Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
135     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
136     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181         fix3             = _mm_setzero_ps();
182         fiy3             = _mm_setzero_ps();
183         fiz3             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218             dx30             = _mm_sub_ps(ix3,jx0);
219             dy30             = _mm_sub_ps(iy3,jy0);
220             dz30             = _mm_sub_ps(iz3,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
227
228             rinv00           = sse41_invsqrt_f(rsq00);
229             rinv10           = sse41_invsqrt_f(rsq10);
230             rinv20           = sse41_invsqrt_f(rsq20);
231             rinv30           = sse41_invsqrt_f(rsq30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                               charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm_setzero_ps();
242             fjy0             = _mm_setzero_ps();
243             fjz0             = _mm_setzero_ps();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm_mul_ps(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* Calculate table index by multiplying r with table scale and truncate to integer */
259             rt               = _mm_mul_ps(r00,vftabscale);
260             vfitab           = _mm_cvttps_epi32(rt);
261             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
262             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
263
264             /* CUBIC SPLINE TABLE DISPERSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
269             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
270             _MM_TRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm_mul_ps(vfeps,H);
272             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
273             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
274             vvdw6            = _mm_mul_ps(c6_00,VV);
275             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
276             fvdw6            = _mm_mul_ps(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Heps             = _mm_mul_ps(vfeps,H);
286             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
287             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
288             vvdw12           = _mm_mul_ps(c12_00,VV);
289             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
290             fvdw12           = _mm_mul_ps(c12_00,FF);
291             vvdw             = _mm_add_ps(vvdw12,vvdw6);
292             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_ps(fscal,dx00);
301             ty               = _mm_mul_ps(fscal,dy00);
302             tz               = _mm_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_ps(fix0,tx);
306             fiy0             = _mm_add_ps(fiy0,ty);
307             fiz0             = _mm_add_ps(fiz0,tz);
308
309             fjx0             = _mm_add_ps(fjx0,tx);
310             fjy0             = _mm_add_ps(fjy0,ty);
311             fjz0             = _mm_add_ps(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* Calculate table index by multiplying r with table scale and truncate to integer */
323             rt               = _mm_mul_ps(r10,vftabscale);
324             vfitab           = _mm_cvttps_epi32(rt);
325             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
326             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
327
328             /* CUBIC SPLINE TABLE ELECTROSTATICS */
329             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
330             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
331             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
332             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
333             _MM_TRANSPOSE4_PS(Y,F,G,H);
334             Heps             = _mm_mul_ps(vfeps,H);
335             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
336             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
337             velec            = _mm_mul_ps(qq10,VV);
338             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
339             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx10);
348             ty               = _mm_mul_ps(fscal,dy10);
349             tz               = _mm_mul_ps(fscal,dz10);
350
351             /* Update vectorial force */
352             fix1             = _mm_add_ps(fix1,tx);
353             fiy1             = _mm_add_ps(fiy1,ty);
354             fiz1             = _mm_add_ps(fiz1,tz);
355
356             fjx0             = _mm_add_ps(fjx0,tx);
357             fjy0             = _mm_add_ps(fjy0,ty);
358             fjz0             = _mm_add_ps(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r20              = _mm_mul_ps(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_ps(iq2,jq0);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_ps(r20,vftabscale);
371             vfitab           = _mm_cvttps_epi32(rt);
372             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
373             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
374
375             /* CUBIC SPLINE TABLE ELECTROSTATICS */
376             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
377             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
378             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
379             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
380             _MM_TRANSPOSE4_PS(Y,F,G,H);
381             Heps             = _mm_mul_ps(vfeps,H);
382             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
383             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
384             velec            = _mm_mul_ps(qq20,VV);
385             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
386             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm_mul_ps(fscal,dx20);
395             ty               = _mm_mul_ps(fscal,dy20);
396             tz               = _mm_mul_ps(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm_add_ps(fix2,tx);
400             fiy2             = _mm_add_ps(fiy2,ty);
401             fiz2             = _mm_add_ps(fiz2,tz);
402
403             fjx0             = _mm_add_ps(fjx0,tx);
404             fjy0             = _mm_add_ps(fjy0,ty);
405             fjz0             = _mm_add_ps(fjz0,tz);
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             r30              = _mm_mul_ps(rsq30,rinv30);
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq30             = _mm_mul_ps(iq3,jq0);
415
416             /* Calculate table index by multiplying r with table scale and truncate to integer */
417             rt               = _mm_mul_ps(r30,vftabscale);
418             vfitab           = _mm_cvttps_epi32(rt);
419             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
420             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
421
422             /* CUBIC SPLINE TABLE ELECTROSTATICS */
423             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
424             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
425             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
426             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
427             _MM_TRANSPOSE4_PS(Y,F,G,H);
428             Heps             = _mm_mul_ps(vfeps,H);
429             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
430             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
431             velec            = _mm_mul_ps(qq30,VV);
432             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
433             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
434
435             /* Update potential sum for this i atom from the interaction with this j atom. */
436             velecsum         = _mm_add_ps(velecsum,velec);
437
438             fscal            = felec;
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm_mul_ps(fscal,dx30);
442             ty               = _mm_mul_ps(fscal,dy30);
443             tz               = _mm_mul_ps(fscal,dz30);
444
445             /* Update vectorial force */
446             fix3             = _mm_add_ps(fix3,tx);
447             fiy3             = _mm_add_ps(fiy3,ty);
448             fiz3             = _mm_add_ps(fiz3,tz);
449
450             fjx0             = _mm_add_ps(fjx0,tx);
451             fjy0             = _mm_add_ps(fjy0,ty);
452             fjz0             = _mm_add_ps(fjz0,tz);
453
454             fjptrA             = f+j_coord_offsetA;
455             fjptrB             = f+j_coord_offsetB;
456             fjptrC             = f+j_coord_offsetC;
457             fjptrD             = f+j_coord_offsetD;
458
459             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
460
461             /* Inner loop uses 185 flops */
462         }
463
464         if(jidx<j_index_end)
465         {
466
467             /* Get j neighbor index, and coordinate index */
468             jnrlistA         = jjnr[jidx];
469             jnrlistB         = jjnr[jidx+1];
470             jnrlistC         = jjnr[jidx+2];
471             jnrlistD         = jjnr[jidx+3];
472             /* Sign of each element will be negative for non-real atoms.
473              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
474              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
475              */
476             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
477             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
478             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
479             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
480             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
481             j_coord_offsetA  = DIM*jnrA;
482             j_coord_offsetB  = DIM*jnrB;
483             j_coord_offsetC  = DIM*jnrC;
484             j_coord_offsetD  = DIM*jnrD;
485
486             /* load j atom coordinates */
487             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
488                                               x+j_coord_offsetC,x+j_coord_offsetD,
489                                               &jx0,&jy0,&jz0);
490
491             /* Calculate displacement vector */
492             dx00             = _mm_sub_ps(ix0,jx0);
493             dy00             = _mm_sub_ps(iy0,jy0);
494             dz00             = _mm_sub_ps(iz0,jz0);
495             dx10             = _mm_sub_ps(ix1,jx0);
496             dy10             = _mm_sub_ps(iy1,jy0);
497             dz10             = _mm_sub_ps(iz1,jz0);
498             dx20             = _mm_sub_ps(ix2,jx0);
499             dy20             = _mm_sub_ps(iy2,jy0);
500             dz20             = _mm_sub_ps(iz2,jz0);
501             dx30             = _mm_sub_ps(ix3,jx0);
502             dy30             = _mm_sub_ps(iy3,jy0);
503             dz30             = _mm_sub_ps(iz3,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
507             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
508             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
509             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
510
511             rinv00           = sse41_invsqrt_f(rsq00);
512             rinv10           = sse41_invsqrt_f(rsq10);
513             rinv20           = sse41_invsqrt_f(rsq20);
514             rinv30           = sse41_invsqrt_f(rsq30);
515
516             /* Load parameters for j particles */
517             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
518                                                               charge+jnrC+0,charge+jnrD+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520             vdwjidx0B        = 2*vdwtype[jnrB+0];
521             vdwjidx0C        = 2*vdwtype[jnrC+0];
522             vdwjidx0D        = 2*vdwtype[jnrD+0];
523
524             fjx0             = _mm_setzero_ps();
525             fjy0             = _mm_setzero_ps();
526             fjz0             = _mm_setzero_ps();
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_ps(rsq00,rinv00);
533             r00              = _mm_andnot_ps(dummy_mask,r00);
534
535             /* Compute parameters for interactions between i and j atoms */
536             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,
538                                          vdwparam+vdwioffset0+vdwjidx0C,
539                                          vdwparam+vdwioffset0+vdwjidx0D,
540                                          &c6_00,&c12_00);
541
542             /* Calculate table index by multiplying r with table scale and truncate to integer */
543             rt               = _mm_mul_ps(r00,vftabscale);
544             vfitab           = _mm_cvttps_epi32(rt);
545             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
546             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
547
548             /* CUBIC SPLINE TABLE DISPERSION */
549             vfitab           = _mm_add_epi32(vfitab,ifour);
550             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
551             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
552             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
553             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
554             _MM_TRANSPOSE4_PS(Y,F,G,H);
555             Heps             = _mm_mul_ps(vfeps,H);
556             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
557             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
558             vvdw6            = _mm_mul_ps(c6_00,VV);
559             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
560             fvdw6            = _mm_mul_ps(c6_00,FF);
561
562             /* CUBIC SPLINE TABLE REPULSION */
563             vfitab           = _mm_add_epi32(vfitab,ifour);
564             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
565             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
566             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
567             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
568             _MM_TRANSPOSE4_PS(Y,F,G,H);
569             Heps             = _mm_mul_ps(vfeps,H);
570             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
571             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
572             vvdw12           = _mm_mul_ps(c12_00,VV);
573             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
574             fvdw12           = _mm_mul_ps(c12_00,FF);
575             vvdw             = _mm_add_ps(vvdw12,vvdw6);
576             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
580             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
581
582             fscal            = fvdw;
583
584             fscal            = _mm_andnot_ps(dummy_mask,fscal);
585
586             /* Calculate temporary vectorial force */
587             tx               = _mm_mul_ps(fscal,dx00);
588             ty               = _mm_mul_ps(fscal,dy00);
589             tz               = _mm_mul_ps(fscal,dz00);
590
591             /* Update vectorial force */
592             fix0             = _mm_add_ps(fix0,tx);
593             fiy0             = _mm_add_ps(fiy0,ty);
594             fiz0             = _mm_add_ps(fiz0,tz);
595
596             fjx0             = _mm_add_ps(fjx0,tx);
597             fjy0             = _mm_add_ps(fjy0,ty);
598             fjz0             = _mm_add_ps(fjz0,tz);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r10              = _mm_mul_ps(rsq10,rinv10);
605             r10              = _mm_andnot_ps(dummy_mask,r10);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq10             = _mm_mul_ps(iq1,jq0);
609
610             /* Calculate table index by multiplying r with table scale and truncate to integer */
611             rt               = _mm_mul_ps(r10,vftabscale);
612             vfitab           = _mm_cvttps_epi32(rt);
613             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
614             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
615
616             /* CUBIC SPLINE TABLE ELECTROSTATICS */
617             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
618             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
619             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
620             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
621             _MM_TRANSPOSE4_PS(Y,F,G,H);
622             Heps             = _mm_mul_ps(vfeps,H);
623             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
624             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
625             velec            = _mm_mul_ps(qq10,VV);
626             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
627             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_andnot_ps(dummy_mask,velec);
631             velecsum         = _mm_add_ps(velecsum,velec);
632
633             fscal            = felec;
634
635             fscal            = _mm_andnot_ps(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm_mul_ps(fscal,dx10);
639             ty               = _mm_mul_ps(fscal,dy10);
640             tz               = _mm_mul_ps(fscal,dz10);
641
642             /* Update vectorial force */
643             fix1             = _mm_add_ps(fix1,tx);
644             fiy1             = _mm_add_ps(fiy1,ty);
645             fiz1             = _mm_add_ps(fiz1,tz);
646
647             fjx0             = _mm_add_ps(fjx0,tx);
648             fjy0             = _mm_add_ps(fjy0,ty);
649             fjz0             = _mm_add_ps(fjz0,tz);
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             r20              = _mm_mul_ps(rsq20,rinv20);
656             r20              = _mm_andnot_ps(dummy_mask,r20);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq20             = _mm_mul_ps(iq2,jq0);
660
661             /* Calculate table index by multiplying r with table scale and truncate to integer */
662             rt               = _mm_mul_ps(r20,vftabscale);
663             vfitab           = _mm_cvttps_epi32(rt);
664             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
665             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
666
667             /* CUBIC SPLINE TABLE ELECTROSTATICS */
668             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Heps             = _mm_mul_ps(vfeps,H);
674             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
675             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
676             velec            = _mm_mul_ps(qq20,VV);
677             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
678             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm_andnot_ps(dummy_mask,velec);
682             velecsum         = _mm_add_ps(velecsum,velec);
683
684             fscal            = felec;
685
686             fscal            = _mm_andnot_ps(dummy_mask,fscal);
687
688             /* Calculate temporary vectorial force */
689             tx               = _mm_mul_ps(fscal,dx20);
690             ty               = _mm_mul_ps(fscal,dy20);
691             tz               = _mm_mul_ps(fscal,dz20);
692
693             /* Update vectorial force */
694             fix2             = _mm_add_ps(fix2,tx);
695             fiy2             = _mm_add_ps(fiy2,ty);
696             fiz2             = _mm_add_ps(fiz2,tz);
697
698             fjx0             = _mm_add_ps(fjx0,tx);
699             fjy0             = _mm_add_ps(fjy0,ty);
700             fjz0             = _mm_add_ps(fjz0,tz);
701
702             /**************************
703              * CALCULATE INTERACTIONS *
704              **************************/
705
706             r30              = _mm_mul_ps(rsq30,rinv30);
707             r30              = _mm_andnot_ps(dummy_mask,r30);
708
709             /* Compute parameters for interactions between i and j atoms */
710             qq30             = _mm_mul_ps(iq3,jq0);
711
712             /* Calculate table index by multiplying r with table scale and truncate to integer */
713             rt               = _mm_mul_ps(r30,vftabscale);
714             vfitab           = _mm_cvttps_epi32(rt);
715             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
716             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
717
718             /* CUBIC SPLINE TABLE ELECTROSTATICS */
719             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
720             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
721             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
722             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
723             _MM_TRANSPOSE4_PS(Y,F,G,H);
724             Heps             = _mm_mul_ps(vfeps,H);
725             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
726             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
727             velec            = _mm_mul_ps(qq30,VV);
728             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
729             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
730
731             /* Update potential sum for this i atom from the interaction with this j atom. */
732             velec            = _mm_andnot_ps(dummy_mask,velec);
733             velecsum         = _mm_add_ps(velecsum,velec);
734
735             fscal            = felec;
736
737             fscal            = _mm_andnot_ps(dummy_mask,fscal);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm_mul_ps(fscal,dx30);
741             ty               = _mm_mul_ps(fscal,dy30);
742             tz               = _mm_mul_ps(fscal,dz30);
743
744             /* Update vectorial force */
745             fix3             = _mm_add_ps(fix3,tx);
746             fiy3             = _mm_add_ps(fiy3,ty);
747             fiz3             = _mm_add_ps(fiz3,tz);
748
749             fjx0             = _mm_add_ps(fjx0,tx);
750             fjy0             = _mm_add_ps(fjy0,ty);
751             fjz0             = _mm_add_ps(fjz0,tz);
752
753             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
754             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
755             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
756             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
757
758             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
759
760             /* Inner loop uses 189 flops */
761         }
762
763         /* End of innermost loop */
764
765         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
766                                               f+i_coord_offset,fshift+i_shift_offset);
767
768         ggid                        = gid[iidx];
769         /* Update potential energies */
770         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
771         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
772
773         /* Increment number of inner iterations */
774         inneriter                  += j_index_end - j_index_start;
775
776         /* Outer loop uses 26 flops */
777     }
778
779     /* Increment number of outer iterations */
780     outeriter        += nri;
781
782     /* Update outer/inner flops */
783
784     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*189);
785 }
786 /*
787  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_single
788  * Electrostatics interaction: CubicSplineTable
789  * VdW interaction:            CubicSplineTable
790  * Geometry:                   Water4-Particle
791  * Calculate force/pot:        Force
792  */
793 void
794 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_single
795                     (t_nblist                    * gmx_restrict       nlist,
796                      rvec                        * gmx_restrict          xx,
797                      rvec                        * gmx_restrict          ff,
798                      struct t_forcerec           * gmx_restrict          fr,
799                      t_mdatoms                   * gmx_restrict     mdatoms,
800                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
801                      t_nrnb                      * gmx_restrict        nrnb)
802 {
803     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
804      * just 0 for non-waters.
805      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
806      * jnr indices corresponding to data put in the four positions in the SIMD register.
807      */
808     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
809     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
810     int              jnrA,jnrB,jnrC,jnrD;
811     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
812     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
813     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
814     real             rcutoff_scalar;
815     real             *shiftvec,*fshift,*x,*f;
816     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
817     real             scratch[4*DIM];
818     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
819     int              vdwioffset0;
820     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
821     int              vdwioffset1;
822     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
823     int              vdwioffset2;
824     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
825     int              vdwioffset3;
826     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
827     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
828     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
829     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
830     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
831     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
832     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
833     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
834     real             *charge;
835     int              nvdwtype;
836     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
837     int              *vdwtype;
838     real             *vdwparam;
839     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
840     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
841     __m128i          vfitab;
842     __m128i          ifour       = _mm_set1_epi32(4);
843     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
844     real             *vftab;
845     __m128           dummy_mask,cutoff_mask;
846     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
847     __m128           one     = _mm_set1_ps(1.0);
848     __m128           two     = _mm_set1_ps(2.0);
849     x                = xx[0];
850     f                = ff[0];
851
852     nri              = nlist->nri;
853     iinr             = nlist->iinr;
854     jindex           = nlist->jindex;
855     jjnr             = nlist->jjnr;
856     shiftidx         = nlist->shift;
857     gid              = nlist->gid;
858     shiftvec         = fr->shift_vec[0];
859     fshift           = fr->fshift[0];
860     facel            = _mm_set1_ps(fr->ic->epsfac);
861     charge           = mdatoms->chargeA;
862     nvdwtype         = fr->ntype;
863     vdwparam         = fr->nbfp;
864     vdwtype          = mdatoms->typeA;
865
866     vftab            = kernel_data->table_elec_vdw->data;
867     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
868
869     /* Setup water-specific parameters */
870     inr              = nlist->iinr[0];
871     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
872     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
873     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
874     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
875
876     /* Avoid stupid compiler warnings */
877     jnrA = jnrB = jnrC = jnrD = 0;
878     j_coord_offsetA = 0;
879     j_coord_offsetB = 0;
880     j_coord_offsetC = 0;
881     j_coord_offsetD = 0;
882
883     outeriter        = 0;
884     inneriter        = 0;
885
886     for(iidx=0;iidx<4*DIM;iidx++)
887     {
888         scratch[iidx] = 0.0;
889     }
890
891     /* Start outer loop over neighborlists */
892     for(iidx=0; iidx<nri; iidx++)
893     {
894         /* Load shift vector for this list */
895         i_shift_offset   = DIM*shiftidx[iidx];
896
897         /* Load limits for loop over neighbors */
898         j_index_start    = jindex[iidx];
899         j_index_end      = jindex[iidx+1];
900
901         /* Get outer coordinate index */
902         inr              = iinr[iidx];
903         i_coord_offset   = DIM*inr;
904
905         /* Load i particle coords and add shift vector */
906         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
907                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
908
909         fix0             = _mm_setzero_ps();
910         fiy0             = _mm_setzero_ps();
911         fiz0             = _mm_setzero_ps();
912         fix1             = _mm_setzero_ps();
913         fiy1             = _mm_setzero_ps();
914         fiz1             = _mm_setzero_ps();
915         fix2             = _mm_setzero_ps();
916         fiy2             = _mm_setzero_ps();
917         fiz2             = _mm_setzero_ps();
918         fix3             = _mm_setzero_ps();
919         fiy3             = _mm_setzero_ps();
920         fiz3             = _mm_setzero_ps();
921
922         /* Start inner kernel loop */
923         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
924         {
925
926             /* Get j neighbor index, and coordinate index */
927             jnrA             = jjnr[jidx];
928             jnrB             = jjnr[jidx+1];
929             jnrC             = jjnr[jidx+2];
930             jnrD             = jjnr[jidx+3];
931             j_coord_offsetA  = DIM*jnrA;
932             j_coord_offsetB  = DIM*jnrB;
933             j_coord_offsetC  = DIM*jnrC;
934             j_coord_offsetD  = DIM*jnrD;
935
936             /* load j atom coordinates */
937             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
938                                               x+j_coord_offsetC,x+j_coord_offsetD,
939                                               &jx0,&jy0,&jz0);
940
941             /* Calculate displacement vector */
942             dx00             = _mm_sub_ps(ix0,jx0);
943             dy00             = _mm_sub_ps(iy0,jy0);
944             dz00             = _mm_sub_ps(iz0,jz0);
945             dx10             = _mm_sub_ps(ix1,jx0);
946             dy10             = _mm_sub_ps(iy1,jy0);
947             dz10             = _mm_sub_ps(iz1,jz0);
948             dx20             = _mm_sub_ps(ix2,jx0);
949             dy20             = _mm_sub_ps(iy2,jy0);
950             dz20             = _mm_sub_ps(iz2,jz0);
951             dx30             = _mm_sub_ps(ix3,jx0);
952             dy30             = _mm_sub_ps(iy3,jy0);
953             dz30             = _mm_sub_ps(iz3,jz0);
954
955             /* Calculate squared distance and things based on it */
956             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
957             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
958             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
959             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
960
961             rinv00           = sse41_invsqrt_f(rsq00);
962             rinv10           = sse41_invsqrt_f(rsq10);
963             rinv20           = sse41_invsqrt_f(rsq20);
964             rinv30           = sse41_invsqrt_f(rsq30);
965
966             /* Load parameters for j particles */
967             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
968                                                               charge+jnrC+0,charge+jnrD+0);
969             vdwjidx0A        = 2*vdwtype[jnrA+0];
970             vdwjidx0B        = 2*vdwtype[jnrB+0];
971             vdwjidx0C        = 2*vdwtype[jnrC+0];
972             vdwjidx0D        = 2*vdwtype[jnrD+0];
973
974             fjx0             = _mm_setzero_ps();
975             fjy0             = _mm_setzero_ps();
976             fjz0             = _mm_setzero_ps();
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             r00              = _mm_mul_ps(rsq00,rinv00);
983
984             /* Compute parameters for interactions between i and j atoms */
985             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
986                                          vdwparam+vdwioffset0+vdwjidx0B,
987                                          vdwparam+vdwioffset0+vdwjidx0C,
988                                          vdwparam+vdwioffset0+vdwjidx0D,
989                                          &c6_00,&c12_00);
990
991             /* Calculate table index by multiplying r with table scale and truncate to integer */
992             rt               = _mm_mul_ps(r00,vftabscale);
993             vfitab           = _mm_cvttps_epi32(rt);
994             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
995             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
996
997             /* CUBIC SPLINE TABLE DISPERSION */
998             vfitab           = _mm_add_epi32(vfitab,ifour);
999             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1000             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1001             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1002             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1003             _MM_TRANSPOSE4_PS(Y,F,G,H);
1004             Heps             = _mm_mul_ps(vfeps,H);
1005             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1006             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1007             fvdw6            = _mm_mul_ps(c6_00,FF);
1008
1009             /* CUBIC SPLINE TABLE REPULSION */
1010             vfitab           = _mm_add_epi32(vfitab,ifour);
1011             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1012             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1013             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1014             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1015             _MM_TRANSPOSE4_PS(Y,F,G,H);
1016             Heps             = _mm_mul_ps(vfeps,H);
1017             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1018             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1019             fvdw12           = _mm_mul_ps(c12_00,FF);
1020             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1021
1022             fscal            = fvdw;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_ps(fscal,dx00);
1026             ty               = _mm_mul_ps(fscal,dy00);
1027             tz               = _mm_mul_ps(fscal,dz00);
1028
1029             /* Update vectorial force */
1030             fix0             = _mm_add_ps(fix0,tx);
1031             fiy0             = _mm_add_ps(fiy0,ty);
1032             fiz0             = _mm_add_ps(fiz0,tz);
1033
1034             fjx0             = _mm_add_ps(fjx0,tx);
1035             fjy0             = _mm_add_ps(fjy0,ty);
1036             fjz0             = _mm_add_ps(fjz0,tz);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r10              = _mm_mul_ps(rsq10,rinv10);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq10             = _mm_mul_ps(iq1,jq0);
1046
1047             /* Calculate table index by multiplying r with table scale and truncate to integer */
1048             rt               = _mm_mul_ps(r10,vftabscale);
1049             vfitab           = _mm_cvttps_epi32(rt);
1050             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1051             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1052
1053             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1054             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1055             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1056             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1057             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1058             _MM_TRANSPOSE4_PS(Y,F,G,H);
1059             Heps             = _mm_mul_ps(vfeps,H);
1060             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1061             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1062             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1063
1064             fscal            = felec;
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx10);
1068             ty               = _mm_mul_ps(fscal,dy10);
1069             tz               = _mm_mul_ps(fscal,dz10);
1070
1071             /* Update vectorial force */
1072             fix1             = _mm_add_ps(fix1,tx);
1073             fiy1             = _mm_add_ps(fiy1,ty);
1074             fiz1             = _mm_add_ps(fiz1,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             r20              = _mm_mul_ps(rsq20,rinv20);
1085
1086             /* Compute parameters for interactions between i and j atoms */
1087             qq20             = _mm_mul_ps(iq2,jq0);
1088
1089             /* Calculate table index by multiplying r with table scale and truncate to integer */
1090             rt               = _mm_mul_ps(r20,vftabscale);
1091             vfitab           = _mm_cvttps_epi32(rt);
1092             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1093             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1094
1095             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1096             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1097             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1098             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1099             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1100             _MM_TRANSPOSE4_PS(Y,F,G,H);
1101             Heps             = _mm_mul_ps(vfeps,H);
1102             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1103             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1104             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1105
1106             fscal            = felec;
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm_mul_ps(fscal,dx20);
1110             ty               = _mm_mul_ps(fscal,dy20);
1111             tz               = _mm_mul_ps(fscal,dz20);
1112
1113             /* Update vectorial force */
1114             fix2             = _mm_add_ps(fix2,tx);
1115             fiy2             = _mm_add_ps(fiy2,ty);
1116             fiz2             = _mm_add_ps(fiz2,tz);
1117
1118             fjx0             = _mm_add_ps(fjx0,tx);
1119             fjy0             = _mm_add_ps(fjy0,ty);
1120             fjz0             = _mm_add_ps(fjz0,tz);
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             r30              = _mm_mul_ps(rsq30,rinv30);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq30             = _mm_mul_ps(iq3,jq0);
1130
1131             /* Calculate table index by multiplying r with table scale and truncate to integer */
1132             rt               = _mm_mul_ps(r30,vftabscale);
1133             vfitab           = _mm_cvttps_epi32(rt);
1134             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1135             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1136
1137             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1138             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1139             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1140             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1141             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1142             _MM_TRANSPOSE4_PS(Y,F,G,H);
1143             Heps             = _mm_mul_ps(vfeps,H);
1144             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1145             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1146             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1147
1148             fscal            = felec;
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm_mul_ps(fscal,dx30);
1152             ty               = _mm_mul_ps(fscal,dy30);
1153             tz               = _mm_mul_ps(fscal,dz30);
1154
1155             /* Update vectorial force */
1156             fix3             = _mm_add_ps(fix3,tx);
1157             fiy3             = _mm_add_ps(fiy3,ty);
1158             fiz3             = _mm_add_ps(fiz3,tz);
1159
1160             fjx0             = _mm_add_ps(fjx0,tx);
1161             fjy0             = _mm_add_ps(fjy0,ty);
1162             fjz0             = _mm_add_ps(fjz0,tz);
1163
1164             fjptrA             = f+j_coord_offsetA;
1165             fjptrB             = f+j_coord_offsetB;
1166             fjptrC             = f+j_coord_offsetC;
1167             fjptrD             = f+j_coord_offsetD;
1168
1169             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1170
1171             /* Inner loop uses 165 flops */
1172         }
1173
1174         if(jidx<j_index_end)
1175         {
1176
1177             /* Get j neighbor index, and coordinate index */
1178             jnrlistA         = jjnr[jidx];
1179             jnrlistB         = jjnr[jidx+1];
1180             jnrlistC         = jjnr[jidx+2];
1181             jnrlistD         = jjnr[jidx+3];
1182             /* Sign of each element will be negative for non-real atoms.
1183              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1184              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1185              */
1186             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1187             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1188             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1189             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1190             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1191             j_coord_offsetA  = DIM*jnrA;
1192             j_coord_offsetB  = DIM*jnrB;
1193             j_coord_offsetC  = DIM*jnrC;
1194             j_coord_offsetD  = DIM*jnrD;
1195
1196             /* load j atom coordinates */
1197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1198                                               x+j_coord_offsetC,x+j_coord_offsetD,
1199                                               &jx0,&jy0,&jz0);
1200
1201             /* Calculate displacement vector */
1202             dx00             = _mm_sub_ps(ix0,jx0);
1203             dy00             = _mm_sub_ps(iy0,jy0);
1204             dz00             = _mm_sub_ps(iz0,jz0);
1205             dx10             = _mm_sub_ps(ix1,jx0);
1206             dy10             = _mm_sub_ps(iy1,jy0);
1207             dz10             = _mm_sub_ps(iz1,jz0);
1208             dx20             = _mm_sub_ps(ix2,jx0);
1209             dy20             = _mm_sub_ps(iy2,jy0);
1210             dz20             = _mm_sub_ps(iz2,jz0);
1211             dx30             = _mm_sub_ps(ix3,jx0);
1212             dy30             = _mm_sub_ps(iy3,jy0);
1213             dz30             = _mm_sub_ps(iz3,jz0);
1214
1215             /* Calculate squared distance and things based on it */
1216             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1217             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1218             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1219             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1220
1221             rinv00           = sse41_invsqrt_f(rsq00);
1222             rinv10           = sse41_invsqrt_f(rsq10);
1223             rinv20           = sse41_invsqrt_f(rsq20);
1224             rinv30           = sse41_invsqrt_f(rsq30);
1225
1226             /* Load parameters for j particles */
1227             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1228                                                               charge+jnrC+0,charge+jnrD+0);
1229             vdwjidx0A        = 2*vdwtype[jnrA+0];
1230             vdwjidx0B        = 2*vdwtype[jnrB+0];
1231             vdwjidx0C        = 2*vdwtype[jnrC+0];
1232             vdwjidx0D        = 2*vdwtype[jnrD+0];
1233
1234             fjx0             = _mm_setzero_ps();
1235             fjy0             = _mm_setzero_ps();
1236             fjz0             = _mm_setzero_ps();
1237
1238             /**************************
1239              * CALCULATE INTERACTIONS *
1240              **************************/
1241
1242             r00              = _mm_mul_ps(rsq00,rinv00);
1243             r00              = _mm_andnot_ps(dummy_mask,r00);
1244
1245             /* Compute parameters for interactions between i and j atoms */
1246             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1247                                          vdwparam+vdwioffset0+vdwjidx0B,
1248                                          vdwparam+vdwioffset0+vdwjidx0C,
1249                                          vdwparam+vdwioffset0+vdwjidx0D,
1250                                          &c6_00,&c12_00);
1251
1252             /* Calculate table index by multiplying r with table scale and truncate to integer */
1253             rt               = _mm_mul_ps(r00,vftabscale);
1254             vfitab           = _mm_cvttps_epi32(rt);
1255             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1256             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1257
1258             /* CUBIC SPLINE TABLE DISPERSION */
1259             vfitab           = _mm_add_epi32(vfitab,ifour);
1260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1264             _MM_TRANSPOSE4_PS(Y,F,G,H);
1265             Heps             = _mm_mul_ps(vfeps,H);
1266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1267             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1268             fvdw6            = _mm_mul_ps(c6_00,FF);
1269
1270             /* CUBIC SPLINE TABLE REPULSION */
1271             vfitab           = _mm_add_epi32(vfitab,ifour);
1272             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1273             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1274             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1275             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1276             _MM_TRANSPOSE4_PS(Y,F,G,H);
1277             Heps             = _mm_mul_ps(vfeps,H);
1278             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1279             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1280             fvdw12           = _mm_mul_ps(c12_00,FF);
1281             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1282
1283             fscal            = fvdw;
1284
1285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_ps(fscal,dx00);
1289             ty               = _mm_mul_ps(fscal,dy00);
1290             tz               = _mm_mul_ps(fscal,dz00);
1291
1292             /* Update vectorial force */
1293             fix0             = _mm_add_ps(fix0,tx);
1294             fiy0             = _mm_add_ps(fiy0,ty);
1295             fiz0             = _mm_add_ps(fiz0,tz);
1296
1297             fjx0             = _mm_add_ps(fjx0,tx);
1298             fjy0             = _mm_add_ps(fjy0,ty);
1299             fjz0             = _mm_add_ps(fjz0,tz);
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             r10              = _mm_mul_ps(rsq10,rinv10);
1306             r10              = _mm_andnot_ps(dummy_mask,r10);
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq10             = _mm_mul_ps(iq1,jq0);
1310
1311             /* Calculate table index by multiplying r with table scale and truncate to integer */
1312             rt               = _mm_mul_ps(r10,vftabscale);
1313             vfitab           = _mm_cvttps_epi32(rt);
1314             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1315             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1316
1317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1318             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1319             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1320             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1321             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1322             _MM_TRANSPOSE4_PS(Y,F,G,H);
1323             Heps             = _mm_mul_ps(vfeps,H);
1324             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1325             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1326             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1327
1328             fscal            = felec;
1329
1330             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1331
1332             /* Calculate temporary vectorial force */
1333             tx               = _mm_mul_ps(fscal,dx10);
1334             ty               = _mm_mul_ps(fscal,dy10);
1335             tz               = _mm_mul_ps(fscal,dz10);
1336
1337             /* Update vectorial force */
1338             fix1             = _mm_add_ps(fix1,tx);
1339             fiy1             = _mm_add_ps(fiy1,ty);
1340             fiz1             = _mm_add_ps(fiz1,tz);
1341
1342             fjx0             = _mm_add_ps(fjx0,tx);
1343             fjy0             = _mm_add_ps(fjy0,ty);
1344             fjz0             = _mm_add_ps(fjz0,tz);
1345
1346             /**************************
1347              * CALCULATE INTERACTIONS *
1348              **************************/
1349
1350             r20              = _mm_mul_ps(rsq20,rinv20);
1351             r20              = _mm_andnot_ps(dummy_mask,r20);
1352
1353             /* Compute parameters for interactions between i and j atoms */
1354             qq20             = _mm_mul_ps(iq2,jq0);
1355
1356             /* Calculate table index by multiplying r with table scale and truncate to integer */
1357             rt               = _mm_mul_ps(r20,vftabscale);
1358             vfitab           = _mm_cvttps_epi32(rt);
1359             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1360             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1361
1362             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1363             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1364             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1365             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1366             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1367             _MM_TRANSPOSE4_PS(Y,F,G,H);
1368             Heps             = _mm_mul_ps(vfeps,H);
1369             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1370             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1371             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1372
1373             fscal            = felec;
1374
1375             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1376
1377             /* Calculate temporary vectorial force */
1378             tx               = _mm_mul_ps(fscal,dx20);
1379             ty               = _mm_mul_ps(fscal,dy20);
1380             tz               = _mm_mul_ps(fscal,dz20);
1381
1382             /* Update vectorial force */
1383             fix2             = _mm_add_ps(fix2,tx);
1384             fiy2             = _mm_add_ps(fiy2,ty);
1385             fiz2             = _mm_add_ps(fiz2,tz);
1386
1387             fjx0             = _mm_add_ps(fjx0,tx);
1388             fjy0             = _mm_add_ps(fjy0,ty);
1389             fjz0             = _mm_add_ps(fjz0,tz);
1390
1391             /**************************
1392              * CALCULATE INTERACTIONS *
1393              **************************/
1394
1395             r30              = _mm_mul_ps(rsq30,rinv30);
1396             r30              = _mm_andnot_ps(dummy_mask,r30);
1397
1398             /* Compute parameters for interactions between i and j atoms */
1399             qq30             = _mm_mul_ps(iq3,jq0);
1400
1401             /* Calculate table index by multiplying r with table scale and truncate to integer */
1402             rt               = _mm_mul_ps(r30,vftabscale);
1403             vfitab           = _mm_cvttps_epi32(rt);
1404             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1405             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1406
1407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1408             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1409             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1410             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1411             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1412             _MM_TRANSPOSE4_PS(Y,F,G,H);
1413             Heps             = _mm_mul_ps(vfeps,H);
1414             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1415             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1416             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1417
1418             fscal            = felec;
1419
1420             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1421
1422             /* Calculate temporary vectorial force */
1423             tx               = _mm_mul_ps(fscal,dx30);
1424             ty               = _mm_mul_ps(fscal,dy30);
1425             tz               = _mm_mul_ps(fscal,dz30);
1426
1427             /* Update vectorial force */
1428             fix3             = _mm_add_ps(fix3,tx);
1429             fiy3             = _mm_add_ps(fiy3,ty);
1430             fiz3             = _mm_add_ps(fiz3,tz);
1431
1432             fjx0             = _mm_add_ps(fjx0,tx);
1433             fjy0             = _mm_add_ps(fjy0,ty);
1434             fjz0             = _mm_add_ps(fjz0,tz);
1435
1436             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1437             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1438             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1439             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1440
1441             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1442
1443             /* Inner loop uses 169 flops */
1444         }
1445
1446         /* End of innermost loop */
1447
1448         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1449                                               f+i_coord_offset,fshift+i_shift_offset);
1450
1451         /* Increment number of inner iterations */
1452         inneriter                  += j_index_end - j_index_start;
1453
1454         /* Outer loop uses 24 flops */
1455     }
1456
1457     /* Increment number of outer iterations */
1458     outeriter        += nri;
1459
1460     /* Update outer/inner flops */
1461
1462     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1463 }