Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166         vvdwsum          = _mm_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               x+j_coord_offsetC,x+j_coord_offsetD,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_ps(ix0,jx0);
189             dy00             = _mm_sub_ps(iy0,jy0);
190             dz00             = _mm_sub_ps(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_ps(rsq00);
196
197             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
201                                                               charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_ps(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_ps(iq0,jq0);
215             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,
217                                          vdwparam+vdwioffset0+vdwjidx0C,
218                                          vdwparam+vdwioffset0+vdwjidx0D,
219                                          &c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm_mul_ps(r00,vftabscale);
223             vfitab           = _mm_cvttps_epi32(rt);
224             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
225             vfitab           = _mm_slli_epi32(vfitab,3);
226
227             /* COULOMB ELECTROSTATICS */
228             velec            = _mm_mul_ps(qq00,rinv00);
229             felec            = _mm_mul_ps(velec,rinvsq00);
230
231             /* CUBIC SPLINE TABLE DISPERSION */
232             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
233             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
234             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
235             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
236             _MM_TRANSPOSE4_PS(Y,F,G,H);
237             Heps             = _mm_mul_ps(vfeps,H);
238             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
239             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
240             vvdw6            = _mm_mul_ps(c6_00,VV);
241             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
242             fvdw6            = _mm_mul_ps(c6_00,FF);
243
244             /* CUBIC SPLINE TABLE REPULSION */
245             vfitab           = _mm_add_epi32(vfitab,ifour);
246             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
248             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
249             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
250             _MM_TRANSPOSE4_PS(Y,F,G,H);
251             Heps             = _mm_mul_ps(vfeps,H);
252             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
253             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
254             vvdw12           = _mm_mul_ps(c12_00,VV);
255             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
256             fvdw12           = _mm_mul_ps(c12_00,FF);
257             vvdw             = _mm_add_ps(vvdw12,vvdw6);
258             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _mm_add_ps(velecsum,velec);
262             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
263
264             fscal            = _mm_add_ps(felec,fvdw);
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm_mul_ps(fscal,dx00);
268             ty               = _mm_mul_ps(fscal,dy00);
269             tz               = _mm_mul_ps(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm_add_ps(fix0,tx);
273             fiy0             = _mm_add_ps(fiy0,ty);
274             fiz0             = _mm_add_ps(fiz0,tz);
275
276             fjptrA             = f+j_coord_offsetA;
277             fjptrB             = f+j_coord_offsetB;
278             fjptrC             = f+j_coord_offsetC;
279             fjptrD             = f+j_coord_offsetD;
280             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
281
282             /* Inner loop uses 63 flops */
283         }
284
285         if(jidx<j_index_end)
286         {
287
288             /* Get j neighbor index, and coordinate index */
289             jnrlistA         = jjnr[jidx];
290             jnrlistB         = jjnr[jidx+1];
291             jnrlistC         = jjnr[jidx+2];
292             jnrlistD         = jjnr[jidx+3];
293             /* Sign of each element will be negative for non-real atoms.
294              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
295              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
296              */
297             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
298             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
299             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
300             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
301             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
302             j_coord_offsetA  = DIM*jnrA;
303             j_coord_offsetB  = DIM*jnrB;
304             j_coord_offsetC  = DIM*jnrC;
305             j_coord_offsetD  = DIM*jnrD;
306
307             /* load j atom coordinates */
308             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
309                                               x+j_coord_offsetC,x+j_coord_offsetD,
310                                               &jx0,&jy0,&jz0);
311
312             /* Calculate displacement vector */
313             dx00             = _mm_sub_ps(ix0,jx0);
314             dy00             = _mm_sub_ps(iy0,jy0);
315             dz00             = _mm_sub_ps(iz0,jz0);
316
317             /* Calculate squared distance and things based on it */
318             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
319
320             rinv00           = gmx_mm_invsqrt_ps(rsq00);
321
322             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
323
324             /* Load parameters for j particles */
325             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
326                                                               charge+jnrC+0,charge+jnrD+0);
327             vdwjidx0A        = 2*vdwtype[jnrA+0];
328             vdwjidx0B        = 2*vdwtype[jnrB+0];
329             vdwjidx0C        = 2*vdwtype[jnrC+0];
330             vdwjidx0D        = 2*vdwtype[jnrD+0];
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r00              = _mm_mul_ps(rsq00,rinv00);
337             r00              = _mm_andnot_ps(dummy_mask,r00);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq00             = _mm_mul_ps(iq0,jq0);
341             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
342                                          vdwparam+vdwioffset0+vdwjidx0B,
343                                          vdwparam+vdwioffset0+vdwjidx0C,
344                                          vdwparam+vdwioffset0+vdwjidx0D,
345                                          &c6_00,&c12_00);
346
347             /* Calculate table index by multiplying r with table scale and truncate to integer */
348             rt               = _mm_mul_ps(r00,vftabscale);
349             vfitab           = _mm_cvttps_epi32(rt);
350             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
351             vfitab           = _mm_slli_epi32(vfitab,3);
352
353             /* COULOMB ELECTROSTATICS */
354             velec            = _mm_mul_ps(qq00,rinv00);
355             felec            = _mm_mul_ps(velec,rinvsq00);
356
357             /* CUBIC SPLINE TABLE DISPERSION */
358             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
359             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
360             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
361             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
362             _MM_TRANSPOSE4_PS(Y,F,G,H);
363             Heps             = _mm_mul_ps(vfeps,H);
364             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
365             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
366             vvdw6            = _mm_mul_ps(c6_00,VV);
367             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
368             fvdw6            = _mm_mul_ps(c6_00,FF);
369
370             /* CUBIC SPLINE TABLE REPULSION */
371             vfitab           = _mm_add_epi32(vfitab,ifour);
372             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
373             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
374             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
375             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
376             _MM_TRANSPOSE4_PS(Y,F,G,H);
377             Heps             = _mm_mul_ps(vfeps,H);
378             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
379             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
380             vvdw12           = _mm_mul_ps(c12_00,VV);
381             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
382             fvdw12           = _mm_mul_ps(c12_00,FF);
383             vvdw             = _mm_add_ps(vvdw12,vvdw6);
384             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm_andnot_ps(dummy_mask,velec);
388             velecsum         = _mm_add_ps(velecsum,velec);
389             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
390             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
391
392             fscal            = _mm_add_ps(felec,fvdw);
393
394             fscal            = _mm_andnot_ps(dummy_mask,fscal);
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_ps(fscal,dx00);
398             ty               = _mm_mul_ps(fscal,dy00);
399             tz               = _mm_mul_ps(fscal,dz00);
400
401             /* Update vectorial force */
402             fix0             = _mm_add_ps(fix0,tx);
403             fiy0             = _mm_add_ps(fiy0,ty);
404             fiz0             = _mm_add_ps(fiz0,tz);
405
406             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
407             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
408             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
409             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
410             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
411
412             /* Inner loop uses 64 flops */
413         }
414
415         /* End of innermost loop */
416
417         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
418                                               f+i_coord_offset,fshift+i_shift_offset);
419
420         ggid                        = gid[iidx];
421         /* Update potential energies */
422         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
423         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
424
425         /* Increment number of inner iterations */
426         inneriter                  += j_index_end - j_index_start;
427
428         /* Outer loop uses 9 flops */
429     }
430
431     /* Increment number of outer iterations */
432     outeriter        += nri;
433
434     /* Update outer/inner flops */
435
436     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
437 }
438 /*
439  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_single
440  * Electrostatics interaction: Coulomb
441  * VdW interaction:            CubicSplineTable
442  * Geometry:                   Particle-Particle
443  * Calculate force/pot:        Force
444  */
445 void
446 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_single
447                     (t_nblist                    * gmx_restrict       nlist,
448                      rvec                        * gmx_restrict          xx,
449                      rvec                        * gmx_restrict          ff,
450                      t_forcerec                  * gmx_restrict          fr,
451                      t_mdatoms                   * gmx_restrict     mdatoms,
452                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
453                      t_nrnb                      * gmx_restrict        nrnb)
454 {
455     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
456      * just 0 for non-waters.
457      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
458      * jnr indices corresponding to data put in the four positions in the SIMD register.
459      */
460     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
461     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
462     int              jnrA,jnrB,jnrC,jnrD;
463     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
464     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
465     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
466     real             rcutoff_scalar;
467     real             *shiftvec,*fshift,*x,*f;
468     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
469     real             scratch[4*DIM];
470     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
471     int              vdwioffset0;
472     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
473     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
474     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
475     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
476     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
477     real             *charge;
478     int              nvdwtype;
479     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
480     int              *vdwtype;
481     real             *vdwparam;
482     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
483     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
484     __m128i          vfitab;
485     __m128i          ifour       = _mm_set1_epi32(4);
486     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
487     real             *vftab;
488     __m128           dummy_mask,cutoff_mask;
489     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
490     __m128           one     = _mm_set1_ps(1.0);
491     __m128           two     = _mm_set1_ps(2.0);
492     x                = xx[0];
493     f                = ff[0];
494
495     nri              = nlist->nri;
496     iinr             = nlist->iinr;
497     jindex           = nlist->jindex;
498     jjnr             = nlist->jjnr;
499     shiftidx         = nlist->shift;
500     gid              = nlist->gid;
501     shiftvec         = fr->shift_vec[0];
502     fshift           = fr->fshift[0];
503     facel            = _mm_set1_ps(fr->epsfac);
504     charge           = mdatoms->chargeA;
505     nvdwtype         = fr->ntype;
506     vdwparam         = fr->nbfp;
507     vdwtype          = mdatoms->typeA;
508
509     vftab            = kernel_data->table_vdw->data;
510     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
511
512     /* Avoid stupid compiler warnings */
513     jnrA = jnrB = jnrC = jnrD = 0;
514     j_coord_offsetA = 0;
515     j_coord_offsetB = 0;
516     j_coord_offsetC = 0;
517     j_coord_offsetD = 0;
518
519     outeriter        = 0;
520     inneriter        = 0;
521
522     for(iidx=0;iidx<4*DIM;iidx++)
523     {
524         scratch[iidx] = 0.0;
525     }
526
527     /* Start outer loop over neighborlists */
528     for(iidx=0; iidx<nri; iidx++)
529     {
530         /* Load shift vector for this list */
531         i_shift_offset   = DIM*shiftidx[iidx];
532
533         /* Load limits for loop over neighbors */
534         j_index_start    = jindex[iidx];
535         j_index_end      = jindex[iidx+1];
536
537         /* Get outer coordinate index */
538         inr              = iinr[iidx];
539         i_coord_offset   = DIM*inr;
540
541         /* Load i particle coords and add shift vector */
542         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
543
544         fix0             = _mm_setzero_ps();
545         fiy0             = _mm_setzero_ps();
546         fiz0             = _mm_setzero_ps();
547
548         /* Load parameters for i particles */
549         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
550         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
551
552         /* Start inner kernel loop */
553         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
554         {
555
556             /* Get j neighbor index, and coordinate index */
557             jnrA             = jjnr[jidx];
558             jnrB             = jjnr[jidx+1];
559             jnrC             = jjnr[jidx+2];
560             jnrD             = jjnr[jidx+3];
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565
566             /* load j atom coordinates */
567             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
568                                               x+j_coord_offsetC,x+j_coord_offsetD,
569                                               &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm_sub_ps(ix0,jx0);
573             dy00             = _mm_sub_ps(iy0,jy0);
574             dz00             = _mm_sub_ps(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm_invsqrt_ps(rsq00);
580
581             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
585                                                               charge+jnrC+0,charge+jnrD+0);
586             vdwjidx0A        = 2*vdwtype[jnrA+0];
587             vdwjidx0B        = 2*vdwtype[jnrB+0];
588             vdwjidx0C        = 2*vdwtype[jnrC+0];
589             vdwjidx0D        = 2*vdwtype[jnrD+0];
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             r00              = _mm_mul_ps(rsq00,rinv00);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq00             = _mm_mul_ps(iq0,jq0);
599             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
600                                          vdwparam+vdwioffset0+vdwjidx0B,
601                                          vdwparam+vdwioffset0+vdwjidx0C,
602                                          vdwparam+vdwioffset0+vdwjidx0D,
603                                          &c6_00,&c12_00);
604
605             /* Calculate table index by multiplying r with table scale and truncate to integer */
606             rt               = _mm_mul_ps(r00,vftabscale);
607             vfitab           = _mm_cvttps_epi32(rt);
608             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
609             vfitab           = _mm_slli_epi32(vfitab,3);
610
611             /* COULOMB ELECTROSTATICS */
612             velec            = _mm_mul_ps(qq00,rinv00);
613             felec            = _mm_mul_ps(velec,rinvsq00);
614
615             /* CUBIC SPLINE TABLE DISPERSION */
616             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
617             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
618             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
619             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
620             _MM_TRANSPOSE4_PS(Y,F,G,H);
621             Heps             = _mm_mul_ps(vfeps,H);
622             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
623             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
624             fvdw6            = _mm_mul_ps(c6_00,FF);
625
626             /* CUBIC SPLINE TABLE REPULSION */
627             vfitab           = _mm_add_epi32(vfitab,ifour);
628             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
629             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
630             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
631             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
632             _MM_TRANSPOSE4_PS(Y,F,G,H);
633             Heps             = _mm_mul_ps(vfeps,H);
634             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
635             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
636             fvdw12           = _mm_mul_ps(c12_00,FF);
637             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
638
639             fscal            = _mm_add_ps(felec,fvdw);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm_mul_ps(fscal,dx00);
643             ty               = _mm_mul_ps(fscal,dy00);
644             tz               = _mm_mul_ps(fscal,dz00);
645
646             /* Update vectorial force */
647             fix0             = _mm_add_ps(fix0,tx);
648             fiy0             = _mm_add_ps(fiy0,ty);
649             fiz0             = _mm_add_ps(fiz0,tz);
650
651             fjptrA             = f+j_coord_offsetA;
652             fjptrB             = f+j_coord_offsetB;
653             fjptrC             = f+j_coord_offsetC;
654             fjptrD             = f+j_coord_offsetD;
655             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
656
657             /* Inner loop uses 54 flops */
658         }
659
660         if(jidx<j_index_end)
661         {
662
663             /* Get j neighbor index, and coordinate index */
664             jnrlistA         = jjnr[jidx];
665             jnrlistB         = jjnr[jidx+1];
666             jnrlistC         = jjnr[jidx+2];
667             jnrlistD         = jjnr[jidx+3];
668             /* Sign of each element will be negative for non-real atoms.
669              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
670              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
671              */
672             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
673             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
674             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
675             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
676             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
677             j_coord_offsetA  = DIM*jnrA;
678             j_coord_offsetB  = DIM*jnrB;
679             j_coord_offsetC  = DIM*jnrC;
680             j_coord_offsetD  = DIM*jnrD;
681
682             /* load j atom coordinates */
683             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
684                                               x+j_coord_offsetC,x+j_coord_offsetD,
685                                               &jx0,&jy0,&jz0);
686
687             /* Calculate displacement vector */
688             dx00             = _mm_sub_ps(ix0,jx0);
689             dy00             = _mm_sub_ps(iy0,jy0);
690             dz00             = _mm_sub_ps(iz0,jz0);
691
692             /* Calculate squared distance and things based on it */
693             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
694
695             rinv00           = gmx_mm_invsqrt_ps(rsq00);
696
697             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
698
699             /* Load parameters for j particles */
700             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
701                                                               charge+jnrC+0,charge+jnrD+0);
702             vdwjidx0A        = 2*vdwtype[jnrA+0];
703             vdwjidx0B        = 2*vdwtype[jnrB+0];
704             vdwjidx0C        = 2*vdwtype[jnrC+0];
705             vdwjidx0D        = 2*vdwtype[jnrD+0];
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             r00              = _mm_mul_ps(rsq00,rinv00);
712             r00              = _mm_andnot_ps(dummy_mask,r00);
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq00             = _mm_mul_ps(iq0,jq0);
716             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
717                                          vdwparam+vdwioffset0+vdwjidx0B,
718                                          vdwparam+vdwioffset0+vdwjidx0C,
719                                          vdwparam+vdwioffset0+vdwjidx0D,
720                                          &c6_00,&c12_00);
721
722             /* Calculate table index by multiplying r with table scale and truncate to integer */
723             rt               = _mm_mul_ps(r00,vftabscale);
724             vfitab           = _mm_cvttps_epi32(rt);
725             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
726             vfitab           = _mm_slli_epi32(vfitab,3);
727
728             /* COULOMB ELECTROSTATICS */
729             velec            = _mm_mul_ps(qq00,rinv00);
730             felec            = _mm_mul_ps(velec,rinvsq00);
731
732             /* CUBIC SPLINE TABLE DISPERSION */
733             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
734             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
735             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
736             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
737             _MM_TRANSPOSE4_PS(Y,F,G,H);
738             Heps             = _mm_mul_ps(vfeps,H);
739             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
740             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
741             fvdw6            = _mm_mul_ps(c6_00,FF);
742
743             /* CUBIC SPLINE TABLE REPULSION */
744             vfitab           = _mm_add_epi32(vfitab,ifour);
745             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
746             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
747             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
748             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
749             _MM_TRANSPOSE4_PS(Y,F,G,H);
750             Heps             = _mm_mul_ps(vfeps,H);
751             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
752             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
753             fvdw12           = _mm_mul_ps(c12_00,FF);
754             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
755
756             fscal            = _mm_add_ps(felec,fvdw);
757
758             fscal            = _mm_andnot_ps(dummy_mask,fscal);
759
760             /* Calculate temporary vectorial force */
761             tx               = _mm_mul_ps(fscal,dx00);
762             ty               = _mm_mul_ps(fscal,dy00);
763             tz               = _mm_mul_ps(fscal,dz00);
764
765             /* Update vectorial force */
766             fix0             = _mm_add_ps(fix0,tx);
767             fiy0             = _mm_add_ps(fiy0,ty);
768             fiz0             = _mm_add_ps(fiz0,tz);
769
770             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
771             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
772             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
773             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
774             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
775
776             /* Inner loop uses 55 flops */
777         }
778
779         /* End of innermost loop */
780
781         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
782                                               f+i_coord_offset,fshift+i_shift_offset);
783
784         /* Increment number of inner iterations */
785         inneriter                  += j_index_end - j_index_start;
786
787         /* Outer loop uses 7 flops */
788     }
789
790     /* Increment number of outer iterations */
791     outeriter        += nri;
792
793     /* Update outer/inner flops */
794
795     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
796 }