fc4f5d5169e04b86c6fed2ee377a871017336496
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_ps(rsq00);
220             rinv10           = gmx_mm_invsqrt_ps(rsq10);
221             rinv20           = gmx_mm_invsqrt_ps(rsq20);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm_mul_ps(r00,vftabscale);
253             vfitab           = _mm_cvttps_epi32(rt);
254             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
255             vfitab           = _mm_slli_epi32(vfitab,2);
256
257             /* CUBIC SPLINE TABLE ELECTROSTATICS */
258             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
261             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
262             _MM_TRANSPOSE4_PS(Y,F,G,H);
263             Heps             = _mm_mul_ps(vfeps,H);
264             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
265             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
266             velec            = _mm_mul_ps(qq00,VV);
267             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
268             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
276             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_ps(velecsum,velec);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm_add_ps(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_ps(fscal,dx00);
286             ty               = _mm_mul_ps(fscal,dy00);
287             tz               = _mm_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_ps(fix0,tx);
291             fiy0             = _mm_add_ps(fiy0,ty);
292             fiz0             = _mm_add_ps(fiz0,tz);
293
294             fjx0             = _mm_add_ps(fjx0,tx);
295             fjy0             = _mm_add_ps(fjy0,ty);
296             fjz0             = _mm_add_ps(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_ps(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_ps(iq1,jq0);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm_mul_ps(r10,vftabscale);
309             vfitab           = _mm_cvttps_epi32(rt);
310             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
311             vfitab           = _mm_slli_epi32(vfitab,2);
312
313             /* CUBIC SPLINE TABLE ELECTROSTATICS */
314             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
315             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
316             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
317             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
318             _MM_TRANSPOSE4_PS(Y,F,G,H);
319             Heps             = _mm_mul_ps(vfeps,H);
320             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
321             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
322             velec            = _mm_mul_ps(qq10,VV);
323             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
324             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_ps(fscal,dx10);
333             ty               = _mm_mul_ps(fscal,dy10);
334             tz               = _mm_mul_ps(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm_add_ps(fix1,tx);
338             fiy1             = _mm_add_ps(fiy1,ty);
339             fiz1             = _mm_add_ps(fiz1,tz);
340
341             fjx0             = _mm_add_ps(fjx0,tx);
342             fjy0             = _mm_add_ps(fjy0,ty);
343             fjz0             = _mm_add_ps(fjz0,tz);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             r20              = _mm_mul_ps(rsq20,rinv20);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_ps(iq2,jq0);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm_mul_ps(r20,vftabscale);
356             vfitab           = _mm_cvttps_epi32(rt);
357             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
358             vfitab           = _mm_slli_epi32(vfitab,2);
359
360             /* CUBIC SPLINE TABLE ELECTROSTATICS */
361             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
362             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
363             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
364             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
365             _MM_TRANSPOSE4_PS(Y,F,G,H);
366             Heps             = _mm_mul_ps(vfeps,H);
367             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
368             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
369             velec            = _mm_mul_ps(qq20,VV);
370             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
371             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_ps(fscal,dx20);
380             ty               = _mm_mul_ps(fscal,dy20);
381             tz               = _mm_mul_ps(fscal,dz20);
382
383             /* Update vectorial force */
384             fix2             = _mm_add_ps(fix2,tx);
385             fiy2             = _mm_add_ps(fiy2,ty);
386             fiz2             = _mm_add_ps(fiz2,tz);
387
388             fjx0             = _mm_add_ps(fjx0,tx);
389             fjy0             = _mm_add_ps(fjy0,ty);
390             fjz0             = _mm_add_ps(fjz0,tz);
391
392             fjptrA             = f+j_coord_offsetA;
393             fjptrB             = f+j_coord_offsetB;
394             fjptrC             = f+j_coord_offsetC;
395             fjptrD             = f+j_coord_offsetD;
396
397             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
398
399             /* Inner loop uses 142 flops */
400         }
401
402         if(jidx<j_index_end)
403         {
404
405             /* Get j neighbor index, and coordinate index */
406             jnrlistA         = jjnr[jidx];
407             jnrlistB         = jjnr[jidx+1];
408             jnrlistC         = jjnr[jidx+2];
409             jnrlistD         = jjnr[jidx+3];
410             /* Sign of each element will be negative for non-real atoms.
411              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
412              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
413              */
414             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
415             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
416             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
417             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
418             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
419             j_coord_offsetA  = DIM*jnrA;
420             j_coord_offsetB  = DIM*jnrB;
421             j_coord_offsetC  = DIM*jnrC;
422             j_coord_offsetD  = DIM*jnrD;
423
424             /* load j atom coordinates */
425             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
426                                               x+j_coord_offsetC,x+j_coord_offsetD,
427                                               &jx0,&jy0,&jz0);
428
429             /* Calculate displacement vector */
430             dx00             = _mm_sub_ps(ix0,jx0);
431             dy00             = _mm_sub_ps(iy0,jy0);
432             dz00             = _mm_sub_ps(iz0,jz0);
433             dx10             = _mm_sub_ps(ix1,jx0);
434             dy10             = _mm_sub_ps(iy1,jy0);
435             dz10             = _mm_sub_ps(iz1,jz0);
436             dx20             = _mm_sub_ps(ix2,jx0);
437             dy20             = _mm_sub_ps(iy2,jy0);
438             dz20             = _mm_sub_ps(iz2,jz0);
439
440             /* Calculate squared distance and things based on it */
441             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
442             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
443             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
444
445             rinv00           = gmx_mm_invsqrt_ps(rsq00);
446             rinv10           = gmx_mm_invsqrt_ps(rsq10);
447             rinv20           = gmx_mm_invsqrt_ps(rsq20);
448
449             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
450
451             /* Load parameters for j particles */
452             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
453                                                               charge+jnrC+0,charge+jnrD+0);
454             vdwjidx0A        = 2*vdwtype[jnrA+0];
455             vdwjidx0B        = 2*vdwtype[jnrB+0];
456             vdwjidx0C        = 2*vdwtype[jnrC+0];
457             vdwjidx0D        = 2*vdwtype[jnrD+0];
458
459             fjx0             = _mm_setzero_ps();
460             fjy0             = _mm_setzero_ps();
461             fjz0             = _mm_setzero_ps();
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             r00              = _mm_mul_ps(rsq00,rinv00);
468             r00              = _mm_andnot_ps(dummy_mask,r00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm_mul_ps(iq0,jq0);
472             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
473                                          vdwparam+vdwioffset0+vdwjidx0B,
474                                          vdwparam+vdwioffset0+vdwjidx0C,
475                                          vdwparam+vdwioffset0+vdwjidx0D,
476                                          &c6_00,&c12_00);
477
478             /* Calculate table index by multiplying r with table scale and truncate to integer */
479             rt               = _mm_mul_ps(r00,vftabscale);
480             vfitab           = _mm_cvttps_epi32(rt);
481             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
482             vfitab           = _mm_slli_epi32(vfitab,2);
483
484             /* CUBIC SPLINE TABLE ELECTROSTATICS */
485             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
486             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
487             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
488             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
489             _MM_TRANSPOSE4_PS(Y,F,G,H);
490             Heps             = _mm_mul_ps(vfeps,H);
491             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
492             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
493             velec            = _mm_mul_ps(qq00,VV);
494             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
495             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
496
497             /* LENNARD-JONES DISPERSION/REPULSION */
498
499             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
500             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
501             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
502             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
503             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
509             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
510
511             fscal            = _mm_add_ps(felec,fvdw);
512
513             fscal            = _mm_andnot_ps(dummy_mask,fscal);
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_ps(fscal,dx00);
517             ty               = _mm_mul_ps(fscal,dy00);
518             tz               = _mm_mul_ps(fscal,dz00);
519
520             /* Update vectorial force */
521             fix0             = _mm_add_ps(fix0,tx);
522             fiy0             = _mm_add_ps(fiy0,ty);
523             fiz0             = _mm_add_ps(fiz0,tz);
524
525             fjx0             = _mm_add_ps(fjx0,tx);
526             fjy0             = _mm_add_ps(fjy0,ty);
527             fjz0             = _mm_add_ps(fjz0,tz);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r10              = _mm_mul_ps(rsq10,rinv10);
534             r10              = _mm_andnot_ps(dummy_mask,r10);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _mm_mul_ps(iq1,jq0);
538
539             /* Calculate table index by multiplying r with table scale and truncate to integer */
540             rt               = _mm_mul_ps(r10,vftabscale);
541             vfitab           = _mm_cvttps_epi32(rt);
542             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
543             vfitab           = _mm_slli_epi32(vfitab,2);
544
545             /* CUBIC SPLINE TABLE ELECTROSTATICS */
546             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
547             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
548             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
549             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
550             _MM_TRANSPOSE4_PS(Y,F,G,H);
551             Heps             = _mm_mul_ps(vfeps,H);
552             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
553             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
554             velec            = _mm_mul_ps(qq10,VV);
555             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
556             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_andnot_ps(dummy_mask,velec);
560             velecsum         = _mm_add_ps(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_ps(fscal,dx10);
568             ty               = _mm_mul_ps(fscal,dy10);
569             tz               = _mm_mul_ps(fscal,dz10);
570
571             /* Update vectorial force */
572             fix1             = _mm_add_ps(fix1,tx);
573             fiy1             = _mm_add_ps(fiy1,ty);
574             fiz1             = _mm_add_ps(fiz1,tz);
575
576             fjx0             = _mm_add_ps(fjx0,tx);
577             fjy0             = _mm_add_ps(fjy0,ty);
578             fjz0             = _mm_add_ps(fjz0,tz);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r20              = _mm_mul_ps(rsq20,rinv20);
585             r20              = _mm_andnot_ps(dummy_mask,r20);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq20             = _mm_mul_ps(iq2,jq0);
589
590             /* Calculate table index by multiplying r with table scale and truncate to integer */
591             rt               = _mm_mul_ps(r20,vftabscale);
592             vfitab           = _mm_cvttps_epi32(rt);
593             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
594             vfitab           = _mm_slli_epi32(vfitab,2);
595
596             /* CUBIC SPLINE TABLE ELECTROSTATICS */
597             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
598             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
599             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
600             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
601             _MM_TRANSPOSE4_PS(Y,F,G,H);
602             Heps             = _mm_mul_ps(vfeps,H);
603             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
604             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
605             velec            = _mm_mul_ps(qq20,VV);
606             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
607             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_andnot_ps(dummy_mask,velec);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_andnot_ps(dummy_mask,fscal);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_ps(fscal,dx20);
619             ty               = _mm_mul_ps(fscal,dy20);
620             tz               = _mm_mul_ps(fscal,dz20);
621
622             /* Update vectorial force */
623             fix2             = _mm_add_ps(fix2,tx);
624             fiy2             = _mm_add_ps(fiy2,ty);
625             fiz2             = _mm_add_ps(fiz2,tz);
626
627             fjx0             = _mm_add_ps(fjx0,tx);
628             fjy0             = _mm_add_ps(fjy0,ty);
629             fjz0             = _mm_add_ps(fjz0,tz);
630
631             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
632             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
633             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
634             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
635
636             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
637
638             /* Inner loop uses 145 flops */
639         }
640
641         /* End of innermost loop */
642
643         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
644                                               f+i_coord_offset,fshift+i_shift_offset);
645
646         ggid                        = gid[iidx];
647         /* Update potential energies */
648         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
649         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
650
651         /* Increment number of inner iterations */
652         inneriter                  += j_index_end - j_index_start;
653
654         /* Outer loop uses 20 flops */
655     }
656
657     /* Increment number of outer iterations */
658     outeriter        += nri;
659
660     /* Update outer/inner flops */
661
662     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
663 }
664 /*
665  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse4_1_single
666  * Electrostatics interaction: CubicSplineTable
667  * VdW interaction:            LennardJones
668  * Geometry:                   Water3-Particle
669  * Calculate force/pot:        Force
670  */
671 void
672 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse4_1_single
673                     (t_nblist                    * gmx_restrict       nlist,
674                      rvec                        * gmx_restrict          xx,
675                      rvec                        * gmx_restrict          ff,
676                      t_forcerec                  * gmx_restrict          fr,
677                      t_mdatoms                   * gmx_restrict     mdatoms,
678                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
679                      t_nrnb                      * gmx_restrict        nrnb)
680 {
681     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
682      * just 0 for non-waters.
683      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
684      * jnr indices corresponding to data put in the four positions in the SIMD register.
685      */
686     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
687     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
688     int              jnrA,jnrB,jnrC,jnrD;
689     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
690     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
691     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
692     real             rcutoff_scalar;
693     real             *shiftvec,*fshift,*x,*f;
694     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
695     real             scratch[4*DIM];
696     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
697     int              vdwioffset0;
698     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
699     int              vdwioffset1;
700     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
701     int              vdwioffset2;
702     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
703     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
704     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
705     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
706     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
707     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
708     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
709     real             *charge;
710     int              nvdwtype;
711     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
712     int              *vdwtype;
713     real             *vdwparam;
714     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
715     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
716     __m128i          vfitab;
717     __m128i          ifour       = _mm_set1_epi32(4);
718     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
719     real             *vftab;
720     __m128           dummy_mask,cutoff_mask;
721     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
722     __m128           one     = _mm_set1_ps(1.0);
723     __m128           two     = _mm_set1_ps(2.0);
724     x                = xx[0];
725     f                = ff[0];
726
727     nri              = nlist->nri;
728     iinr             = nlist->iinr;
729     jindex           = nlist->jindex;
730     jjnr             = nlist->jjnr;
731     shiftidx         = nlist->shift;
732     gid              = nlist->gid;
733     shiftvec         = fr->shift_vec[0];
734     fshift           = fr->fshift[0];
735     facel            = _mm_set1_ps(fr->epsfac);
736     charge           = mdatoms->chargeA;
737     nvdwtype         = fr->ntype;
738     vdwparam         = fr->nbfp;
739     vdwtype          = mdatoms->typeA;
740
741     vftab            = kernel_data->table_elec->data;
742     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
743
744     /* Setup water-specific parameters */
745     inr              = nlist->iinr[0];
746     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
747     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
748     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
749     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
750
751     /* Avoid stupid compiler warnings */
752     jnrA = jnrB = jnrC = jnrD = 0;
753     j_coord_offsetA = 0;
754     j_coord_offsetB = 0;
755     j_coord_offsetC = 0;
756     j_coord_offsetD = 0;
757
758     outeriter        = 0;
759     inneriter        = 0;
760
761     for(iidx=0;iidx<4*DIM;iidx++)
762     {
763         scratch[iidx] = 0.0;
764     }
765
766     /* Start outer loop over neighborlists */
767     for(iidx=0; iidx<nri; iidx++)
768     {
769         /* Load shift vector for this list */
770         i_shift_offset   = DIM*shiftidx[iidx];
771
772         /* Load limits for loop over neighbors */
773         j_index_start    = jindex[iidx];
774         j_index_end      = jindex[iidx+1];
775
776         /* Get outer coordinate index */
777         inr              = iinr[iidx];
778         i_coord_offset   = DIM*inr;
779
780         /* Load i particle coords and add shift vector */
781         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
782                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
783
784         fix0             = _mm_setzero_ps();
785         fiy0             = _mm_setzero_ps();
786         fiz0             = _mm_setzero_ps();
787         fix1             = _mm_setzero_ps();
788         fiy1             = _mm_setzero_ps();
789         fiz1             = _mm_setzero_ps();
790         fix2             = _mm_setzero_ps();
791         fiy2             = _mm_setzero_ps();
792         fiz2             = _mm_setzero_ps();
793
794         /* Start inner kernel loop */
795         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
796         {
797
798             /* Get j neighbor index, and coordinate index */
799             jnrA             = jjnr[jidx];
800             jnrB             = jjnr[jidx+1];
801             jnrC             = jjnr[jidx+2];
802             jnrD             = jjnr[jidx+3];
803             j_coord_offsetA  = DIM*jnrA;
804             j_coord_offsetB  = DIM*jnrB;
805             j_coord_offsetC  = DIM*jnrC;
806             j_coord_offsetD  = DIM*jnrD;
807
808             /* load j atom coordinates */
809             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
810                                               x+j_coord_offsetC,x+j_coord_offsetD,
811                                               &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm_sub_ps(ix0,jx0);
815             dy00             = _mm_sub_ps(iy0,jy0);
816             dz00             = _mm_sub_ps(iz0,jz0);
817             dx10             = _mm_sub_ps(ix1,jx0);
818             dy10             = _mm_sub_ps(iy1,jy0);
819             dz10             = _mm_sub_ps(iz1,jz0);
820             dx20             = _mm_sub_ps(ix2,jx0);
821             dy20             = _mm_sub_ps(iy2,jy0);
822             dz20             = _mm_sub_ps(iz2,jz0);
823
824             /* Calculate squared distance and things based on it */
825             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
826             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
827             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
828
829             rinv00           = gmx_mm_invsqrt_ps(rsq00);
830             rinv10           = gmx_mm_invsqrt_ps(rsq10);
831             rinv20           = gmx_mm_invsqrt_ps(rsq20);
832
833             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
834
835             /* Load parameters for j particles */
836             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
837                                                               charge+jnrC+0,charge+jnrD+0);
838             vdwjidx0A        = 2*vdwtype[jnrA+0];
839             vdwjidx0B        = 2*vdwtype[jnrB+0];
840             vdwjidx0C        = 2*vdwtype[jnrC+0];
841             vdwjidx0D        = 2*vdwtype[jnrD+0];
842
843             fjx0             = _mm_setzero_ps();
844             fjy0             = _mm_setzero_ps();
845             fjz0             = _mm_setzero_ps();
846
847             /**************************
848              * CALCULATE INTERACTIONS *
849              **************************/
850
851             r00              = _mm_mul_ps(rsq00,rinv00);
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq00             = _mm_mul_ps(iq0,jq0);
855             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
856                                          vdwparam+vdwioffset0+vdwjidx0B,
857                                          vdwparam+vdwioffset0+vdwjidx0C,
858                                          vdwparam+vdwioffset0+vdwjidx0D,
859                                          &c6_00,&c12_00);
860
861             /* Calculate table index by multiplying r with table scale and truncate to integer */
862             rt               = _mm_mul_ps(r00,vftabscale);
863             vfitab           = _mm_cvttps_epi32(rt);
864             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
865             vfitab           = _mm_slli_epi32(vfitab,2);
866
867             /* CUBIC SPLINE TABLE ELECTROSTATICS */
868             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
869             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
870             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
871             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
872             _MM_TRANSPOSE4_PS(Y,F,G,H);
873             Heps             = _mm_mul_ps(vfeps,H);
874             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
875             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
876             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
877
878             /* LENNARD-JONES DISPERSION/REPULSION */
879
880             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
881             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
882
883             fscal            = _mm_add_ps(felec,fvdw);
884
885             /* Calculate temporary vectorial force */
886             tx               = _mm_mul_ps(fscal,dx00);
887             ty               = _mm_mul_ps(fscal,dy00);
888             tz               = _mm_mul_ps(fscal,dz00);
889
890             /* Update vectorial force */
891             fix0             = _mm_add_ps(fix0,tx);
892             fiy0             = _mm_add_ps(fiy0,ty);
893             fiz0             = _mm_add_ps(fiz0,tz);
894
895             fjx0             = _mm_add_ps(fjx0,tx);
896             fjy0             = _mm_add_ps(fjy0,ty);
897             fjz0             = _mm_add_ps(fjz0,tz);
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r10              = _mm_mul_ps(rsq10,rinv10);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq10             = _mm_mul_ps(iq1,jq0);
907
908             /* Calculate table index by multiplying r with table scale and truncate to integer */
909             rt               = _mm_mul_ps(r10,vftabscale);
910             vfitab           = _mm_cvttps_epi32(rt);
911             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
912             vfitab           = _mm_slli_epi32(vfitab,2);
913
914             /* CUBIC SPLINE TABLE ELECTROSTATICS */
915             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
916             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
917             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
918             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
919             _MM_TRANSPOSE4_PS(Y,F,G,H);
920             Heps             = _mm_mul_ps(vfeps,H);
921             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
922             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
923             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
924
925             fscal            = felec;
926
927             /* Calculate temporary vectorial force */
928             tx               = _mm_mul_ps(fscal,dx10);
929             ty               = _mm_mul_ps(fscal,dy10);
930             tz               = _mm_mul_ps(fscal,dz10);
931
932             /* Update vectorial force */
933             fix1             = _mm_add_ps(fix1,tx);
934             fiy1             = _mm_add_ps(fiy1,ty);
935             fiz1             = _mm_add_ps(fiz1,tz);
936
937             fjx0             = _mm_add_ps(fjx0,tx);
938             fjy0             = _mm_add_ps(fjy0,ty);
939             fjz0             = _mm_add_ps(fjz0,tz);
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             r20              = _mm_mul_ps(rsq20,rinv20);
946
947             /* Compute parameters for interactions between i and j atoms */
948             qq20             = _mm_mul_ps(iq2,jq0);
949
950             /* Calculate table index by multiplying r with table scale and truncate to integer */
951             rt               = _mm_mul_ps(r20,vftabscale);
952             vfitab           = _mm_cvttps_epi32(rt);
953             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
954             vfitab           = _mm_slli_epi32(vfitab,2);
955
956             /* CUBIC SPLINE TABLE ELECTROSTATICS */
957             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
958             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
959             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
960             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
961             _MM_TRANSPOSE4_PS(Y,F,G,H);
962             Heps             = _mm_mul_ps(vfeps,H);
963             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
964             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
965             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
966
967             fscal            = felec;
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_ps(fscal,dx20);
971             ty               = _mm_mul_ps(fscal,dy20);
972             tz               = _mm_mul_ps(fscal,dz20);
973
974             /* Update vectorial force */
975             fix2             = _mm_add_ps(fix2,tx);
976             fiy2             = _mm_add_ps(fiy2,ty);
977             fiz2             = _mm_add_ps(fiz2,tz);
978
979             fjx0             = _mm_add_ps(fjx0,tx);
980             fjy0             = _mm_add_ps(fjy0,ty);
981             fjz0             = _mm_add_ps(fjz0,tz);
982
983             fjptrA             = f+j_coord_offsetA;
984             fjptrB             = f+j_coord_offsetB;
985             fjptrC             = f+j_coord_offsetC;
986             fjptrD             = f+j_coord_offsetD;
987
988             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 125 flops */
991         }
992
993         if(jidx<j_index_end)
994         {
995
996             /* Get j neighbor index, and coordinate index */
997             jnrlistA         = jjnr[jidx];
998             jnrlistB         = jjnr[jidx+1];
999             jnrlistC         = jjnr[jidx+2];
1000             jnrlistD         = jjnr[jidx+3];
1001             /* Sign of each element will be negative for non-real atoms.
1002              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1003              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1004              */
1005             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1006             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1007             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1008             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1009             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1010             j_coord_offsetA  = DIM*jnrA;
1011             j_coord_offsetB  = DIM*jnrB;
1012             j_coord_offsetC  = DIM*jnrC;
1013             j_coord_offsetD  = DIM*jnrD;
1014
1015             /* load j atom coordinates */
1016             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1017                                               x+j_coord_offsetC,x+j_coord_offsetD,
1018                                               &jx0,&jy0,&jz0);
1019
1020             /* Calculate displacement vector */
1021             dx00             = _mm_sub_ps(ix0,jx0);
1022             dy00             = _mm_sub_ps(iy0,jy0);
1023             dz00             = _mm_sub_ps(iz0,jz0);
1024             dx10             = _mm_sub_ps(ix1,jx0);
1025             dy10             = _mm_sub_ps(iy1,jy0);
1026             dz10             = _mm_sub_ps(iz1,jz0);
1027             dx20             = _mm_sub_ps(ix2,jx0);
1028             dy20             = _mm_sub_ps(iy2,jy0);
1029             dz20             = _mm_sub_ps(iz2,jz0);
1030
1031             /* Calculate squared distance and things based on it */
1032             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1033             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1034             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1035
1036             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1037             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1038             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1039
1040             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1041
1042             /* Load parameters for j particles */
1043             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1044                                                               charge+jnrC+0,charge+jnrD+0);
1045             vdwjidx0A        = 2*vdwtype[jnrA+0];
1046             vdwjidx0B        = 2*vdwtype[jnrB+0];
1047             vdwjidx0C        = 2*vdwtype[jnrC+0];
1048             vdwjidx0D        = 2*vdwtype[jnrD+0];
1049
1050             fjx0             = _mm_setzero_ps();
1051             fjy0             = _mm_setzero_ps();
1052             fjz0             = _mm_setzero_ps();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r00              = _mm_mul_ps(rsq00,rinv00);
1059             r00              = _mm_andnot_ps(dummy_mask,r00);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq00             = _mm_mul_ps(iq0,jq0);
1063             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1064                                          vdwparam+vdwioffset0+vdwjidx0B,
1065                                          vdwparam+vdwioffset0+vdwjidx0C,
1066                                          vdwparam+vdwioffset0+vdwjidx0D,
1067                                          &c6_00,&c12_00);
1068
1069             /* Calculate table index by multiplying r with table scale and truncate to integer */
1070             rt               = _mm_mul_ps(r00,vftabscale);
1071             vfitab           = _mm_cvttps_epi32(rt);
1072             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1073             vfitab           = _mm_slli_epi32(vfitab,2);
1074
1075             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1076             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1077             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1078             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1079             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1080             _MM_TRANSPOSE4_PS(Y,F,G,H);
1081             Heps             = _mm_mul_ps(vfeps,H);
1082             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1083             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1084             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1085
1086             /* LENNARD-JONES DISPERSION/REPULSION */
1087
1088             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1089             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1090
1091             fscal            = _mm_add_ps(felec,fvdw);
1092
1093             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_ps(fscal,dx00);
1097             ty               = _mm_mul_ps(fscal,dy00);
1098             tz               = _mm_mul_ps(fscal,dz00);
1099
1100             /* Update vectorial force */
1101             fix0             = _mm_add_ps(fix0,tx);
1102             fiy0             = _mm_add_ps(fiy0,ty);
1103             fiz0             = _mm_add_ps(fiz0,tz);
1104
1105             fjx0             = _mm_add_ps(fjx0,tx);
1106             fjy0             = _mm_add_ps(fjy0,ty);
1107             fjz0             = _mm_add_ps(fjz0,tz);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r10              = _mm_mul_ps(rsq10,rinv10);
1114             r10              = _mm_andnot_ps(dummy_mask,r10);
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq10             = _mm_mul_ps(iq1,jq0);
1118
1119             /* Calculate table index by multiplying r with table scale and truncate to integer */
1120             rt               = _mm_mul_ps(r10,vftabscale);
1121             vfitab           = _mm_cvttps_epi32(rt);
1122             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1123             vfitab           = _mm_slli_epi32(vfitab,2);
1124
1125             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1126             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1127             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1128             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1129             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1130             _MM_TRANSPOSE4_PS(Y,F,G,H);
1131             Heps             = _mm_mul_ps(vfeps,H);
1132             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1133             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1134             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm_mul_ps(fscal,dx10);
1142             ty               = _mm_mul_ps(fscal,dy10);
1143             tz               = _mm_mul_ps(fscal,dz10);
1144
1145             /* Update vectorial force */
1146             fix1             = _mm_add_ps(fix1,tx);
1147             fiy1             = _mm_add_ps(fiy1,ty);
1148             fiz1             = _mm_add_ps(fiz1,tz);
1149
1150             fjx0             = _mm_add_ps(fjx0,tx);
1151             fjy0             = _mm_add_ps(fjy0,ty);
1152             fjz0             = _mm_add_ps(fjz0,tz);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r20              = _mm_mul_ps(rsq20,rinv20);
1159             r20              = _mm_andnot_ps(dummy_mask,r20);
1160
1161             /* Compute parameters for interactions between i and j atoms */
1162             qq20             = _mm_mul_ps(iq2,jq0);
1163
1164             /* Calculate table index by multiplying r with table scale and truncate to integer */
1165             rt               = _mm_mul_ps(r20,vftabscale);
1166             vfitab           = _mm_cvttps_epi32(rt);
1167             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1168             vfitab           = _mm_slli_epi32(vfitab,2);
1169
1170             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1171             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1172             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1173             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1174             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1175             _MM_TRANSPOSE4_PS(Y,F,G,H);
1176             Heps             = _mm_mul_ps(vfeps,H);
1177             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1178             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1179             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm_mul_ps(fscal,dx20);
1187             ty               = _mm_mul_ps(fscal,dy20);
1188             tz               = _mm_mul_ps(fscal,dz20);
1189
1190             /* Update vectorial force */
1191             fix2             = _mm_add_ps(fix2,tx);
1192             fiy2             = _mm_add_ps(fiy2,ty);
1193             fiz2             = _mm_add_ps(fiz2,tz);
1194
1195             fjx0             = _mm_add_ps(fjx0,tx);
1196             fjy0             = _mm_add_ps(fjy0,ty);
1197             fjz0             = _mm_add_ps(fjz0,tz);
1198
1199             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1200             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1201             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1202             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1203
1204             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1205
1206             /* Inner loop uses 128 flops */
1207         }
1208
1209         /* End of innermost loop */
1210
1211         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1212                                               f+i_coord_offset,fshift+i_shift_offset);
1213
1214         /* Increment number of inner iterations */
1215         inneriter                  += j_index_end - j_index_start;
1216
1217         /* Outer loop uses 18 flops */
1218     }
1219
1220     /* Increment number of outer iterations */
1221     outeriter        += nri;
1222
1223     /* Update outer/inner flops */
1224
1225     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1226 }