07ee37780c14f552fe1ee7de19a6ea8abba0a206
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_elec->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv10           = gmx_mm_invsqrt_ps(rsq10);
230             rinv20           = gmx_mm_invsqrt_ps(rsq20);
231             rinv30           = gmx_mm_invsqrt_ps(rsq30);
232
233             rinvsq00         = gmx_mm_inv_ps(rsq00);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm_setzero_ps();
244             fjy0             = _mm_setzero_ps();
245             fjz0             = _mm_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
262             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
263             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
264             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_ps(fscal,dx00);
273             ty               = _mm_mul_ps(fscal,dy00);
274             tz               = _mm_mul_ps(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_ps(fix0,tx);
278             fiy0             = _mm_add_ps(fiy0,ty);
279             fiz0             = _mm_add_ps(fiz0,tz);
280
281             fjx0             = _mm_add_ps(fjx0,tx);
282             fjy0             = _mm_add_ps(fjy0,ty);
283             fjz0             = _mm_add_ps(fjz0,tz);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             r10              = _mm_mul_ps(rsq10,rinv10);
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm_mul_ps(iq1,jq0);
293
294             /* Calculate table index by multiplying r with table scale and truncate to integer */
295             rt               = _mm_mul_ps(r10,vftabscale);
296             vfitab           = _mm_cvttps_epi32(rt);
297             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
298             vfitab           = _mm_slli_epi32(vfitab,2);
299
300             /* CUBIC SPLINE TABLE ELECTROSTATICS */
301             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
302             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
303             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
304             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
305             _MM_TRANSPOSE4_PS(Y,F,G,H);
306             Heps             = _mm_mul_ps(vfeps,H);
307             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
308             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
309             velec            = _mm_mul_ps(qq10,VV);
310             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
311             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm_add_ps(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm_mul_ps(fscal,dx10);
320             ty               = _mm_mul_ps(fscal,dy10);
321             tz               = _mm_mul_ps(fscal,dz10);
322
323             /* Update vectorial force */
324             fix1             = _mm_add_ps(fix1,tx);
325             fiy1             = _mm_add_ps(fiy1,ty);
326             fiz1             = _mm_add_ps(fiz1,tz);
327
328             fjx0             = _mm_add_ps(fjx0,tx);
329             fjy0             = _mm_add_ps(fjy0,ty);
330             fjz0             = _mm_add_ps(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r20              = _mm_mul_ps(rsq20,rinv20);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_ps(iq2,jq0);
340
341             /* Calculate table index by multiplying r with table scale and truncate to integer */
342             rt               = _mm_mul_ps(r20,vftabscale);
343             vfitab           = _mm_cvttps_epi32(rt);
344             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
345             vfitab           = _mm_slli_epi32(vfitab,2);
346
347             /* CUBIC SPLINE TABLE ELECTROSTATICS */
348             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
349             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
350             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
351             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
352             _MM_TRANSPOSE4_PS(Y,F,G,H);
353             Heps             = _mm_mul_ps(vfeps,H);
354             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
355             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
356             velec            = _mm_mul_ps(qq20,VV);
357             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
358             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx20);
367             ty               = _mm_mul_ps(fscal,dy20);
368             tz               = _mm_mul_ps(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_ps(fix2,tx);
372             fiy2             = _mm_add_ps(fiy2,ty);
373             fiz2             = _mm_add_ps(fiz2,tz);
374
375             fjx0             = _mm_add_ps(fjx0,tx);
376             fjy0             = _mm_add_ps(fjy0,ty);
377             fjz0             = _mm_add_ps(fjz0,tz);
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r30              = _mm_mul_ps(rsq30,rinv30);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq30             = _mm_mul_ps(iq3,jq0);
387
388             /* Calculate table index by multiplying r with table scale and truncate to integer */
389             rt               = _mm_mul_ps(r30,vftabscale);
390             vfitab           = _mm_cvttps_epi32(rt);
391             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
392             vfitab           = _mm_slli_epi32(vfitab,2);
393
394             /* CUBIC SPLINE TABLE ELECTROSTATICS */
395             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
396             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
397             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
398             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
399             _MM_TRANSPOSE4_PS(Y,F,G,H);
400             Heps             = _mm_mul_ps(vfeps,H);
401             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
402             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
403             velec            = _mm_mul_ps(qq30,VV);
404             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
405             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velecsum         = _mm_add_ps(velecsum,velec);
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_ps(fscal,dx30);
414             ty               = _mm_mul_ps(fscal,dy30);
415             tz               = _mm_mul_ps(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_ps(fix3,tx);
419             fiy3             = _mm_add_ps(fiy3,ty);
420             fiz3             = _mm_add_ps(fiz3,tz);
421
422             fjx0             = _mm_add_ps(fjx0,tx);
423             fjy0             = _mm_add_ps(fjy0,ty);
424             fjz0             = _mm_add_ps(fjz0,tz);
425
426             fjptrA             = f+j_coord_offsetA;
427             fjptrB             = f+j_coord_offsetB;
428             fjptrC             = f+j_coord_offsetC;
429             fjptrD             = f+j_coord_offsetD;
430
431             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 161 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             /* Get j neighbor index, and coordinate index */
440             jnrlistA         = jjnr[jidx];
441             jnrlistB         = jjnr[jidx+1];
442             jnrlistC         = jjnr[jidx+2];
443             jnrlistD         = jjnr[jidx+3];
444             /* Sign of each element will be negative for non-real atoms.
445              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
446              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
447              */
448             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
449             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
450             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
451             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
452             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455             j_coord_offsetC  = DIM*jnrC;
456             j_coord_offsetD  = DIM*jnrD;
457
458             /* load j atom coordinates */
459             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                               x+j_coord_offsetC,x+j_coord_offsetD,
461                                               &jx0,&jy0,&jz0);
462
463             /* Calculate displacement vector */
464             dx00             = _mm_sub_ps(ix0,jx0);
465             dy00             = _mm_sub_ps(iy0,jy0);
466             dz00             = _mm_sub_ps(iz0,jz0);
467             dx10             = _mm_sub_ps(ix1,jx0);
468             dy10             = _mm_sub_ps(iy1,jy0);
469             dz10             = _mm_sub_ps(iz1,jz0);
470             dx20             = _mm_sub_ps(ix2,jx0);
471             dy20             = _mm_sub_ps(iy2,jy0);
472             dz20             = _mm_sub_ps(iz2,jz0);
473             dx30             = _mm_sub_ps(ix3,jx0);
474             dy30             = _mm_sub_ps(iy3,jy0);
475             dz30             = _mm_sub_ps(iz3,jz0);
476
477             /* Calculate squared distance and things based on it */
478             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
479             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
480             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
481             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
482
483             rinv10           = gmx_mm_invsqrt_ps(rsq10);
484             rinv20           = gmx_mm_invsqrt_ps(rsq20);
485             rinv30           = gmx_mm_invsqrt_ps(rsq30);
486
487             rinvsq00         = gmx_mm_inv_ps(rsq00);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                               charge+jnrC+0,charge+jnrD+0);
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494             vdwjidx0C        = 2*vdwtype[jnrC+0];
495             vdwjidx0D        = 2*vdwtype[jnrD+0];
496
497             fjx0             = _mm_setzero_ps();
498             fjy0             = _mm_setzero_ps();
499             fjz0             = _mm_setzero_ps();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             /* Compute parameters for interactions between i and j atoms */
506             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
507                                          vdwparam+vdwioffset0+vdwjidx0B,
508                                          vdwparam+vdwioffset0+vdwjidx0C,
509                                          vdwparam+vdwioffset0+vdwjidx0D,
510                                          &c6_00,&c12_00);
511
512             /* LENNARD-JONES DISPERSION/REPULSION */
513
514             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
515             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
516             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
517             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
518             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
522             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
523
524             fscal            = fvdw;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_ps(fscal,dx00);
530             ty               = _mm_mul_ps(fscal,dy00);
531             tz               = _mm_mul_ps(fscal,dz00);
532
533             /* Update vectorial force */
534             fix0             = _mm_add_ps(fix0,tx);
535             fiy0             = _mm_add_ps(fiy0,ty);
536             fiz0             = _mm_add_ps(fiz0,tz);
537
538             fjx0             = _mm_add_ps(fjx0,tx);
539             fjy0             = _mm_add_ps(fjy0,ty);
540             fjz0             = _mm_add_ps(fjz0,tz);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             r10              = _mm_mul_ps(rsq10,rinv10);
547             r10              = _mm_andnot_ps(dummy_mask,r10);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq10             = _mm_mul_ps(iq1,jq0);
551
552             /* Calculate table index by multiplying r with table scale and truncate to integer */
553             rt               = _mm_mul_ps(r10,vftabscale);
554             vfitab           = _mm_cvttps_epi32(rt);
555             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
556             vfitab           = _mm_slli_epi32(vfitab,2);
557
558             /* CUBIC SPLINE TABLE ELECTROSTATICS */
559             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
560             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
561             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
562             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
563             _MM_TRANSPOSE4_PS(Y,F,G,H);
564             Heps             = _mm_mul_ps(vfeps,H);
565             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
566             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
567             velec            = _mm_mul_ps(qq10,VV);
568             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
569             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_andnot_ps(dummy_mask,velec);
573             velecsum         = _mm_add_ps(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_andnot_ps(dummy_mask,fscal);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_ps(fscal,dx10);
581             ty               = _mm_mul_ps(fscal,dy10);
582             tz               = _mm_mul_ps(fscal,dz10);
583
584             /* Update vectorial force */
585             fix1             = _mm_add_ps(fix1,tx);
586             fiy1             = _mm_add_ps(fiy1,ty);
587             fiz1             = _mm_add_ps(fiz1,tz);
588
589             fjx0             = _mm_add_ps(fjx0,tx);
590             fjy0             = _mm_add_ps(fjy0,ty);
591             fjz0             = _mm_add_ps(fjz0,tz);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r20              = _mm_mul_ps(rsq20,rinv20);
598             r20              = _mm_andnot_ps(dummy_mask,r20);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq20             = _mm_mul_ps(iq2,jq0);
602
603             /* Calculate table index by multiplying r with table scale and truncate to integer */
604             rt               = _mm_mul_ps(r20,vftabscale);
605             vfitab           = _mm_cvttps_epi32(rt);
606             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
607             vfitab           = _mm_slli_epi32(vfitab,2);
608
609             /* CUBIC SPLINE TABLE ELECTROSTATICS */
610             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
611             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
612             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
613             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
614             _MM_TRANSPOSE4_PS(Y,F,G,H);
615             Heps             = _mm_mul_ps(vfeps,H);
616             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
617             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
618             velec            = _mm_mul_ps(qq20,VV);
619             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
620             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm_andnot_ps(dummy_mask,velec);
624             velecsum         = _mm_add_ps(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_andnot_ps(dummy_mask,fscal);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_ps(fscal,dx20);
632             ty               = _mm_mul_ps(fscal,dy20);
633             tz               = _mm_mul_ps(fscal,dz20);
634
635             /* Update vectorial force */
636             fix2             = _mm_add_ps(fix2,tx);
637             fiy2             = _mm_add_ps(fiy2,ty);
638             fiz2             = _mm_add_ps(fiz2,tz);
639
640             fjx0             = _mm_add_ps(fjx0,tx);
641             fjy0             = _mm_add_ps(fjy0,ty);
642             fjz0             = _mm_add_ps(fjz0,tz);
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r30              = _mm_mul_ps(rsq30,rinv30);
649             r30              = _mm_andnot_ps(dummy_mask,r30);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq30             = _mm_mul_ps(iq3,jq0);
653
654             /* Calculate table index by multiplying r with table scale and truncate to integer */
655             rt               = _mm_mul_ps(r30,vftabscale);
656             vfitab           = _mm_cvttps_epi32(rt);
657             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
658             vfitab           = _mm_slli_epi32(vfitab,2);
659
660             /* CUBIC SPLINE TABLE ELECTROSTATICS */
661             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
662             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
663             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
664             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
665             _MM_TRANSPOSE4_PS(Y,F,G,H);
666             Heps             = _mm_mul_ps(vfeps,H);
667             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
668             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
669             velec            = _mm_mul_ps(qq30,VV);
670             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
671             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
672
673             /* Update potential sum for this i atom from the interaction with this j atom. */
674             velec            = _mm_andnot_ps(dummy_mask,velec);
675             velecsum         = _mm_add_ps(velecsum,velec);
676
677             fscal            = felec;
678
679             fscal            = _mm_andnot_ps(dummy_mask,fscal);
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm_mul_ps(fscal,dx30);
683             ty               = _mm_mul_ps(fscal,dy30);
684             tz               = _mm_mul_ps(fscal,dz30);
685
686             /* Update vectorial force */
687             fix3             = _mm_add_ps(fix3,tx);
688             fiy3             = _mm_add_ps(fiy3,ty);
689             fiz3             = _mm_add_ps(fiz3,tz);
690
691             fjx0             = _mm_add_ps(fjx0,tx);
692             fjy0             = _mm_add_ps(fjy0,ty);
693             fjz0             = _mm_add_ps(fjz0,tz);
694
695             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
696             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
697             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
698             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
699
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
701
702             /* Inner loop uses 164 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
708                                               f+i_coord_offset,fshift+i_shift_offset);
709
710         ggid                        = gid[iidx];
711         /* Update potential energies */
712         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
713         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
714
715         /* Increment number of inner iterations */
716         inneriter                  += j_index_end - j_index_start;
717
718         /* Outer loop uses 26 flops */
719     }
720
721     /* Increment number of outer iterations */
722     outeriter        += nri;
723
724     /* Update outer/inner flops */
725
726     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
727 }
728 /*
729  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
730  * Electrostatics interaction: CubicSplineTable
731  * VdW interaction:            LennardJones
732  * Geometry:                   Water4-Particle
733  * Calculate force/pot:        Force
734  */
735 void
736 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
737                     (t_nblist                    * gmx_restrict       nlist,
738                      rvec                        * gmx_restrict          xx,
739                      rvec                        * gmx_restrict          ff,
740                      t_forcerec                  * gmx_restrict          fr,
741                      t_mdatoms                   * gmx_restrict     mdatoms,
742                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
743                      t_nrnb                      * gmx_restrict        nrnb)
744 {
745     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
746      * just 0 for non-waters.
747      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
748      * jnr indices corresponding to data put in the four positions in the SIMD register.
749      */
750     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
751     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
752     int              jnrA,jnrB,jnrC,jnrD;
753     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
754     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
755     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
756     real             rcutoff_scalar;
757     real             *shiftvec,*fshift,*x,*f;
758     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
759     real             scratch[4*DIM];
760     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
761     int              vdwioffset0;
762     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
763     int              vdwioffset1;
764     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
765     int              vdwioffset2;
766     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
767     int              vdwioffset3;
768     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
769     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
770     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
771     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
772     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
773     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
774     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
775     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
776     real             *charge;
777     int              nvdwtype;
778     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
779     int              *vdwtype;
780     real             *vdwparam;
781     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
782     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
783     __m128i          vfitab;
784     __m128i          ifour       = _mm_set1_epi32(4);
785     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
786     real             *vftab;
787     __m128           dummy_mask,cutoff_mask;
788     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
789     __m128           one     = _mm_set1_ps(1.0);
790     __m128           two     = _mm_set1_ps(2.0);
791     x                = xx[0];
792     f                = ff[0];
793
794     nri              = nlist->nri;
795     iinr             = nlist->iinr;
796     jindex           = nlist->jindex;
797     jjnr             = nlist->jjnr;
798     shiftidx         = nlist->shift;
799     gid              = nlist->gid;
800     shiftvec         = fr->shift_vec[0];
801     fshift           = fr->fshift[0];
802     facel            = _mm_set1_ps(fr->epsfac);
803     charge           = mdatoms->chargeA;
804     nvdwtype         = fr->ntype;
805     vdwparam         = fr->nbfp;
806     vdwtype          = mdatoms->typeA;
807
808     vftab            = kernel_data->table_elec->data;
809     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
810
811     /* Setup water-specific parameters */
812     inr              = nlist->iinr[0];
813     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
814     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
815     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
816     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
817
818     /* Avoid stupid compiler warnings */
819     jnrA = jnrB = jnrC = jnrD = 0;
820     j_coord_offsetA = 0;
821     j_coord_offsetB = 0;
822     j_coord_offsetC = 0;
823     j_coord_offsetD = 0;
824
825     outeriter        = 0;
826     inneriter        = 0;
827
828     for(iidx=0;iidx<4*DIM;iidx++)
829     {
830         scratch[iidx] = 0.0;
831     }
832
833     /* Start outer loop over neighborlists */
834     for(iidx=0; iidx<nri; iidx++)
835     {
836         /* Load shift vector for this list */
837         i_shift_offset   = DIM*shiftidx[iidx];
838
839         /* Load limits for loop over neighbors */
840         j_index_start    = jindex[iidx];
841         j_index_end      = jindex[iidx+1];
842
843         /* Get outer coordinate index */
844         inr              = iinr[iidx];
845         i_coord_offset   = DIM*inr;
846
847         /* Load i particle coords and add shift vector */
848         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
849                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
850
851         fix0             = _mm_setzero_ps();
852         fiy0             = _mm_setzero_ps();
853         fiz0             = _mm_setzero_ps();
854         fix1             = _mm_setzero_ps();
855         fiy1             = _mm_setzero_ps();
856         fiz1             = _mm_setzero_ps();
857         fix2             = _mm_setzero_ps();
858         fiy2             = _mm_setzero_ps();
859         fiz2             = _mm_setzero_ps();
860         fix3             = _mm_setzero_ps();
861         fiy3             = _mm_setzero_ps();
862         fiz3             = _mm_setzero_ps();
863
864         /* Start inner kernel loop */
865         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
866         {
867
868             /* Get j neighbor index, and coordinate index */
869             jnrA             = jjnr[jidx];
870             jnrB             = jjnr[jidx+1];
871             jnrC             = jjnr[jidx+2];
872             jnrD             = jjnr[jidx+3];
873             j_coord_offsetA  = DIM*jnrA;
874             j_coord_offsetB  = DIM*jnrB;
875             j_coord_offsetC  = DIM*jnrC;
876             j_coord_offsetD  = DIM*jnrD;
877
878             /* load j atom coordinates */
879             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
880                                               x+j_coord_offsetC,x+j_coord_offsetD,
881                                               &jx0,&jy0,&jz0);
882
883             /* Calculate displacement vector */
884             dx00             = _mm_sub_ps(ix0,jx0);
885             dy00             = _mm_sub_ps(iy0,jy0);
886             dz00             = _mm_sub_ps(iz0,jz0);
887             dx10             = _mm_sub_ps(ix1,jx0);
888             dy10             = _mm_sub_ps(iy1,jy0);
889             dz10             = _mm_sub_ps(iz1,jz0);
890             dx20             = _mm_sub_ps(ix2,jx0);
891             dy20             = _mm_sub_ps(iy2,jy0);
892             dz20             = _mm_sub_ps(iz2,jz0);
893             dx30             = _mm_sub_ps(ix3,jx0);
894             dy30             = _mm_sub_ps(iy3,jy0);
895             dz30             = _mm_sub_ps(iz3,jz0);
896
897             /* Calculate squared distance and things based on it */
898             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
899             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
900             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
901             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
902
903             rinv10           = gmx_mm_invsqrt_ps(rsq10);
904             rinv20           = gmx_mm_invsqrt_ps(rsq20);
905             rinv30           = gmx_mm_invsqrt_ps(rsq30);
906
907             rinvsq00         = gmx_mm_inv_ps(rsq00);
908
909             /* Load parameters for j particles */
910             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
911                                                               charge+jnrC+0,charge+jnrD+0);
912             vdwjidx0A        = 2*vdwtype[jnrA+0];
913             vdwjidx0B        = 2*vdwtype[jnrB+0];
914             vdwjidx0C        = 2*vdwtype[jnrC+0];
915             vdwjidx0D        = 2*vdwtype[jnrD+0];
916
917             fjx0             = _mm_setzero_ps();
918             fjy0             = _mm_setzero_ps();
919             fjz0             = _mm_setzero_ps();
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             /* Compute parameters for interactions between i and j atoms */
926             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
927                                          vdwparam+vdwioffset0+vdwjidx0B,
928                                          vdwparam+vdwioffset0+vdwjidx0C,
929                                          vdwparam+vdwioffset0+vdwjidx0D,
930                                          &c6_00,&c12_00);
931
932             /* LENNARD-JONES DISPERSION/REPULSION */
933
934             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
935             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
936
937             fscal            = fvdw;
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_ps(fscal,dx00);
941             ty               = _mm_mul_ps(fscal,dy00);
942             tz               = _mm_mul_ps(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm_add_ps(fix0,tx);
946             fiy0             = _mm_add_ps(fiy0,ty);
947             fiz0             = _mm_add_ps(fiz0,tz);
948
949             fjx0             = _mm_add_ps(fjx0,tx);
950             fjy0             = _mm_add_ps(fjy0,ty);
951             fjz0             = _mm_add_ps(fjz0,tz);
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             r10              = _mm_mul_ps(rsq10,rinv10);
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq10             = _mm_mul_ps(iq1,jq0);
961
962             /* Calculate table index by multiplying r with table scale and truncate to integer */
963             rt               = _mm_mul_ps(r10,vftabscale);
964             vfitab           = _mm_cvttps_epi32(rt);
965             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
966             vfitab           = _mm_slli_epi32(vfitab,2);
967
968             /* CUBIC SPLINE TABLE ELECTROSTATICS */
969             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
970             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
971             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
972             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
973             _MM_TRANSPOSE4_PS(Y,F,G,H);
974             Heps             = _mm_mul_ps(vfeps,H);
975             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
976             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
977             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
978
979             fscal            = felec;
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx10);
983             ty               = _mm_mul_ps(fscal,dy10);
984             tz               = _mm_mul_ps(fscal,dz10);
985
986             /* Update vectorial force */
987             fix1             = _mm_add_ps(fix1,tx);
988             fiy1             = _mm_add_ps(fiy1,ty);
989             fiz1             = _mm_add_ps(fiz1,tz);
990
991             fjx0             = _mm_add_ps(fjx0,tx);
992             fjy0             = _mm_add_ps(fjy0,ty);
993             fjz0             = _mm_add_ps(fjz0,tz);
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             r20              = _mm_mul_ps(rsq20,rinv20);
1000
1001             /* Compute parameters for interactions between i and j atoms */
1002             qq20             = _mm_mul_ps(iq2,jq0);
1003
1004             /* Calculate table index by multiplying r with table scale and truncate to integer */
1005             rt               = _mm_mul_ps(r20,vftabscale);
1006             vfitab           = _mm_cvttps_epi32(rt);
1007             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1008             vfitab           = _mm_slli_epi32(vfitab,2);
1009
1010             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1011             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1012             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1013             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1014             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1015             _MM_TRANSPOSE4_PS(Y,F,G,H);
1016             Heps             = _mm_mul_ps(vfeps,H);
1017             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1018             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1019             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1020
1021             fscal            = felec;
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_ps(fscal,dx20);
1025             ty               = _mm_mul_ps(fscal,dy20);
1026             tz               = _mm_mul_ps(fscal,dz20);
1027
1028             /* Update vectorial force */
1029             fix2             = _mm_add_ps(fix2,tx);
1030             fiy2             = _mm_add_ps(fiy2,ty);
1031             fiz2             = _mm_add_ps(fiz2,tz);
1032
1033             fjx0             = _mm_add_ps(fjx0,tx);
1034             fjy0             = _mm_add_ps(fjy0,ty);
1035             fjz0             = _mm_add_ps(fjz0,tz);
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r30              = _mm_mul_ps(rsq30,rinv30);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq30             = _mm_mul_ps(iq3,jq0);
1045
1046             /* Calculate table index by multiplying r with table scale and truncate to integer */
1047             rt               = _mm_mul_ps(r30,vftabscale);
1048             vfitab           = _mm_cvttps_epi32(rt);
1049             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1050             vfitab           = _mm_slli_epi32(vfitab,2);
1051
1052             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1053             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1054             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1055             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1056             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1057             _MM_TRANSPOSE4_PS(Y,F,G,H);
1058             Heps             = _mm_mul_ps(vfeps,H);
1059             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1060             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1061             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1062
1063             fscal            = felec;
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm_mul_ps(fscal,dx30);
1067             ty               = _mm_mul_ps(fscal,dy30);
1068             tz               = _mm_mul_ps(fscal,dz30);
1069
1070             /* Update vectorial force */
1071             fix3             = _mm_add_ps(fix3,tx);
1072             fiy3             = _mm_add_ps(fiy3,ty);
1073             fiz3             = _mm_add_ps(fiz3,tz);
1074
1075             fjx0             = _mm_add_ps(fjx0,tx);
1076             fjy0             = _mm_add_ps(fjy0,ty);
1077             fjz0             = _mm_add_ps(fjz0,tz);
1078
1079             fjptrA             = f+j_coord_offsetA;
1080             fjptrB             = f+j_coord_offsetB;
1081             fjptrC             = f+j_coord_offsetC;
1082             fjptrD             = f+j_coord_offsetD;
1083
1084             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 144 flops */
1087         }
1088
1089         if(jidx<j_index_end)
1090         {
1091
1092             /* Get j neighbor index, and coordinate index */
1093             jnrlistA         = jjnr[jidx];
1094             jnrlistB         = jjnr[jidx+1];
1095             jnrlistC         = jjnr[jidx+2];
1096             jnrlistD         = jjnr[jidx+3];
1097             /* Sign of each element will be negative for non-real atoms.
1098              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1099              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1100              */
1101             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1102             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1103             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1104             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1105             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1106             j_coord_offsetA  = DIM*jnrA;
1107             j_coord_offsetB  = DIM*jnrB;
1108             j_coord_offsetC  = DIM*jnrC;
1109             j_coord_offsetD  = DIM*jnrD;
1110
1111             /* load j atom coordinates */
1112             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1113                                               x+j_coord_offsetC,x+j_coord_offsetD,
1114                                               &jx0,&jy0,&jz0);
1115
1116             /* Calculate displacement vector */
1117             dx00             = _mm_sub_ps(ix0,jx0);
1118             dy00             = _mm_sub_ps(iy0,jy0);
1119             dz00             = _mm_sub_ps(iz0,jz0);
1120             dx10             = _mm_sub_ps(ix1,jx0);
1121             dy10             = _mm_sub_ps(iy1,jy0);
1122             dz10             = _mm_sub_ps(iz1,jz0);
1123             dx20             = _mm_sub_ps(ix2,jx0);
1124             dy20             = _mm_sub_ps(iy2,jy0);
1125             dz20             = _mm_sub_ps(iz2,jz0);
1126             dx30             = _mm_sub_ps(ix3,jx0);
1127             dy30             = _mm_sub_ps(iy3,jy0);
1128             dz30             = _mm_sub_ps(iz3,jz0);
1129
1130             /* Calculate squared distance and things based on it */
1131             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1132             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1133             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1134             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1135
1136             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1137             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1138             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1139
1140             rinvsq00         = gmx_mm_inv_ps(rsq00);
1141
1142             /* Load parameters for j particles */
1143             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1144                                                               charge+jnrC+0,charge+jnrD+0);
1145             vdwjidx0A        = 2*vdwtype[jnrA+0];
1146             vdwjidx0B        = 2*vdwtype[jnrB+0];
1147             vdwjidx0C        = 2*vdwtype[jnrC+0];
1148             vdwjidx0D        = 2*vdwtype[jnrD+0];
1149
1150             fjx0             = _mm_setzero_ps();
1151             fjy0             = _mm_setzero_ps();
1152             fjz0             = _mm_setzero_ps();
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1160                                          vdwparam+vdwioffset0+vdwjidx0B,
1161                                          vdwparam+vdwioffset0+vdwjidx0C,
1162                                          vdwparam+vdwioffset0+vdwjidx0D,
1163                                          &c6_00,&c12_00);
1164
1165             /* LENNARD-JONES DISPERSION/REPULSION */
1166
1167             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1168             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1169
1170             fscal            = fvdw;
1171
1172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm_mul_ps(fscal,dx00);
1176             ty               = _mm_mul_ps(fscal,dy00);
1177             tz               = _mm_mul_ps(fscal,dz00);
1178
1179             /* Update vectorial force */
1180             fix0             = _mm_add_ps(fix0,tx);
1181             fiy0             = _mm_add_ps(fiy0,ty);
1182             fiz0             = _mm_add_ps(fiz0,tz);
1183
1184             fjx0             = _mm_add_ps(fjx0,tx);
1185             fjy0             = _mm_add_ps(fjy0,ty);
1186             fjz0             = _mm_add_ps(fjz0,tz);
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             r10              = _mm_mul_ps(rsq10,rinv10);
1193             r10              = _mm_andnot_ps(dummy_mask,r10);
1194
1195             /* Compute parameters for interactions between i and j atoms */
1196             qq10             = _mm_mul_ps(iq1,jq0);
1197
1198             /* Calculate table index by multiplying r with table scale and truncate to integer */
1199             rt               = _mm_mul_ps(r10,vftabscale);
1200             vfitab           = _mm_cvttps_epi32(rt);
1201             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1202             vfitab           = _mm_slli_epi32(vfitab,2);
1203
1204             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1205             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1206             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1207             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1208             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1209             _MM_TRANSPOSE4_PS(Y,F,G,H);
1210             Heps             = _mm_mul_ps(vfeps,H);
1211             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1212             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1213             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1214
1215             fscal            = felec;
1216
1217             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1218
1219             /* Calculate temporary vectorial force */
1220             tx               = _mm_mul_ps(fscal,dx10);
1221             ty               = _mm_mul_ps(fscal,dy10);
1222             tz               = _mm_mul_ps(fscal,dz10);
1223
1224             /* Update vectorial force */
1225             fix1             = _mm_add_ps(fix1,tx);
1226             fiy1             = _mm_add_ps(fiy1,ty);
1227             fiz1             = _mm_add_ps(fiz1,tz);
1228
1229             fjx0             = _mm_add_ps(fjx0,tx);
1230             fjy0             = _mm_add_ps(fjy0,ty);
1231             fjz0             = _mm_add_ps(fjz0,tz);
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r20              = _mm_mul_ps(rsq20,rinv20);
1238             r20              = _mm_andnot_ps(dummy_mask,r20);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq20             = _mm_mul_ps(iq2,jq0);
1242
1243             /* Calculate table index by multiplying r with table scale and truncate to integer */
1244             rt               = _mm_mul_ps(r20,vftabscale);
1245             vfitab           = _mm_cvttps_epi32(rt);
1246             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1247             vfitab           = _mm_slli_epi32(vfitab,2);
1248
1249             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1250             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1251             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1252             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1253             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1254             _MM_TRANSPOSE4_PS(Y,F,G,H);
1255             Heps             = _mm_mul_ps(vfeps,H);
1256             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1257             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1258             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1259
1260             fscal            = felec;
1261
1262             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1263
1264             /* Calculate temporary vectorial force */
1265             tx               = _mm_mul_ps(fscal,dx20);
1266             ty               = _mm_mul_ps(fscal,dy20);
1267             tz               = _mm_mul_ps(fscal,dz20);
1268
1269             /* Update vectorial force */
1270             fix2             = _mm_add_ps(fix2,tx);
1271             fiy2             = _mm_add_ps(fiy2,ty);
1272             fiz2             = _mm_add_ps(fiz2,tz);
1273
1274             fjx0             = _mm_add_ps(fjx0,tx);
1275             fjy0             = _mm_add_ps(fjy0,ty);
1276             fjz0             = _mm_add_ps(fjz0,tz);
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             r30              = _mm_mul_ps(rsq30,rinv30);
1283             r30              = _mm_andnot_ps(dummy_mask,r30);
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq30             = _mm_mul_ps(iq3,jq0);
1287
1288             /* Calculate table index by multiplying r with table scale and truncate to integer */
1289             rt               = _mm_mul_ps(r30,vftabscale);
1290             vfitab           = _mm_cvttps_epi32(rt);
1291             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1292             vfitab           = _mm_slli_epi32(vfitab,2);
1293
1294             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1295             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1296             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1297             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1298             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1299             _MM_TRANSPOSE4_PS(Y,F,G,H);
1300             Heps             = _mm_mul_ps(vfeps,H);
1301             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1302             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1303             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1304
1305             fscal            = felec;
1306
1307             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1308
1309             /* Calculate temporary vectorial force */
1310             tx               = _mm_mul_ps(fscal,dx30);
1311             ty               = _mm_mul_ps(fscal,dy30);
1312             tz               = _mm_mul_ps(fscal,dz30);
1313
1314             /* Update vectorial force */
1315             fix3             = _mm_add_ps(fix3,tx);
1316             fiy3             = _mm_add_ps(fiy3,ty);
1317             fiz3             = _mm_add_ps(fiz3,tz);
1318
1319             fjx0             = _mm_add_ps(fjx0,tx);
1320             fjy0             = _mm_add_ps(fjy0,ty);
1321             fjz0             = _mm_add_ps(fjz0,tz);
1322
1323             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1324             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1325             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1326             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1327
1328             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1329
1330             /* Inner loop uses 147 flops */
1331         }
1332
1333         /* End of innermost loop */
1334
1335         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1336                                               f+i_coord_offset,fshift+i_shift_offset);
1337
1338         /* Increment number of inner iterations */
1339         inneriter                  += j_index_end - j_index_start;
1340
1341         /* Outer loop uses 24 flops */
1342     }
1343
1344     /* Increment number of outer iterations */
1345     outeriter        += nri;
1346
1347     /* Update outer/inner flops */
1348
1349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1350 }