Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_elec->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184         fix3             = _mm_setzero_ps();
185         fiy3             = _mm_setzero_ps();
186         fiz3             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv10           = gmx_mm_invsqrt_ps(rsq10);
232             rinv20           = gmx_mm_invsqrt_ps(rsq20);
233             rinv30           = gmx_mm_invsqrt_ps(rsq30);
234
235             rinvsq00         = gmx_mm_inv_ps(rsq00);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             /* Compute parameters for interactions between i and j atoms */
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
270
271             fscal            = fvdw;
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_ps(fscal,dx00);
275             ty               = _mm_mul_ps(fscal,dy00);
276             tz               = _mm_mul_ps(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm_add_ps(fix0,tx);
280             fiy0             = _mm_add_ps(fiy0,ty);
281             fiz0             = _mm_add_ps(fiz0,tz);
282
283             fjx0             = _mm_add_ps(fjx0,tx);
284             fjy0             = _mm_add_ps(fjy0,ty);
285             fjz0             = _mm_add_ps(fjz0,tz);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             r10              = _mm_mul_ps(rsq10,rinv10);
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq10             = _mm_mul_ps(iq1,jq0);
295
296             /* Calculate table index by multiplying r with table scale and truncate to integer */
297             rt               = _mm_mul_ps(r10,vftabscale);
298             vfitab           = _mm_cvttps_epi32(rt);
299             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
300             vfitab           = _mm_slli_epi32(vfitab,2);
301
302             /* CUBIC SPLINE TABLE ELECTROSTATICS */
303             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
304             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
305             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
306             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
307             _MM_TRANSPOSE4_PS(Y,F,G,H);
308             Heps             = _mm_mul_ps(vfeps,H);
309             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
310             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
311             velec            = _mm_mul_ps(qq10,VV);
312             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
313             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm_mul_ps(fscal,dx10);
322             ty               = _mm_mul_ps(fscal,dy10);
323             tz               = _mm_mul_ps(fscal,dz10);
324
325             /* Update vectorial force */
326             fix1             = _mm_add_ps(fix1,tx);
327             fiy1             = _mm_add_ps(fiy1,ty);
328             fiz1             = _mm_add_ps(fiz1,tz);
329
330             fjx0             = _mm_add_ps(fjx0,tx);
331             fjy0             = _mm_add_ps(fjy0,ty);
332             fjz0             = _mm_add_ps(fjz0,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r20              = _mm_mul_ps(rsq20,rinv20);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq20             = _mm_mul_ps(iq2,jq0);
342
343             /* Calculate table index by multiplying r with table scale and truncate to integer */
344             rt               = _mm_mul_ps(r20,vftabscale);
345             vfitab           = _mm_cvttps_epi32(rt);
346             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
347             vfitab           = _mm_slli_epi32(vfitab,2);
348
349             /* CUBIC SPLINE TABLE ELECTROSTATICS */
350             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
351             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
352             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
353             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
354             _MM_TRANSPOSE4_PS(Y,F,G,H);
355             Heps             = _mm_mul_ps(vfeps,H);
356             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
357             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
358             velec            = _mm_mul_ps(qq20,VV);
359             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
360             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm_mul_ps(fscal,dx20);
369             ty               = _mm_mul_ps(fscal,dy20);
370             tz               = _mm_mul_ps(fscal,dz20);
371
372             /* Update vectorial force */
373             fix2             = _mm_add_ps(fix2,tx);
374             fiy2             = _mm_add_ps(fiy2,ty);
375             fiz2             = _mm_add_ps(fiz2,tz);
376
377             fjx0             = _mm_add_ps(fjx0,tx);
378             fjy0             = _mm_add_ps(fjy0,ty);
379             fjz0             = _mm_add_ps(fjz0,tz);
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             r30              = _mm_mul_ps(rsq30,rinv30);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq30             = _mm_mul_ps(iq3,jq0);
389
390             /* Calculate table index by multiplying r with table scale and truncate to integer */
391             rt               = _mm_mul_ps(r30,vftabscale);
392             vfitab           = _mm_cvttps_epi32(rt);
393             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
394             vfitab           = _mm_slli_epi32(vfitab,2);
395
396             /* CUBIC SPLINE TABLE ELECTROSTATICS */
397             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
398             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
399             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
400             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
401             _MM_TRANSPOSE4_PS(Y,F,G,H);
402             Heps             = _mm_mul_ps(vfeps,H);
403             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
404             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
405             velec            = _mm_mul_ps(qq30,VV);
406             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
407             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velecsum         = _mm_add_ps(velecsum,velec);
411
412             fscal            = felec;
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm_mul_ps(fscal,dx30);
416             ty               = _mm_mul_ps(fscal,dy30);
417             tz               = _mm_mul_ps(fscal,dz30);
418
419             /* Update vectorial force */
420             fix3             = _mm_add_ps(fix3,tx);
421             fiy3             = _mm_add_ps(fiy3,ty);
422             fiz3             = _mm_add_ps(fiz3,tz);
423
424             fjx0             = _mm_add_ps(fjx0,tx);
425             fjy0             = _mm_add_ps(fjy0,ty);
426             fjz0             = _mm_add_ps(fjz0,tz);
427
428             fjptrA             = f+j_coord_offsetA;
429             fjptrB             = f+j_coord_offsetB;
430             fjptrC             = f+j_coord_offsetC;
431             fjptrD             = f+j_coord_offsetD;
432
433             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
434
435             /* Inner loop uses 161 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrlistA         = jjnr[jidx];
443             jnrlistB         = jjnr[jidx+1];
444             jnrlistC         = jjnr[jidx+2];
445             jnrlistD         = jjnr[jidx+3];
446             /* Sign of each element will be negative for non-real atoms.
447              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
448              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
449              */
450             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
451             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
452             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
453             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
454             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457             j_coord_offsetC  = DIM*jnrC;
458             j_coord_offsetD  = DIM*jnrD;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                               x+j_coord_offsetC,x+j_coord_offsetD,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_ps(ix0,jx0);
467             dy00             = _mm_sub_ps(iy0,jy0);
468             dz00             = _mm_sub_ps(iz0,jz0);
469             dx10             = _mm_sub_ps(ix1,jx0);
470             dy10             = _mm_sub_ps(iy1,jy0);
471             dz10             = _mm_sub_ps(iz1,jz0);
472             dx20             = _mm_sub_ps(ix2,jx0);
473             dy20             = _mm_sub_ps(iy2,jy0);
474             dz20             = _mm_sub_ps(iz2,jz0);
475             dx30             = _mm_sub_ps(ix3,jx0);
476             dy30             = _mm_sub_ps(iy3,jy0);
477             dz30             = _mm_sub_ps(iz3,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
482             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
483             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
484
485             rinv10           = gmx_mm_invsqrt_ps(rsq10);
486             rinv20           = gmx_mm_invsqrt_ps(rsq20);
487             rinv30           = gmx_mm_invsqrt_ps(rsq30);
488
489             rinvsq00         = gmx_mm_inv_ps(rsq00);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
493                                                               charge+jnrC+0,charge+jnrD+0);
494             vdwjidx0A        = 2*vdwtype[jnrA+0];
495             vdwjidx0B        = 2*vdwtype[jnrB+0];
496             vdwjidx0C        = 2*vdwtype[jnrC+0];
497             vdwjidx0D        = 2*vdwtype[jnrD+0];
498
499             fjx0             = _mm_setzero_ps();
500             fjy0             = _mm_setzero_ps();
501             fjz0             = _mm_setzero_ps();
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             /* Compute parameters for interactions between i and j atoms */
508             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
509                                          vdwparam+vdwioffset0+vdwjidx0B,
510                                          vdwparam+vdwioffset0+vdwjidx0C,
511                                          vdwparam+vdwioffset0+vdwjidx0D,
512                                          &c6_00,&c12_00);
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
518             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
519             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
520             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
524             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
525
526             fscal            = fvdw;
527
528             fscal            = _mm_andnot_ps(dummy_mask,fscal);
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_ps(fscal,dx00);
532             ty               = _mm_mul_ps(fscal,dy00);
533             tz               = _mm_mul_ps(fscal,dz00);
534
535             /* Update vectorial force */
536             fix0             = _mm_add_ps(fix0,tx);
537             fiy0             = _mm_add_ps(fiy0,ty);
538             fiz0             = _mm_add_ps(fiz0,tz);
539
540             fjx0             = _mm_add_ps(fjx0,tx);
541             fjy0             = _mm_add_ps(fjy0,ty);
542             fjz0             = _mm_add_ps(fjz0,tz);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r10              = _mm_mul_ps(rsq10,rinv10);
549             r10              = _mm_andnot_ps(dummy_mask,r10);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq10             = _mm_mul_ps(iq1,jq0);
553
554             /* Calculate table index by multiplying r with table scale and truncate to integer */
555             rt               = _mm_mul_ps(r10,vftabscale);
556             vfitab           = _mm_cvttps_epi32(rt);
557             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
558             vfitab           = _mm_slli_epi32(vfitab,2);
559
560             /* CUBIC SPLINE TABLE ELECTROSTATICS */
561             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
562             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
563             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
564             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
565             _MM_TRANSPOSE4_PS(Y,F,G,H);
566             Heps             = _mm_mul_ps(vfeps,H);
567             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
568             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
569             velec            = _mm_mul_ps(qq10,VV);
570             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
571             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm_andnot_ps(dummy_mask,velec);
575             velecsum         = _mm_add_ps(velecsum,velec);
576
577             fscal            = felec;
578
579             fscal            = _mm_andnot_ps(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_ps(fscal,dx10);
583             ty               = _mm_mul_ps(fscal,dy10);
584             tz               = _mm_mul_ps(fscal,dz10);
585
586             /* Update vectorial force */
587             fix1             = _mm_add_ps(fix1,tx);
588             fiy1             = _mm_add_ps(fiy1,ty);
589             fiz1             = _mm_add_ps(fiz1,tz);
590
591             fjx0             = _mm_add_ps(fjx0,tx);
592             fjy0             = _mm_add_ps(fjy0,ty);
593             fjz0             = _mm_add_ps(fjz0,tz);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r20              = _mm_mul_ps(rsq20,rinv20);
600             r20              = _mm_andnot_ps(dummy_mask,r20);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq20             = _mm_mul_ps(iq2,jq0);
604
605             /* Calculate table index by multiplying r with table scale and truncate to integer */
606             rt               = _mm_mul_ps(r20,vftabscale);
607             vfitab           = _mm_cvttps_epi32(rt);
608             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
609             vfitab           = _mm_slli_epi32(vfitab,2);
610
611             /* CUBIC SPLINE TABLE ELECTROSTATICS */
612             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
613             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
614             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
615             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
616             _MM_TRANSPOSE4_PS(Y,F,G,H);
617             Heps             = _mm_mul_ps(vfeps,H);
618             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
619             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
620             velec            = _mm_mul_ps(qq20,VV);
621             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
622             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_ps(fscal,dx20);
634             ty               = _mm_mul_ps(fscal,dy20);
635             tz               = _mm_mul_ps(fscal,dz20);
636
637             /* Update vectorial force */
638             fix2             = _mm_add_ps(fix2,tx);
639             fiy2             = _mm_add_ps(fiy2,ty);
640             fiz2             = _mm_add_ps(fiz2,tz);
641
642             fjx0             = _mm_add_ps(fjx0,tx);
643             fjy0             = _mm_add_ps(fjy0,ty);
644             fjz0             = _mm_add_ps(fjz0,tz);
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             r30              = _mm_mul_ps(rsq30,rinv30);
651             r30              = _mm_andnot_ps(dummy_mask,r30);
652
653             /* Compute parameters for interactions between i and j atoms */
654             qq30             = _mm_mul_ps(iq3,jq0);
655
656             /* Calculate table index by multiplying r with table scale and truncate to integer */
657             rt               = _mm_mul_ps(r30,vftabscale);
658             vfitab           = _mm_cvttps_epi32(rt);
659             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
660             vfitab           = _mm_slli_epi32(vfitab,2);
661
662             /* CUBIC SPLINE TABLE ELECTROSTATICS */
663             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
664             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
665             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
666             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
667             _MM_TRANSPOSE4_PS(Y,F,G,H);
668             Heps             = _mm_mul_ps(vfeps,H);
669             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
670             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
671             velec            = _mm_mul_ps(qq30,VV);
672             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
673             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
674
675             /* Update potential sum for this i atom from the interaction with this j atom. */
676             velec            = _mm_andnot_ps(dummy_mask,velec);
677             velecsum         = _mm_add_ps(velecsum,velec);
678
679             fscal            = felec;
680
681             fscal            = _mm_andnot_ps(dummy_mask,fscal);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_ps(fscal,dx30);
685             ty               = _mm_mul_ps(fscal,dy30);
686             tz               = _mm_mul_ps(fscal,dz30);
687
688             /* Update vectorial force */
689             fix3             = _mm_add_ps(fix3,tx);
690             fiy3             = _mm_add_ps(fiy3,ty);
691             fiz3             = _mm_add_ps(fiz3,tz);
692
693             fjx0             = _mm_add_ps(fjx0,tx);
694             fjy0             = _mm_add_ps(fjy0,ty);
695             fjz0             = _mm_add_ps(fjz0,tz);
696
697             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
698             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
699             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
700             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
701
702             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
703
704             /* Inner loop uses 164 flops */
705         }
706
707         /* End of innermost loop */
708
709         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
710                                               f+i_coord_offset,fshift+i_shift_offset);
711
712         ggid                        = gid[iidx];
713         /* Update potential energies */
714         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
715         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
716
717         /* Increment number of inner iterations */
718         inneriter                  += j_index_end - j_index_start;
719
720         /* Outer loop uses 26 flops */
721     }
722
723     /* Increment number of outer iterations */
724     outeriter        += nri;
725
726     /* Update outer/inner flops */
727
728     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
729 }
730 /*
731  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
732  * Electrostatics interaction: CubicSplineTable
733  * VdW interaction:            LennardJones
734  * Geometry:                   Water4-Particle
735  * Calculate force/pot:        Force
736  */
737 void
738 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
739                     (t_nblist                    * gmx_restrict       nlist,
740                      rvec                        * gmx_restrict          xx,
741                      rvec                        * gmx_restrict          ff,
742                      t_forcerec                  * gmx_restrict          fr,
743                      t_mdatoms                   * gmx_restrict     mdatoms,
744                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
745                      t_nrnb                      * gmx_restrict        nrnb)
746 {
747     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
748      * just 0 for non-waters.
749      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
750      * jnr indices corresponding to data put in the four positions in the SIMD register.
751      */
752     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
753     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
754     int              jnrA,jnrB,jnrC,jnrD;
755     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
756     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
757     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
758     real             rcutoff_scalar;
759     real             *shiftvec,*fshift,*x,*f;
760     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
761     real             scratch[4*DIM];
762     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
763     int              vdwioffset0;
764     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
765     int              vdwioffset1;
766     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
767     int              vdwioffset2;
768     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
769     int              vdwioffset3;
770     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
771     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
772     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
773     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
774     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
775     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
776     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
777     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
778     real             *charge;
779     int              nvdwtype;
780     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
781     int              *vdwtype;
782     real             *vdwparam;
783     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
784     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
785     __m128i          vfitab;
786     __m128i          ifour       = _mm_set1_epi32(4);
787     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
788     real             *vftab;
789     __m128           dummy_mask,cutoff_mask;
790     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
791     __m128           one     = _mm_set1_ps(1.0);
792     __m128           two     = _mm_set1_ps(2.0);
793     x                = xx[0];
794     f                = ff[0];
795
796     nri              = nlist->nri;
797     iinr             = nlist->iinr;
798     jindex           = nlist->jindex;
799     jjnr             = nlist->jjnr;
800     shiftidx         = nlist->shift;
801     gid              = nlist->gid;
802     shiftvec         = fr->shift_vec[0];
803     fshift           = fr->fshift[0];
804     facel            = _mm_set1_ps(fr->epsfac);
805     charge           = mdatoms->chargeA;
806     nvdwtype         = fr->ntype;
807     vdwparam         = fr->nbfp;
808     vdwtype          = mdatoms->typeA;
809
810     vftab            = kernel_data->table_elec->data;
811     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
812
813     /* Setup water-specific parameters */
814     inr              = nlist->iinr[0];
815     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
816     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
817     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
818     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
819
820     /* Avoid stupid compiler warnings */
821     jnrA = jnrB = jnrC = jnrD = 0;
822     j_coord_offsetA = 0;
823     j_coord_offsetB = 0;
824     j_coord_offsetC = 0;
825     j_coord_offsetD = 0;
826
827     outeriter        = 0;
828     inneriter        = 0;
829
830     for(iidx=0;iidx<4*DIM;iidx++)
831     {
832         scratch[iidx] = 0.0;
833     }
834
835     /* Start outer loop over neighborlists */
836     for(iidx=0; iidx<nri; iidx++)
837     {
838         /* Load shift vector for this list */
839         i_shift_offset   = DIM*shiftidx[iidx];
840
841         /* Load limits for loop over neighbors */
842         j_index_start    = jindex[iidx];
843         j_index_end      = jindex[iidx+1];
844
845         /* Get outer coordinate index */
846         inr              = iinr[iidx];
847         i_coord_offset   = DIM*inr;
848
849         /* Load i particle coords and add shift vector */
850         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
851                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
852
853         fix0             = _mm_setzero_ps();
854         fiy0             = _mm_setzero_ps();
855         fiz0             = _mm_setzero_ps();
856         fix1             = _mm_setzero_ps();
857         fiy1             = _mm_setzero_ps();
858         fiz1             = _mm_setzero_ps();
859         fix2             = _mm_setzero_ps();
860         fiy2             = _mm_setzero_ps();
861         fiz2             = _mm_setzero_ps();
862         fix3             = _mm_setzero_ps();
863         fiy3             = _mm_setzero_ps();
864         fiz3             = _mm_setzero_ps();
865
866         /* Start inner kernel loop */
867         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
868         {
869
870             /* Get j neighbor index, and coordinate index */
871             jnrA             = jjnr[jidx];
872             jnrB             = jjnr[jidx+1];
873             jnrC             = jjnr[jidx+2];
874             jnrD             = jjnr[jidx+3];
875             j_coord_offsetA  = DIM*jnrA;
876             j_coord_offsetB  = DIM*jnrB;
877             j_coord_offsetC  = DIM*jnrC;
878             j_coord_offsetD  = DIM*jnrD;
879
880             /* load j atom coordinates */
881             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
882                                               x+j_coord_offsetC,x+j_coord_offsetD,
883                                               &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm_sub_ps(ix0,jx0);
887             dy00             = _mm_sub_ps(iy0,jy0);
888             dz00             = _mm_sub_ps(iz0,jz0);
889             dx10             = _mm_sub_ps(ix1,jx0);
890             dy10             = _mm_sub_ps(iy1,jy0);
891             dz10             = _mm_sub_ps(iz1,jz0);
892             dx20             = _mm_sub_ps(ix2,jx0);
893             dy20             = _mm_sub_ps(iy2,jy0);
894             dz20             = _mm_sub_ps(iz2,jz0);
895             dx30             = _mm_sub_ps(ix3,jx0);
896             dy30             = _mm_sub_ps(iy3,jy0);
897             dz30             = _mm_sub_ps(iz3,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
903             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
904
905             rinv10           = gmx_mm_invsqrt_ps(rsq10);
906             rinv20           = gmx_mm_invsqrt_ps(rsq20);
907             rinv30           = gmx_mm_invsqrt_ps(rsq30);
908
909             rinvsq00         = gmx_mm_inv_ps(rsq00);
910
911             /* Load parameters for j particles */
912             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
913                                                               charge+jnrC+0,charge+jnrD+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916             vdwjidx0C        = 2*vdwtype[jnrC+0];
917             vdwjidx0D        = 2*vdwtype[jnrD+0];
918
919             fjx0             = _mm_setzero_ps();
920             fjy0             = _mm_setzero_ps();
921             fjz0             = _mm_setzero_ps();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             /* Compute parameters for interactions between i and j atoms */
928             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
929                                          vdwparam+vdwioffset0+vdwjidx0B,
930                                          vdwparam+vdwioffset0+vdwjidx0C,
931                                          vdwparam+vdwioffset0+vdwjidx0D,
932                                          &c6_00,&c12_00);
933
934             /* LENNARD-JONES DISPERSION/REPULSION */
935
936             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
937             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
938
939             fscal            = fvdw;
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_ps(fscal,dx00);
943             ty               = _mm_mul_ps(fscal,dy00);
944             tz               = _mm_mul_ps(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm_add_ps(fix0,tx);
948             fiy0             = _mm_add_ps(fiy0,ty);
949             fiz0             = _mm_add_ps(fiz0,tz);
950
951             fjx0             = _mm_add_ps(fjx0,tx);
952             fjy0             = _mm_add_ps(fjy0,ty);
953             fjz0             = _mm_add_ps(fjz0,tz);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r10              = _mm_mul_ps(rsq10,rinv10);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq10             = _mm_mul_ps(iq1,jq0);
963
964             /* Calculate table index by multiplying r with table scale and truncate to integer */
965             rt               = _mm_mul_ps(r10,vftabscale);
966             vfitab           = _mm_cvttps_epi32(rt);
967             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
968             vfitab           = _mm_slli_epi32(vfitab,2);
969
970             /* CUBIC SPLINE TABLE ELECTROSTATICS */
971             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
972             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
973             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
974             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
975             _MM_TRANSPOSE4_PS(Y,F,G,H);
976             Heps             = _mm_mul_ps(vfeps,H);
977             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
978             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
979             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
980
981             fscal            = felec;
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_ps(fscal,dx10);
985             ty               = _mm_mul_ps(fscal,dy10);
986             tz               = _mm_mul_ps(fscal,dz10);
987
988             /* Update vectorial force */
989             fix1             = _mm_add_ps(fix1,tx);
990             fiy1             = _mm_add_ps(fiy1,ty);
991             fiz1             = _mm_add_ps(fiz1,tz);
992
993             fjx0             = _mm_add_ps(fjx0,tx);
994             fjy0             = _mm_add_ps(fjy0,ty);
995             fjz0             = _mm_add_ps(fjz0,tz);
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             r20              = _mm_mul_ps(rsq20,rinv20);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq20             = _mm_mul_ps(iq2,jq0);
1005
1006             /* Calculate table index by multiplying r with table scale and truncate to integer */
1007             rt               = _mm_mul_ps(r20,vftabscale);
1008             vfitab           = _mm_cvttps_epi32(rt);
1009             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1010             vfitab           = _mm_slli_epi32(vfitab,2);
1011
1012             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1013             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1014             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1015             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1016             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1017             _MM_TRANSPOSE4_PS(Y,F,G,H);
1018             Heps             = _mm_mul_ps(vfeps,H);
1019             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1020             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1021             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1022
1023             fscal            = felec;
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_ps(fscal,dx20);
1027             ty               = _mm_mul_ps(fscal,dy20);
1028             tz               = _mm_mul_ps(fscal,dz20);
1029
1030             /* Update vectorial force */
1031             fix2             = _mm_add_ps(fix2,tx);
1032             fiy2             = _mm_add_ps(fiy2,ty);
1033             fiz2             = _mm_add_ps(fiz2,tz);
1034
1035             fjx0             = _mm_add_ps(fjx0,tx);
1036             fjy0             = _mm_add_ps(fjy0,ty);
1037             fjz0             = _mm_add_ps(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r30              = _mm_mul_ps(rsq30,rinv30);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq30             = _mm_mul_ps(iq3,jq0);
1047
1048             /* Calculate table index by multiplying r with table scale and truncate to integer */
1049             rt               = _mm_mul_ps(r30,vftabscale);
1050             vfitab           = _mm_cvttps_epi32(rt);
1051             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1052             vfitab           = _mm_slli_epi32(vfitab,2);
1053
1054             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1055             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1056             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1057             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1058             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1059             _MM_TRANSPOSE4_PS(Y,F,G,H);
1060             Heps             = _mm_mul_ps(vfeps,H);
1061             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1062             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1063             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1064
1065             fscal            = felec;
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm_mul_ps(fscal,dx30);
1069             ty               = _mm_mul_ps(fscal,dy30);
1070             tz               = _mm_mul_ps(fscal,dz30);
1071
1072             /* Update vectorial force */
1073             fix3             = _mm_add_ps(fix3,tx);
1074             fiy3             = _mm_add_ps(fiy3,ty);
1075             fiz3             = _mm_add_ps(fiz3,tz);
1076
1077             fjx0             = _mm_add_ps(fjx0,tx);
1078             fjy0             = _mm_add_ps(fjy0,ty);
1079             fjz0             = _mm_add_ps(fjz0,tz);
1080
1081             fjptrA             = f+j_coord_offsetA;
1082             fjptrB             = f+j_coord_offsetB;
1083             fjptrC             = f+j_coord_offsetC;
1084             fjptrD             = f+j_coord_offsetD;
1085
1086             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1087
1088             /* Inner loop uses 144 flops */
1089         }
1090
1091         if(jidx<j_index_end)
1092         {
1093
1094             /* Get j neighbor index, and coordinate index */
1095             jnrlistA         = jjnr[jidx];
1096             jnrlistB         = jjnr[jidx+1];
1097             jnrlistC         = jjnr[jidx+2];
1098             jnrlistD         = jjnr[jidx+3];
1099             /* Sign of each element will be negative for non-real atoms.
1100              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1101              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1102              */
1103             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1104             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1105             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1106             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1107             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1108             j_coord_offsetA  = DIM*jnrA;
1109             j_coord_offsetB  = DIM*jnrB;
1110             j_coord_offsetC  = DIM*jnrC;
1111             j_coord_offsetD  = DIM*jnrD;
1112
1113             /* load j atom coordinates */
1114             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1115                                               x+j_coord_offsetC,x+j_coord_offsetD,
1116                                               &jx0,&jy0,&jz0);
1117
1118             /* Calculate displacement vector */
1119             dx00             = _mm_sub_ps(ix0,jx0);
1120             dy00             = _mm_sub_ps(iy0,jy0);
1121             dz00             = _mm_sub_ps(iz0,jz0);
1122             dx10             = _mm_sub_ps(ix1,jx0);
1123             dy10             = _mm_sub_ps(iy1,jy0);
1124             dz10             = _mm_sub_ps(iz1,jz0);
1125             dx20             = _mm_sub_ps(ix2,jx0);
1126             dy20             = _mm_sub_ps(iy2,jy0);
1127             dz20             = _mm_sub_ps(iz2,jz0);
1128             dx30             = _mm_sub_ps(ix3,jx0);
1129             dy30             = _mm_sub_ps(iy3,jy0);
1130             dz30             = _mm_sub_ps(iz3,jz0);
1131
1132             /* Calculate squared distance and things based on it */
1133             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1134             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1135             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1136             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1137
1138             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1139             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1140             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1141
1142             rinvsq00         = gmx_mm_inv_ps(rsq00);
1143
1144             /* Load parameters for j particles */
1145             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1146                                                               charge+jnrC+0,charge+jnrD+0);
1147             vdwjidx0A        = 2*vdwtype[jnrA+0];
1148             vdwjidx0B        = 2*vdwtype[jnrB+0];
1149             vdwjidx0C        = 2*vdwtype[jnrC+0];
1150             vdwjidx0D        = 2*vdwtype[jnrD+0];
1151
1152             fjx0             = _mm_setzero_ps();
1153             fjy0             = _mm_setzero_ps();
1154             fjz0             = _mm_setzero_ps();
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1162                                          vdwparam+vdwioffset0+vdwjidx0B,
1163                                          vdwparam+vdwioffset0+vdwjidx0C,
1164                                          vdwparam+vdwioffset0+vdwjidx0D,
1165                                          &c6_00,&c12_00);
1166
1167             /* LENNARD-JONES DISPERSION/REPULSION */
1168
1169             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1170             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1171
1172             fscal            = fvdw;
1173
1174             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1175
1176             /* Calculate temporary vectorial force */
1177             tx               = _mm_mul_ps(fscal,dx00);
1178             ty               = _mm_mul_ps(fscal,dy00);
1179             tz               = _mm_mul_ps(fscal,dz00);
1180
1181             /* Update vectorial force */
1182             fix0             = _mm_add_ps(fix0,tx);
1183             fiy0             = _mm_add_ps(fiy0,ty);
1184             fiz0             = _mm_add_ps(fiz0,tz);
1185
1186             fjx0             = _mm_add_ps(fjx0,tx);
1187             fjy0             = _mm_add_ps(fjy0,ty);
1188             fjz0             = _mm_add_ps(fjz0,tz);
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             r10              = _mm_mul_ps(rsq10,rinv10);
1195             r10              = _mm_andnot_ps(dummy_mask,r10);
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             qq10             = _mm_mul_ps(iq1,jq0);
1199
1200             /* Calculate table index by multiplying r with table scale and truncate to integer */
1201             rt               = _mm_mul_ps(r10,vftabscale);
1202             vfitab           = _mm_cvttps_epi32(rt);
1203             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1204             vfitab           = _mm_slli_epi32(vfitab,2);
1205
1206             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1207             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1208             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1209             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1210             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1211             _MM_TRANSPOSE4_PS(Y,F,G,H);
1212             Heps             = _mm_mul_ps(vfeps,H);
1213             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1214             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1215             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm_mul_ps(fscal,dx10);
1223             ty               = _mm_mul_ps(fscal,dy10);
1224             tz               = _mm_mul_ps(fscal,dz10);
1225
1226             /* Update vectorial force */
1227             fix1             = _mm_add_ps(fix1,tx);
1228             fiy1             = _mm_add_ps(fiy1,ty);
1229             fiz1             = _mm_add_ps(fiz1,tz);
1230
1231             fjx0             = _mm_add_ps(fjx0,tx);
1232             fjy0             = _mm_add_ps(fjy0,ty);
1233             fjz0             = _mm_add_ps(fjz0,tz);
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             r20              = _mm_mul_ps(rsq20,rinv20);
1240             r20              = _mm_andnot_ps(dummy_mask,r20);
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq20             = _mm_mul_ps(iq2,jq0);
1244
1245             /* Calculate table index by multiplying r with table scale and truncate to integer */
1246             rt               = _mm_mul_ps(r20,vftabscale);
1247             vfitab           = _mm_cvttps_epi32(rt);
1248             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1249             vfitab           = _mm_slli_epi32(vfitab,2);
1250
1251             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1252             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1253             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1254             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1255             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1256             _MM_TRANSPOSE4_PS(Y,F,G,H);
1257             Heps             = _mm_mul_ps(vfeps,H);
1258             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1259             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1260             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1261
1262             fscal            = felec;
1263
1264             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1265
1266             /* Calculate temporary vectorial force */
1267             tx               = _mm_mul_ps(fscal,dx20);
1268             ty               = _mm_mul_ps(fscal,dy20);
1269             tz               = _mm_mul_ps(fscal,dz20);
1270
1271             /* Update vectorial force */
1272             fix2             = _mm_add_ps(fix2,tx);
1273             fiy2             = _mm_add_ps(fiy2,ty);
1274             fiz2             = _mm_add_ps(fiz2,tz);
1275
1276             fjx0             = _mm_add_ps(fjx0,tx);
1277             fjy0             = _mm_add_ps(fjy0,ty);
1278             fjz0             = _mm_add_ps(fjz0,tz);
1279
1280             /**************************
1281              * CALCULATE INTERACTIONS *
1282              **************************/
1283
1284             r30              = _mm_mul_ps(rsq30,rinv30);
1285             r30              = _mm_andnot_ps(dummy_mask,r30);
1286
1287             /* Compute parameters for interactions between i and j atoms */
1288             qq30             = _mm_mul_ps(iq3,jq0);
1289
1290             /* Calculate table index by multiplying r with table scale and truncate to integer */
1291             rt               = _mm_mul_ps(r30,vftabscale);
1292             vfitab           = _mm_cvttps_epi32(rt);
1293             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1294             vfitab           = _mm_slli_epi32(vfitab,2);
1295
1296             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1297             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1298             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1299             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1300             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1301             _MM_TRANSPOSE4_PS(Y,F,G,H);
1302             Heps             = _mm_mul_ps(vfeps,H);
1303             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1304             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1305             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1306
1307             fscal            = felec;
1308
1309             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1310
1311             /* Calculate temporary vectorial force */
1312             tx               = _mm_mul_ps(fscal,dx30);
1313             ty               = _mm_mul_ps(fscal,dy30);
1314             tz               = _mm_mul_ps(fscal,dz30);
1315
1316             /* Update vectorial force */
1317             fix3             = _mm_add_ps(fix3,tx);
1318             fiy3             = _mm_add_ps(fiy3,ty);
1319             fiz3             = _mm_add_ps(fiz3,tz);
1320
1321             fjx0             = _mm_add_ps(fjx0,tx);
1322             fjy0             = _mm_add_ps(fjy0,ty);
1323             fjz0             = _mm_add_ps(fjz0,tz);
1324
1325             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1326             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1327             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1328             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1329
1330             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1331
1332             /* Inner loop uses 147 flops */
1333         }
1334
1335         /* End of innermost loop */
1336
1337         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1338                                               f+i_coord_offset,fshift+i_shift_offset);
1339
1340         /* Increment number of inner iterations */
1341         inneriter                  += j_index_end - j_index_start;
1342
1343         /* Outer loop uses 24 flops */
1344     }
1345
1346     /* Increment number of outer iterations */
1347     outeriter        += nri;
1348
1349     /* Update outer/inner flops */
1350
1351     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1352 }