Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec->data;
124     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_ps();
159         fiy0             = _mm_setzero_ps();
160         fiz0             = _mm_setzero_ps();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm_invsqrt_ps(rsq00);
198
199             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
203                                                               charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm_mul_ps(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_ps(iq0,jq0);
217             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,
219                                          vdwparam+vdwioffset0+vdwjidx0C,
220                                          vdwparam+vdwioffset0+vdwjidx0D,
221                                          &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm_mul_ps(r00,vftabscale);
225             vfitab           = _mm_cvttps_epi32(rt);
226             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
227             vfitab           = _mm_slli_epi32(vfitab,2);
228
229             /* CUBIC SPLINE TABLE ELECTROSTATICS */
230             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
231             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
232             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
233             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
234             _MM_TRANSPOSE4_PS(Y,F,G,H);
235             Heps             = _mm_mul_ps(vfeps,H);
236             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
237             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
238             velec            = _mm_mul_ps(qq00,VV);
239             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
240             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
246             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
247             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
248             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm_add_ps(velecsum,velec);
252             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
253
254             fscal            = _mm_add_ps(felec,fvdw);
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm_mul_ps(fscal,dx00);
258             ty               = _mm_mul_ps(fscal,dy00);
259             tz               = _mm_mul_ps(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm_add_ps(fix0,tx);
263             fiy0             = _mm_add_ps(fiy0,ty);
264             fiz0             = _mm_add_ps(fiz0,tz);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
271
272             /* Inner loop uses 56 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
286              */
287             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
289             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
290             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
291             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
292             j_coord_offsetA  = DIM*jnrA;
293             j_coord_offsetB  = DIM*jnrB;
294             j_coord_offsetC  = DIM*jnrC;
295             j_coord_offsetD  = DIM*jnrD;
296
297             /* load j atom coordinates */
298             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
299                                               x+j_coord_offsetC,x+j_coord_offsetD,
300                                               &jx0,&jy0,&jz0);
301
302             /* Calculate displacement vector */
303             dx00             = _mm_sub_ps(ix0,jx0);
304             dy00             = _mm_sub_ps(iy0,jy0);
305             dz00             = _mm_sub_ps(iz0,jz0);
306
307             /* Calculate squared distance and things based on it */
308             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
309
310             rinv00           = gmx_mm_invsqrt_ps(rsq00);
311
312             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
313
314             /* Load parameters for j particles */
315             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
316                                                               charge+jnrC+0,charge+jnrD+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318             vdwjidx0B        = 2*vdwtype[jnrB+0];
319             vdwjidx0C        = 2*vdwtype[jnrC+0];
320             vdwjidx0D        = 2*vdwtype[jnrD+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r00              = _mm_mul_ps(rsq00,rinv00);
327             r00              = _mm_andnot_ps(dummy_mask,r00);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq00             = _mm_mul_ps(iq0,jq0);
331             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
332                                          vdwparam+vdwioffset0+vdwjidx0B,
333                                          vdwparam+vdwioffset0+vdwjidx0C,
334                                          vdwparam+vdwioffset0+vdwjidx0D,
335                                          &c6_00,&c12_00);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_ps(r00,vftabscale);
339             vfitab           = _mm_cvttps_epi32(rt);
340             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
341             vfitab           = _mm_slli_epi32(vfitab,2);
342
343             /* CUBIC SPLINE TABLE ELECTROSTATICS */
344             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
345             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
346             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
347             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
348             _MM_TRANSPOSE4_PS(Y,F,G,H);
349             Heps             = _mm_mul_ps(vfeps,H);
350             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
351             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
352             velec            = _mm_mul_ps(qq00,VV);
353             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
354             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
355
356             /* LENNARD-JONES DISPERSION/REPULSION */
357
358             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
359             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
360             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
361             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
362             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_andnot_ps(dummy_mask,velec);
366             velecsum         = _mm_add_ps(velecsum,velec);
367             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
368             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
369
370             fscal            = _mm_add_ps(felec,fvdw);
371
372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm_mul_ps(fscal,dx00);
376             ty               = _mm_mul_ps(fscal,dy00);
377             tz               = _mm_mul_ps(fscal,dz00);
378
379             /* Update vectorial force */
380             fix0             = _mm_add_ps(fix0,tx);
381             fiy0             = _mm_add_ps(fiy0,ty);
382             fiz0             = _mm_add_ps(fiz0,tz);
383
384             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
385             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
386             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
387             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
388             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
389
390             /* Inner loop uses 57 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
401         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
402
403         /* Increment number of inner iterations */
404         inneriter                  += j_index_end - j_index_start;
405
406         /* Outer loop uses 9 flops */
407     }
408
409     /* Increment number of outer iterations */
410     outeriter        += nri;
411
412     /* Update outer/inner flops */
413
414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
415 }
416 /*
417  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_single
418  * Electrostatics interaction: CubicSplineTable
419  * VdW interaction:            LennardJones
420  * Geometry:                   Particle-Particle
421  * Calculate force/pot:        Force
422  */
423 void
424 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_single
425                     (t_nblist                    * gmx_restrict       nlist,
426                      rvec                        * gmx_restrict          xx,
427                      rvec                        * gmx_restrict          ff,
428                      t_forcerec                  * gmx_restrict          fr,
429                      t_mdatoms                   * gmx_restrict     mdatoms,
430                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
431                      t_nrnb                      * gmx_restrict        nrnb)
432 {
433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
434      * just 0 for non-waters.
435      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
436      * jnr indices corresponding to data put in the four positions in the SIMD register.
437      */
438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
440     int              jnrA,jnrB,jnrC,jnrD;
441     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
442     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
443     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
444     real             rcutoff_scalar;
445     real             *shiftvec,*fshift,*x,*f;
446     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
447     real             scratch[4*DIM];
448     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
449     int              vdwioffset0;
450     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
451     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
452     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
453     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
454     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
455     real             *charge;
456     int              nvdwtype;
457     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
458     int              *vdwtype;
459     real             *vdwparam;
460     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
461     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
462     __m128i          vfitab;
463     __m128i          ifour       = _mm_set1_epi32(4);
464     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
465     real             *vftab;
466     __m128           dummy_mask,cutoff_mask;
467     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
468     __m128           one     = _mm_set1_ps(1.0);
469     __m128           two     = _mm_set1_ps(2.0);
470     x                = xx[0];
471     f                = ff[0];
472
473     nri              = nlist->nri;
474     iinr             = nlist->iinr;
475     jindex           = nlist->jindex;
476     jjnr             = nlist->jjnr;
477     shiftidx         = nlist->shift;
478     gid              = nlist->gid;
479     shiftvec         = fr->shift_vec[0];
480     fshift           = fr->fshift[0];
481     facel            = _mm_set1_ps(fr->epsfac);
482     charge           = mdatoms->chargeA;
483     nvdwtype         = fr->ntype;
484     vdwparam         = fr->nbfp;
485     vdwtype          = mdatoms->typeA;
486
487     vftab            = kernel_data->table_elec->data;
488     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
489
490     /* Avoid stupid compiler warnings */
491     jnrA = jnrB = jnrC = jnrD = 0;
492     j_coord_offsetA = 0;
493     j_coord_offsetB = 0;
494     j_coord_offsetC = 0;
495     j_coord_offsetD = 0;
496
497     outeriter        = 0;
498     inneriter        = 0;
499
500     for(iidx=0;iidx<4*DIM;iidx++)
501     {
502         scratch[iidx] = 0.0;
503     }
504
505     /* Start outer loop over neighborlists */
506     for(iidx=0; iidx<nri; iidx++)
507     {
508         /* Load shift vector for this list */
509         i_shift_offset   = DIM*shiftidx[iidx];
510
511         /* Load limits for loop over neighbors */
512         j_index_start    = jindex[iidx];
513         j_index_end      = jindex[iidx+1];
514
515         /* Get outer coordinate index */
516         inr              = iinr[iidx];
517         i_coord_offset   = DIM*inr;
518
519         /* Load i particle coords and add shift vector */
520         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
521
522         fix0             = _mm_setzero_ps();
523         fiy0             = _mm_setzero_ps();
524         fiz0             = _mm_setzero_ps();
525
526         /* Load parameters for i particles */
527         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
528         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
529
530         /* Start inner kernel loop */
531         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
532         {
533
534             /* Get j neighbor index, and coordinate index */
535             jnrA             = jjnr[jidx];
536             jnrB             = jjnr[jidx+1];
537             jnrC             = jjnr[jidx+2];
538             jnrD             = jjnr[jidx+3];
539             j_coord_offsetA  = DIM*jnrA;
540             j_coord_offsetB  = DIM*jnrB;
541             j_coord_offsetC  = DIM*jnrC;
542             j_coord_offsetD  = DIM*jnrD;
543
544             /* load j atom coordinates */
545             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
546                                               x+j_coord_offsetC,x+j_coord_offsetD,
547                                               &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _mm_sub_ps(ix0,jx0);
551             dy00             = _mm_sub_ps(iy0,jy0);
552             dz00             = _mm_sub_ps(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
556
557             rinv00           = gmx_mm_invsqrt_ps(rsq00);
558
559             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
563                                                               charge+jnrC+0,charge+jnrD+0);
564             vdwjidx0A        = 2*vdwtype[jnrA+0];
565             vdwjidx0B        = 2*vdwtype[jnrB+0];
566             vdwjidx0C        = 2*vdwtype[jnrC+0];
567             vdwjidx0D        = 2*vdwtype[jnrD+0];
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             r00              = _mm_mul_ps(rsq00,rinv00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq00             = _mm_mul_ps(iq0,jq0);
577             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
578                                          vdwparam+vdwioffset0+vdwjidx0B,
579                                          vdwparam+vdwioffset0+vdwjidx0C,
580                                          vdwparam+vdwioffset0+vdwjidx0D,
581                                          &c6_00,&c12_00);
582
583             /* Calculate table index by multiplying r with table scale and truncate to integer */
584             rt               = _mm_mul_ps(r00,vftabscale);
585             vfitab           = _mm_cvttps_epi32(rt);
586             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
587             vfitab           = _mm_slli_epi32(vfitab,2);
588
589             /* CUBIC SPLINE TABLE ELECTROSTATICS */
590             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
591             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
592             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
593             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
594             _MM_TRANSPOSE4_PS(Y,F,G,H);
595             Heps             = _mm_mul_ps(vfeps,H);
596             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
597             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
598             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
599
600             /* LENNARD-JONES DISPERSION/REPULSION */
601
602             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
603             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
604
605             fscal            = _mm_add_ps(felec,fvdw);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx00);
609             ty               = _mm_mul_ps(fscal,dy00);
610             tz               = _mm_mul_ps(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm_add_ps(fix0,tx);
614             fiy0             = _mm_add_ps(fiy0,ty);
615             fiz0             = _mm_add_ps(fiz0,tz);
616
617             fjptrA             = f+j_coord_offsetA;
618             fjptrB             = f+j_coord_offsetB;
619             fjptrC             = f+j_coord_offsetC;
620             fjptrD             = f+j_coord_offsetD;
621             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
622
623             /* Inner loop uses 47 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             /* Get j neighbor index, and coordinate index */
630             jnrlistA         = jjnr[jidx];
631             jnrlistB         = jjnr[jidx+1];
632             jnrlistC         = jjnr[jidx+2];
633             jnrlistD         = jjnr[jidx+3];
634             /* Sign of each element will be negative for non-real atoms.
635              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
636              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
637              */
638             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
639             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
640             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
641             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
642             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
643             j_coord_offsetA  = DIM*jnrA;
644             j_coord_offsetB  = DIM*jnrB;
645             j_coord_offsetC  = DIM*jnrC;
646             j_coord_offsetD  = DIM*jnrD;
647
648             /* load j atom coordinates */
649             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
650                                               x+j_coord_offsetC,x+j_coord_offsetD,
651                                               &jx0,&jy0,&jz0);
652
653             /* Calculate displacement vector */
654             dx00             = _mm_sub_ps(ix0,jx0);
655             dy00             = _mm_sub_ps(iy0,jy0);
656             dz00             = _mm_sub_ps(iz0,jz0);
657
658             /* Calculate squared distance and things based on it */
659             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
660
661             rinv00           = gmx_mm_invsqrt_ps(rsq00);
662
663             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
664
665             /* Load parameters for j particles */
666             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
667                                                               charge+jnrC+0,charge+jnrD+0);
668             vdwjidx0A        = 2*vdwtype[jnrA+0];
669             vdwjidx0B        = 2*vdwtype[jnrB+0];
670             vdwjidx0C        = 2*vdwtype[jnrC+0];
671             vdwjidx0D        = 2*vdwtype[jnrD+0];
672
673             /**************************
674              * CALCULATE INTERACTIONS *
675              **************************/
676
677             r00              = _mm_mul_ps(rsq00,rinv00);
678             r00              = _mm_andnot_ps(dummy_mask,r00);
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq00             = _mm_mul_ps(iq0,jq0);
682             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
683                                          vdwparam+vdwioffset0+vdwjidx0B,
684                                          vdwparam+vdwioffset0+vdwjidx0C,
685                                          vdwparam+vdwioffset0+vdwjidx0D,
686                                          &c6_00,&c12_00);
687
688             /* Calculate table index by multiplying r with table scale and truncate to integer */
689             rt               = _mm_mul_ps(r00,vftabscale);
690             vfitab           = _mm_cvttps_epi32(rt);
691             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
692             vfitab           = _mm_slli_epi32(vfitab,2);
693
694             /* CUBIC SPLINE TABLE ELECTROSTATICS */
695             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
696             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
697             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
698             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
699             _MM_TRANSPOSE4_PS(Y,F,G,H);
700             Heps             = _mm_mul_ps(vfeps,H);
701             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
702             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
703             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
704
705             /* LENNARD-JONES DISPERSION/REPULSION */
706
707             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
708             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
709
710             fscal            = _mm_add_ps(felec,fvdw);
711
712             fscal            = _mm_andnot_ps(dummy_mask,fscal);
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm_mul_ps(fscal,dx00);
716             ty               = _mm_mul_ps(fscal,dy00);
717             tz               = _mm_mul_ps(fscal,dz00);
718
719             /* Update vectorial force */
720             fix0             = _mm_add_ps(fix0,tx);
721             fiy0             = _mm_add_ps(fiy0,ty);
722             fiz0             = _mm_add_ps(fiz0,tz);
723
724             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
725             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
726             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
727             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
728             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
729
730             /* Inner loop uses 48 flops */
731         }
732
733         /* End of innermost loop */
734
735         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
736                                               f+i_coord_offset,fshift+i_shift_offset);
737
738         /* Increment number of inner iterations */
739         inneriter                  += j_index_end - j_index_start;
740
741         /* Outer loop uses 7 flops */
742     }
743
744     /* Increment number of outer iterations */
745     outeriter        += nri;
746
747     /* Update outer/inner flops */
748
749     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
750 }