = _mm_add_ps(fiy0,ty);
867             fiz0             = _mm_add_ps(fiz0,tz);
868
869             fjx0             = _mm_add_ps(fjx0,tx);
870             fjy0             = _mm_add_ps(fjy0,ty);
871             fjz0             = _mm_add_ps(fjz0,tz);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq10             = _mm_mul_ps(iq1,jq0);
879
880             /* COULOMB ELECTROSTATICS */
881             velec            = _mm_mul_ps(qq10,rinv10);
882             felec            = _mm_mul_ps(velec,rinvsq10);
883
884             fscal            = felec;
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_ps(fscal,dx10);
888             ty               = _mm_mul_ps(fscal,dy10);
889             tz               = _mm_mul_ps(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_ps(fix1,tx);
893             fiy1             = _mm_add_ps(fiy1,ty);
894             fiz1             = _mm_add_ps(fiz1,tz);
895
896             fjx0             = _mm_add_ps(fjx0,tx);
897             fjy0             = _mm_add_ps(fjy0,ty);
898             fjz0             = _mm_add_ps(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq20             = _mm_mul_ps(iq2,jq0);
906
907             /* COULOMB ELECTROSTATICS */
908             velec            = _mm_mul_ps(qq20,rinv20);
909             felec            = _mm_mul_ps(velec,rinvsq20);
910
911             fscal            = felec;
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx20);
915             ty               = _mm_mul_ps(fscal,dy20);
916             tz               = _mm_mul_ps(fscal,dz20);
917
918             /* Update vectorial force */
919             fix2             = _mm_add_ps(fix2,tx);
920             fiy2             = _mm_add_ps(fiy2,ty);
921             fiz2             = _mm_add_ps(fiz2,tz);
922
923             fjx0             = _mm_add_ps(fjx0,tx);
924             fjy0             = _mm_add_ps(fjy0,ty);
925             fjz0             = _mm_add_ps(fjz0,tz);
926
927             fjptrA             = f+j_coord_offsetA;
928             fjptrB             = f+j_coord_offsetB;
929             fjptrC             = f+j_coord_offsetC;
930             fjptrD             = f+j_coord_offsetD;
931
932             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
933
934             /* Inner loop uses 108 flops */
935         }
936
937         if(jidx<j_index_end)
938         {
939
940             /* Get j neighbor index, and coordinate index */
941             jnrlistA         = jjnr[jidx];
942             jnrlistB         = jjnr[jidx+1];
943             jnrlistC         = jjnr[jidx+2];
944             jnrlistD         = jjnr[jidx+3];
945             /* Sign of each element will be negative for non-real atoms.
946              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
947              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
948              */
949             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
950             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
951             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
952             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
953             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
954             j_coord_offsetA  = DIM*jnrA;
955             j_coord_offsetB  = DIM*jnrB;
956             j_coord_offsetC  = DIM*jnrC;
957             j_coord_offsetD  = DIM*jnrD;
958
959             /* load j atom coordinates */
960             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
961                                               x+j_coord_offsetC,x+j_coord_offsetD,
962                                               &jx0,&jy0,&jz0);
963
964             /* Calculate displacement vector */
965             dx00             = _mm_sub_ps(ix0,jx0);
966             dy00             = _mm_sub_ps(iy0,jy0);
967             dz00             = _mm_sub_ps(iz0,jz0);
968             dx10             = _mm_sub_ps(ix1,jx0);
969             dy10             = _mm_sub_ps(iy1,jy0);
970             dz10             = _mm_sub_ps(iz1,jz0);
971             dx20             = _mm_sub_ps(ix2,jx0);
972             dy20             = _mm_sub_ps(iy2,jy0);
973             dz20             = _mm_sub_ps(iz2,jz0);
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
977             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
978             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
979
980             rinv00           = gmx_mm_invsqrt_ps(rsq00);
981             rinv10           = gmx_mm_invsqrt_ps(rsq10);
982             rinv20           = gmx_mm_invsqrt_ps(rsq20);
983
984             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
985             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
986             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
987
988             /* Load parameters for j particles */
989             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
990                                                               charge+jnrC+0,charge+jnrD+0);
991             vdwjidx0A        = 2*vdwtype[jnrA+0];
992             vdwjidx0B        = 2*vdwtype[jnrB+0];
993             vdwjidx0C        = 2*vdwtype[jnrC+0];
994             vdwjidx0D        = 2*vdwtype[jnrD+0];
995
996             fjx0             = _mm_setzero_ps();
997             fjy0             = _mm_setzero_ps();
998             fjz0             = _mm_setzero_ps();
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r00              = _mm_mul_ps(rsq00,rinv00);
1005             r00              = _mm_andnot_ps(dummy_mask,r00);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq00             = _mm_mul_ps(iq0,jq0);
1009             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1010                                          vdwparam+vdwioffset0+vdwjidx0B,
1011                                          vdwparam+vdwioffset0+vdwjidx0C,
1012                                          vdwparam+vdwioffset0+vdwjidx0D,
1013                                          &c6_00,&c12_00);
1014
1015             /* Calculate table index by multiplying r with table scale and truncate to integer */
1016             rt               = _mm_mul_ps(r00,vftabscale);
1017             vfitab           = _mm_cvttps_epi32(rt);
1018             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1019             vfitab           = _mm_slli_epi32(vfitab,3);
1020
1021             /* COULOMB ELECTROSTATICS */
1022             velec            = _mm_mul_ps(qq00,rinv00);
1023             felec            = _mm_mul_ps(velec,rinvsq00);
1024
1025             /* CUBIC SPLINE TABLE DISPERSION */
1026             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1027             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1028             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1029             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1030             _MM_TRANSPOSE4_PS(Y,F,G,H);
1031             Heps             = _mm_mul_ps(vfeps,H);
1032             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1033             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1034             fvdw6            = _mm_mul_ps(c6_00,FF);
1035
1036             /* CUBIC SPLINE TABLE REPULSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1039             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1040             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1041             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1042             _MM_TRANSPOSE4_PS(Y,F,G,H);
1043             Heps             = _mm_mul_ps(vfeps,H);
1044             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1045             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1046             fvdw12           = _mm_mul_ps(c12_00,FF);
1047             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1048
1049             fscal            = _mm_add_ps(felec,fvdw);
1050
1051             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_ps(fscal,dx00);
1055             ty               = _mm_mul_ps(fscal,dy00);
1056             tz               = _mm_mul_ps(fscal,dz00);
1057
1058             /* Update vectorial force */
1059             fix0             = _mm_add_ps(fix0,tx);
1060             fiy0             = _mm_add_ps(fiy0,ty);
1061             fiz0             = _mm_add_ps(fiz0,tz);
1062
1063             fjx0             = _mm_add_ps(fjx0,tx);
1064             fjy0             = _mm_add_ps(fjy0,ty);
1065             fjz0             = _mm_add_ps(fjz0,tz);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _mm_mul_ps(iq1,jq0);
1073
1074             /* COULOMB ELECTROSTATICS */
1075             velec            = _mm_mul_ps(qq10,rinv10);
1076             felec            = _mm_mul_ps(velec,rinvsq10);
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_ps(fscal,dx10);
1084             ty               = _mm_mul_ps(fscal,dy10);
1085             tz               = _mm_mul_ps(fscal,dz10);
1086
1087             /* Update vectorial force */
1088             fix1             = _mm_add_ps(fix1,tx);
1089             fiy1             = _mm_add_ps(fiy1,ty);
1090             fiz1             = _mm_add_ps(fiz1,tz);
1091
1092             fjx0             = _mm_add_ps(fjx0,tx);
1093             fjy0             = _mm_add_ps(fjy0,ty);
1094             fjz0             = _mm_add_ps(fjz0,tz);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq20             = _mm_mul_ps(iq2,jq0);
1102
1103             /* COULOMB ELECTROSTATICS */
1104             velec            = _mm_mul_ps(qq20,rinv20);
1105             felec            = _mm_mul_ps(velec,rinvsq20);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm_mul_ps(fscal,dx20);
1113             ty               = _mm_mul_ps(fscal,dy20);
1114             tz               = _mm_mul_ps(fscal,dz20);
1115
1116             /* Update vectorial force */
1117             fix2             = _mm_add_ps(fix2,tx);
1118             fiy2             = _mm_add_ps(fiy2,ty);
1119             fiz2             = _mm_add_ps(fiz2,tz);
1120
1121             fjx0             = _mm_add_ps(fjx0,tx);
1122             fjy0             = _mm_add_ps(fjy0,ty);
1123             fjz0             = _mm_add_ps(fjz0,tz);
1124
1125             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1126             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1127             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1128             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1129
1130             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1131
1132             /* Inner loop uses 109 flops */
1133         }
1134
1135         /* End of innermost loop */
1136
1137         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1138                                               f+i_coord_offset,fshift+i_shift_offset);
1139
1140         /* Increment number of inner iterations */
1141         inneriter                  += j_index_end - j_index_start;
1142
1143         /* Outer loop uses 18 flops */
1144     }
1145
1146     /* Increment number of outer iterations */
1147     outeriter        += nri;
1148
1149     /* Update outer/inner flops */
1150
1151     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1152 }