Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
132     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
133     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = sse41_invsqrt_f(rsq00);
219             rinv10           = sse41_invsqrt_f(rsq10);
220             rinv20           = sse41_invsqrt_f(rsq20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm_setzero_ps();
231             fjy0             = _mm_setzero_ps();
232             fjz0             = _mm_setzero_ps();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             r00              = _mm_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_ps(iq0,jq0);
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             /* Calculate table index by multiplying r with table scale and truncate to integer */
249             rt               = _mm_mul_ps(r00,vftabscale);
250             vfitab           = _mm_cvttps_epi32(rt);
251             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
252             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
253
254             /* CUBIC SPLINE TABLE ELECTROSTATICS */
255             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
257             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
258             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
259             _MM_TRANSPOSE4_PS(Y,F,G,H);
260             Heps             = _mm_mul_ps(vfeps,H);
261             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
262             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
263             velec            = _mm_mul_ps(qq00,VV);
264             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
265             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Heps             = _mm_mul_ps(vfeps,H);
275             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
276             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
277             vvdw6            = _mm_mul_ps(c6_00,VV);
278             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
279             fvdw6            = _mm_mul_ps(c6_00,FF);
280
281             /* CUBIC SPLINE TABLE REPULSION */
282             vfitab           = _mm_add_epi32(vfitab,ifour);
283             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
284             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
285             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
286             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
287             _MM_TRANSPOSE4_PS(Y,F,G,H);
288             Heps             = _mm_mul_ps(vfeps,H);
289             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
290             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_ps(fscal,dx00);
305             ty               = _mm_mul_ps(fscal,dy00);
306             tz               = _mm_mul_ps(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_ps(fix0,tx);
310             fiy0             = _mm_add_ps(fiy0,ty);
311             fiz0             = _mm_add_ps(fiz0,tz);
312
313             fjx0             = _mm_add_ps(fjx0,tx);
314             fjy0             = _mm_add_ps(fjy0,ty);
315             fjz0             = _mm_add_ps(fjz0,tz);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_ps(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* Calculate table index by multiplying r with table scale and truncate to integer */
327             rt               = _mm_mul_ps(r10,vftabscale);
328             vfitab           = _mm_cvttps_epi32(rt);
329             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
330             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
331
332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
333             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
335             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
336             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
337             _MM_TRANSPOSE4_PS(Y,F,G,H);
338             Heps             = _mm_mul_ps(vfeps,H);
339             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
340             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
341             velec            = _mm_mul_ps(qq10,VV);
342             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
343             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _mm_add_ps(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_ps(fscal,dx10);
352             ty               = _mm_mul_ps(fscal,dy10);
353             tz               = _mm_mul_ps(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm_add_ps(fix1,tx);
357             fiy1             = _mm_add_ps(fiy1,ty);
358             fiz1             = _mm_add_ps(fiz1,tz);
359
360             fjx0             = _mm_add_ps(fjx0,tx);
361             fjy0             = _mm_add_ps(fjy0,ty);
362             fjz0             = _mm_add_ps(fjz0,tz);
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_ps(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_ps(iq2,jq0);
372
373             /* Calculate table index by multiplying r with table scale and truncate to integer */
374             rt               = _mm_mul_ps(r20,vftabscale);
375             vfitab           = _mm_cvttps_epi32(rt);
376             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
377             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
378
379             /* CUBIC SPLINE TABLE ELECTROSTATICS */
380             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
381             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
382             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
383             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
384             _MM_TRANSPOSE4_PS(Y,F,G,H);
385             Heps             = _mm_mul_ps(vfeps,H);
386             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
387             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
388             velec            = _mm_mul_ps(qq20,VV);
389             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
390             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_ps(fscal,dx20);
399             ty               = _mm_mul_ps(fscal,dy20);
400             tz               = _mm_mul_ps(fscal,dz20);
401
402             /* Update vectorial force */
403             fix2             = _mm_add_ps(fix2,tx);
404             fiy2             = _mm_add_ps(fiy2,ty);
405             fiz2             = _mm_add_ps(fiz2,tz);
406
407             fjx0             = _mm_add_ps(fjx0,tx);
408             fjy0             = _mm_add_ps(fjy0,ty);
409             fjz0             = _mm_add_ps(fjz0,tz);
410
411             fjptrA             = f+j_coord_offsetA;
412             fjptrB             = f+j_coord_offsetB;
413             fjptrC             = f+j_coord_offsetC;
414             fjptrD             = f+j_coord_offsetD;
415
416             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 159 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             /* Sign of each element will be negative for non-real atoms.
430              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
431              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
432              */
433             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
434             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
435             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
436             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
437             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
445                                               x+j_coord_offsetC,x+j_coord_offsetD,
446                                               &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm_sub_ps(ix0,jx0);
450             dy00             = _mm_sub_ps(iy0,jy0);
451             dz00             = _mm_sub_ps(iz0,jz0);
452             dx10             = _mm_sub_ps(ix1,jx0);
453             dy10             = _mm_sub_ps(iy1,jy0);
454             dz10             = _mm_sub_ps(iz1,jz0);
455             dx20             = _mm_sub_ps(ix2,jx0);
456             dy20             = _mm_sub_ps(iy2,jy0);
457             dz20             = _mm_sub_ps(iz2,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
463
464             rinv00           = sse41_invsqrt_f(rsq00);
465             rinv10           = sse41_invsqrt_f(rsq10);
466             rinv20           = sse41_invsqrt_f(rsq20);
467
468             /* Load parameters for j particles */
469             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
470                                                               charge+jnrC+0,charge+jnrD+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472             vdwjidx0B        = 2*vdwtype[jnrB+0];
473             vdwjidx0C        = 2*vdwtype[jnrC+0];
474             vdwjidx0D        = 2*vdwtype[jnrD+0];
475
476             fjx0             = _mm_setzero_ps();
477             fjy0             = _mm_setzero_ps();
478             fjz0             = _mm_setzero_ps();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _mm_mul_ps(rsq00,rinv00);
485             r00              = _mm_andnot_ps(dummy_mask,r00);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq00             = _mm_mul_ps(iq0,jq0);
489             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
490                                          vdwparam+vdwioffset0+vdwjidx0B,
491                                          vdwparam+vdwioffset0+vdwjidx0C,
492                                          vdwparam+vdwioffset0+vdwjidx0D,
493                                          &c6_00,&c12_00);
494
495             /* Calculate table index by multiplying r with table scale and truncate to integer */
496             rt               = _mm_mul_ps(r00,vftabscale);
497             vfitab           = _mm_cvttps_epi32(rt);
498             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
499             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
500
501             /* CUBIC SPLINE TABLE ELECTROSTATICS */
502             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
503             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
504             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
505             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
506             _MM_TRANSPOSE4_PS(Y,F,G,H);
507             Heps             = _mm_mul_ps(vfeps,H);
508             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
509             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
510             velec            = _mm_mul_ps(qq00,VV);
511             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
512             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
513
514             /* CUBIC SPLINE TABLE DISPERSION */
515             vfitab           = _mm_add_epi32(vfitab,ifour);
516             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
517             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
518             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
519             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
520             _MM_TRANSPOSE4_PS(Y,F,G,H);
521             Heps             = _mm_mul_ps(vfeps,H);
522             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
523             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
524             vvdw6            = _mm_mul_ps(c6_00,VV);
525             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
526             fvdw6            = _mm_mul_ps(c6_00,FF);
527
528             /* CUBIC SPLINE TABLE REPULSION */
529             vfitab           = _mm_add_epi32(vfitab,ifour);
530             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
531             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
532             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
533             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
534             _MM_TRANSPOSE4_PS(Y,F,G,H);
535             Heps             = _mm_mul_ps(vfeps,H);
536             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
537             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
538             vvdw12           = _mm_mul_ps(c12_00,VV);
539             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
540             fvdw12           = _mm_mul_ps(c12_00,FF);
541             vvdw             = _mm_add_ps(vvdw12,vvdw6);
542             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
548             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
549
550             fscal            = _mm_add_ps(felec,fvdw);
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm_mul_ps(fscal,dx00);
556             ty               = _mm_mul_ps(fscal,dy00);
557             tz               = _mm_mul_ps(fscal,dz00);
558
559             /* Update vectorial force */
560             fix0             = _mm_add_ps(fix0,tx);
561             fiy0             = _mm_add_ps(fiy0,ty);
562             fiz0             = _mm_add_ps(fiz0,tz);
563
564             fjx0             = _mm_add_ps(fjx0,tx);
565             fjy0             = _mm_add_ps(fjy0,ty);
566             fjz0             = _mm_add_ps(fjz0,tz);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             r10              = _mm_mul_ps(rsq10,rinv10);
573             r10              = _mm_andnot_ps(dummy_mask,r10);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq10             = _mm_mul_ps(iq1,jq0);
577
578             /* Calculate table index by multiplying r with table scale and truncate to integer */
579             rt               = _mm_mul_ps(r10,vftabscale);
580             vfitab           = _mm_cvttps_epi32(rt);
581             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
582             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
583
584             /* CUBIC SPLINE TABLE ELECTROSTATICS */
585             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
586             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
587             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
588             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
589             _MM_TRANSPOSE4_PS(Y,F,G,H);
590             Heps             = _mm_mul_ps(vfeps,H);
591             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
592             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
593             velec            = _mm_mul_ps(qq10,VV);
594             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
595             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
596
597             /* Update potential sum for this i atom from the interaction with this j atom. */
598             velec            = _mm_andnot_ps(dummy_mask,velec);
599             velecsum         = _mm_add_ps(velecsum,velec);
600
601             fscal            = felec;
602
603             fscal            = _mm_andnot_ps(dummy_mask,fscal);
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm_mul_ps(fscal,dx10);
607             ty               = _mm_mul_ps(fscal,dy10);
608             tz               = _mm_mul_ps(fscal,dz10);
609
610             /* Update vectorial force */
611             fix1             = _mm_add_ps(fix1,tx);
612             fiy1             = _mm_add_ps(fiy1,ty);
613             fiz1             = _mm_add_ps(fiz1,tz);
614
615             fjx0             = _mm_add_ps(fjx0,tx);
616             fjy0             = _mm_add_ps(fjy0,ty);
617             fjz0             = _mm_add_ps(fjz0,tz);
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r20              = _mm_mul_ps(rsq20,rinv20);
624             r20              = _mm_andnot_ps(dummy_mask,r20);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq20             = _mm_mul_ps(iq2,jq0);
628
629             /* Calculate table index by multiplying r with table scale and truncate to integer */
630             rt               = _mm_mul_ps(r20,vftabscale);
631             vfitab           = _mm_cvttps_epi32(rt);
632             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
633             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
634
635             /* CUBIC SPLINE TABLE ELECTROSTATICS */
636             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
637             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
638             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
639             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
640             _MM_TRANSPOSE4_PS(Y,F,G,H);
641             Heps             = _mm_mul_ps(vfeps,H);
642             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
643             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
644             velec            = _mm_mul_ps(qq20,VV);
645             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
646             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_andnot_ps(dummy_mask,velec);
650             velecsum         = _mm_add_ps(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm_andnot_ps(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm_mul_ps(fscal,dx20);
658             ty               = _mm_mul_ps(fscal,dy20);
659             tz               = _mm_mul_ps(fscal,dz20);
660
661             /* Update vectorial force */
662             fix2             = _mm_add_ps(fix2,tx);
663             fiy2             = _mm_add_ps(fiy2,ty);
664             fiz2             = _mm_add_ps(fiz2,tz);
665
666             fjx0             = _mm_add_ps(fjx0,tx);
667             fjy0             = _mm_add_ps(fjy0,ty);
668             fjz0             = _mm_add_ps(fjz0,tz);
669
670             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
671             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
672             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
673             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
674
675             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
676
677             /* Inner loop uses 162 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
688         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 20 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
702 }
703 /*
704  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse4_1_single
705  * Electrostatics interaction: CubicSplineTable
706  * VdW interaction:            CubicSplineTable
707  * Geometry:                   Water3-Particle
708  * Calculate force/pot:        Force
709  */
710 void
711 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse4_1_single
712                     (t_nblist                    * gmx_restrict       nlist,
713                      rvec                        * gmx_restrict          xx,
714                      rvec                        * gmx_restrict          ff,
715                      struct t_forcerec           * gmx_restrict          fr,
716                      t_mdatoms                   * gmx_restrict     mdatoms,
717                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
718                      t_nrnb                      * gmx_restrict        nrnb)
719 {
720     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
721      * just 0 for non-waters.
722      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
723      * jnr indices corresponding to data put in the four positions in the SIMD register.
724      */
725     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
726     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
727     int              jnrA,jnrB,jnrC,jnrD;
728     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
729     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
734     real             scratch[4*DIM];
735     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     int              vdwioffset0;
737     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     int              vdwioffset1;
739     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     int              vdwioffset2;
741     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
743     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     int              nvdwtype;
750     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
751     int              *vdwtype;
752     real             *vdwparam;
753     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
754     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
755     __m128i          vfitab;
756     __m128i          ifour       = _mm_set1_epi32(4);
757     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
758     real             *vftab;
759     __m128           dummy_mask,cutoff_mask;
760     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
761     __m128           one     = _mm_set1_ps(1.0);
762     __m128           two     = _mm_set1_ps(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm_set1_ps(fr->ic->epsfac);
775     charge           = mdatoms->chargeA;
776     nvdwtype         = fr->ntype;
777     vdwparam         = fr->nbfp;
778     vdwtype          = mdatoms->typeA;
779
780     vftab            = kernel_data->table_elec_vdw->data;
781     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
782
783     /* Setup water-specific parameters */
784     inr              = nlist->iinr[0];
785     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
786     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
787     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
788     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
789
790     /* Avoid stupid compiler warnings */
791     jnrA = jnrB = jnrC = jnrD = 0;
792     j_coord_offsetA = 0;
793     j_coord_offsetB = 0;
794     j_coord_offsetC = 0;
795     j_coord_offsetD = 0;
796
797     outeriter        = 0;
798     inneriter        = 0;
799
800     for(iidx=0;iidx<4*DIM;iidx++)
801     {
802         scratch[iidx] = 0.0;
803     }
804
805     /* Start outer loop over neighborlists */
806     for(iidx=0; iidx<nri; iidx++)
807     {
808         /* Load shift vector for this list */
809         i_shift_offset   = DIM*shiftidx[iidx];
810
811         /* Load limits for loop over neighbors */
812         j_index_start    = jindex[iidx];
813         j_index_end      = jindex[iidx+1];
814
815         /* Get outer coordinate index */
816         inr              = iinr[iidx];
817         i_coord_offset   = DIM*inr;
818
819         /* Load i particle coords and add shift vector */
820         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
821                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
822
823         fix0             = _mm_setzero_ps();
824         fiy0             = _mm_setzero_ps();
825         fiz0             = _mm_setzero_ps();
826         fix1             = _mm_setzero_ps();
827         fiy1             = _mm_setzero_ps();
828         fiz1             = _mm_setzero_ps();
829         fix2             = _mm_setzero_ps();
830         fiy2             = _mm_setzero_ps();
831         fiz2             = _mm_setzero_ps();
832
833         /* Start inner kernel loop */
834         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
835         {
836
837             /* Get j neighbor index, and coordinate index */
838             jnrA             = jjnr[jidx];
839             jnrB             = jjnr[jidx+1];
840             jnrC             = jjnr[jidx+2];
841             jnrD             = jjnr[jidx+3];
842             j_coord_offsetA  = DIM*jnrA;
843             j_coord_offsetB  = DIM*jnrB;
844             j_coord_offsetC  = DIM*jnrC;
845             j_coord_offsetD  = DIM*jnrD;
846
847             /* load j atom coordinates */
848             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
849                                               x+j_coord_offsetC,x+j_coord_offsetD,
850                                               &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx00             = _mm_sub_ps(ix0,jx0);
854             dy00             = _mm_sub_ps(iy0,jy0);
855             dz00             = _mm_sub_ps(iz0,jz0);
856             dx10             = _mm_sub_ps(ix1,jx0);
857             dy10             = _mm_sub_ps(iy1,jy0);
858             dz10             = _mm_sub_ps(iz1,jz0);
859             dx20             = _mm_sub_ps(ix2,jx0);
860             dy20             = _mm_sub_ps(iy2,jy0);
861             dz20             = _mm_sub_ps(iz2,jz0);
862
863             /* Calculate squared distance and things based on it */
864             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
865             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
866             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
867
868             rinv00           = sse41_invsqrt_f(rsq00);
869             rinv10           = sse41_invsqrt_f(rsq10);
870             rinv20           = sse41_invsqrt_f(rsq20);
871
872             /* Load parameters for j particles */
873             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
874                                                               charge+jnrC+0,charge+jnrD+0);
875             vdwjidx0A        = 2*vdwtype[jnrA+0];
876             vdwjidx0B        = 2*vdwtype[jnrB+0];
877             vdwjidx0C        = 2*vdwtype[jnrC+0];
878             vdwjidx0D        = 2*vdwtype[jnrD+0];
879
880             fjx0             = _mm_setzero_ps();
881             fjy0             = _mm_setzero_ps();
882             fjz0             = _mm_setzero_ps();
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             r00              = _mm_mul_ps(rsq00,rinv00);
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq00             = _mm_mul_ps(iq0,jq0);
892             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
893                                          vdwparam+vdwioffset0+vdwjidx0B,
894                                          vdwparam+vdwioffset0+vdwjidx0C,
895                                          vdwparam+vdwioffset0+vdwjidx0D,
896                                          &c6_00,&c12_00);
897
898             /* Calculate table index by multiplying r with table scale and truncate to integer */
899             rt               = _mm_mul_ps(r00,vftabscale);
900             vfitab           = _mm_cvttps_epi32(rt);
901             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
902             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
903
904             /* CUBIC SPLINE TABLE ELECTROSTATICS */
905             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
906             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
907             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
908             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
909             _MM_TRANSPOSE4_PS(Y,F,G,H);
910             Heps             = _mm_mul_ps(vfeps,H);
911             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
912             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
913             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
914
915             /* CUBIC SPLINE TABLE DISPERSION */
916             vfitab           = _mm_add_epi32(vfitab,ifour);
917             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
918             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
919             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
920             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
921             _MM_TRANSPOSE4_PS(Y,F,G,H);
922             Heps             = _mm_mul_ps(vfeps,H);
923             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
924             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
925             fvdw6            = _mm_mul_ps(c6_00,FF);
926
927             /* CUBIC SPLINE TABLE REPULSION */
928             vfitab           = _mm_add_epi32(vfitab,ifour);
929             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
930             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
931             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
932             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
933             _MM_TRANSPOSE4_PS(Y,F,G,H);
934             Heps             = _mm_mul_ps(vfeps,H);
935             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
936             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
937             fvdw12           = _mm_mul_ps(c12_00,FF);
938             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
939
940             fscal            = _mm_add_ps(felec,fvdw);
941
942             /* Calculate temporary vectorial force */
943             tx               = _mm_mul_ps(fscal,dx00);
944             ty               = _mm_mul_ps(fscal,dy00);
945             tz               = _mm_mul_ps(fscal,dz00);
946
947             /* Update vectorial force */
948             fix0             = _mm_add_ps(fix0,tx);
949             fiy0             = _mm_add_ps(fiy0,ty);
950             fiz0             = _mm_add_ps(fiz0,tz);
951
952             fjx0             = _mm_add_ps(fjx0,tx);
953             fjy0             = _mm_add_ps(fjy0,ty);
954             fjz0             = _mm_add_ps(fjz0,tz);
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             r10              = _mm_mul_ps(rsq10,rinv10);
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm_mul_ps(iq1,jq0);
964
965             /* Calculate table index by multiplying r with table scale and truncate to integer */
966             rt               = _mm_mul_ps(r10,vftabscale);
967             vfitab           = _mm_cvttps_epi32(rt);
968             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
969             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
970
971             /* CUBIC SPLINE TABLE ELECTROSTATICS */
972             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
973             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
974             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
975             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
976             _MM_TRANSPOSE4_PS(Y,F,G,H);
977             Heps             = _mm_mul_ps(vfeps,H);
978             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
979             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
980             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
981
982             fscal            = felec;
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm_mul_ps(fscal,dx10);
986             ty               = _mm_mul_ps(fscal,dy10);
987             tz               = _mm_mul_ps(fscal,dz10);
988
989             /* Update vectorial force */
990             fix1             = _mm_add_ps(fix1,tx);
991             fiy1             = _mm_add_ps(fiy1,ty);
992             fiz1             = _mm_add_ps(fiz1,tz);
993
994             fjx0             = _mm_add_ps(fjx0,tx);
995             fjy0             = _mm_add_ps(fjy0,ty);
996             fjz0             = _mm_add_ps(fjz0,tz);
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             r20              = _mm_mul_ps(rsq20,rinv20);
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq20             = _mm_mul_ps(iq2,jq0);
1006
1007             /* Calculate table index by multiplying r with table scale and truncate to integer */
1008             rt               = _mm_mul_ps(r20,vftabscale);
1009             vfitab           = _mm_cvttps_epi32(rt);
1010             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1011             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1012
1013             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1014             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1015             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1016             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1017             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1018             _MM_TRANSPOSE4_PS(Y,F,G,H);
1019             Heps             = _mm_mul_ps(vfeps,H);
1020             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1021             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1022             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1023
1024             fscal            = felec;
1025
1026             /* Calculate temporary vectorial force */
1027             tx               = _mm_mul_ps(fscal,dx20);
1028             ty               = _mm_mul_ps(fscal,dy20);
1029             tz               = _mm_mul_ps(fscal,dz20);
1030
1031             /* Update vectorial force */
1032             fix2             = _mm_add_ps(fix2,tx);
1033             fiy2             = _mm_add_ps(fiy2,ty);
1034             fiz2             = _mm_add_ps(fiz2,tz);
1035
1036             fjx0             = _mm_add_ps(fjx0,tx);
1037             fjy0             = _mm_add_ps(fjy0,ty);
1038             fjz0             = _mm_add_ps(fjz0,tz);
1039
1040             fjptrA             = f+j_coord_offsetA;
1041             fjptrB             = f+j_coord_offsetB;
1042             fjptrC             = f+j_coord_offsetC;
1043             fjptrD             = f+j_coord_offsetD;
1044
1045             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1046
1047             /* Inner loop uses 139 flops */
1048         }
1049
1050         if(jidx<j_index_end)
1051         {
1052
1053             /* Get j neighbor index, and coordinate index */
1054             jnrlistA         = jjnr[jidx];
1055             jnrlistB         = jjnr[jidx+1];
1056             jnrlistC         = jjnr[jidx+2];
1057             jnrlistD         = jjnr[jidx+3];
1058             /* Sign of each element will be negative for non-real atoms.
1059              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1060              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1061              */
1062             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1063             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1064             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1065             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1066             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1067             j_coord_offsetA  = DIM*jnrA;
1068             j_coord_offsetB  = DIM*jnrB;
1069             j_coord_offsetC  = DIM*jnrC;
1070             j_coord_offsetD  = DIM*jnrD;
1071
1072             /* load j atom coordinates */
1073             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1074                                               x+j_coord_offsetC,x+j_coord_offsetD,
1075                                               &jx0,&jy0,&jz0);
1076
1077             /* Calculate displacement vector */
1078             dx00             = _mm_sub_ps(ix0,jx0);
1079             dy00             = _mm_sub_ps(iy0,jy0);
1080             dz00             = _mm_sub_ps(iz0,jz0);
1081             dx10             = _mm_sub_ps(ix1,jx0);
1082             dy10             = _mm_sub_ps(iy1,jy0);
1083             dz10             = _mm_sub_ps(iz1,jz0);
1084             dx20             = _mm_sub_ps(ix2,jx0);
1085             dy20             = _mm_sub_ps(iy2,jy0);
1086             dz20             = _mm_sub_ps(iz2,jz0);
1087
1088             /* Calculate squared distance and things based on it */
1089             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1090             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1091             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1092
1093             rinv00           = sse41_invsqrt_f(rsq00);
1094             rinv10           = sse41_invsqrt_f(rsq10);
1095             rinv20           = sse41_invsqrt_f(rsq20);
1096
1097             /* Load parameters for j particles */
1098             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1099                                                               charge+jnrC+0,charge+jnrD+0);
1100             vdwjidx0A        = 2*vdwtype[jnrA+0];
1101             vdwjidx0B        = 2*vdwtype[jnrB+0];
1102             vdwjidx0C        = 2*vdwtype[jnrC+0];
1103             vdwjidx0D        = 2*vdwtype[jnrD+0];
1104
1105             fjx0             = _mm_setzero_ps();
1106             fjy0             = _mm_setzero_ps();
1107             fjz0             = _mm_setzero_ps();
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r00              = _mm_mul_ps(rsq00,rinv00);
1114             r00              = _mm_andnot_ps(dummy_mask,r00);
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq00             = _mm_mul_ps(iq0,jq0);
1118             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1119                                          vdwparam+vdwioffset0+vdwjidx0B,
1120                                          vdwparam+vdwioffset0+vdwjidx0C,
1121                                          vdwparam+vdwioffset0+vdwjidx0D,
1122                                          &c6_00,&c12_00);
1123
1124             /* Calculate table index by multiplying r with table scale and truncate to integer */
1125             rt               = _mm_mul_ps(r00,vftabscale);
1126             vfitab           = _mm_cvttps_epi32(rt);
1127             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1128             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1129
1130             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1131             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1132             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1133             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1134             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1135             _MM_TRANSPOSE4_PS(Y,F,G,H);
1136             Heps             = _mm_mul_ps(vfeps,H);
1137             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1138             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1139             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1140
1141             /* CUBIC SPLINE TABLE DISPERSION */
1142             vfitab           = _mm_add_epi32(vfitab,ifour);
1143             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1144             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1145             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1146             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1147             _MM_TRANSPOSE4_PS(Y,F,G,H);
1148             Heps             = _mm_mul_ps(vfeps,H);
1149             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1150             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1151             fvdw6            = _mm_mul_ps(c6_00,FF);
1152
1153             /* CUBIC SPLINE TABLE REPULSION */
1154             vfitab           = _mm_add_epi32(vfitab,ifour);
1155             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1156             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1157             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1158             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1159             _MM_TRANSPOSE4_PS(Y,F,G,H);
1160             Heps             = _mm_mul_ps(vfeps,H);
1161             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1162             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1163             fvdw12           = _mm_mul_ps(c12_00,FF);
1164             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1165
1166             fscal            = _mm_add_ps(felec,fvdw);
1167
1168             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm_mul_ps(fscal,dx00);
1172             ty               = _mm_mul_ps(fscal,dy00);
1173             tz               = _mm_mul_ps(fscal,dz00);
1174
1175             /* Update vectorial force */
1176             fix0             = _mm_add_ps(fix0,tx);
1177             fiy0             = _mm_add_ps(fiy0,ty);
1178             fiz0             = _mm_add_ps(fiz0,tz);
1179
1180             fjx0             = _mm_add_ps(fjx0,tx);
1181             fjy0             = _mm_add_ps(fjy0,ty);
1182             fjz0             = _mm_add_ps(fjz0,tz);
1183
1184             /**************************
1185              * CALCULATE INTERACTIONS *
1186              **************************/
1187
1188             r10              = _mm_mul_ps(rsq10,rinv10);
1189             r10              = _mm_andnot_ps(dummy_mask,r10);
1190
1191             /* Compute parameters for interactions between i and j atoms */
1192             qq10             = _mm_mul_ps(iq1,jq0);
1193
1194             /* Calculate table index by multiplying r with table scale and truncate to integer */
1195             rt               = _mm_mul_ps(r10,vftabscale);
1196             vfitab           = _mm_cvttps_epi32(rt);
1197             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1198             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1199
1200             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1201             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1202             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1203             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1204             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1205             _MM_TRANSPOSE4_PS(Y,F,G,H);
1206             Heps             = _mm_mul_ps(vfeps,H);
1207             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1208             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1209             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1214
1215             /* Calculate temporary vectorial force */
1216             tx               = _mm_mul_ps(fscal,dx10);
1217             ty               = _mm_mul_ps(fscal,dy10);
1218             tz               = _mm_mul_ps(fscal,dz10);
1219
1220             /* Update vectorial force */
1221             fix1             = _mm_add_ps(fix1,tx);
1222             fiy1             = _mm_add_ps(fiy1,ty);
1223             fiz1             = _mm_add_ps(fiz1,tz);
1224
1225             fjx0             = _mm_add_ps(fjx0,tx);
1226             fjy0             = _mm_add_ps(fjy0,ty);
1227             fjz0             = _mm_add_ps(fjz0,tz);
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             r20              = _mm_mul_ps(rsq20,rinv20);
1234             r20              = _mm_andnot_ps(dummy_mask,r20);
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq20             = _mm_mul_ps(iq2,jq0);
1238
1239             /* Calculate table index by multiplying r with table scale and truncate to integer */
1240             rt               = _mm_mul_ps(r20,vftabscale);
1241             vfitab           = _mm_cvttps_epi32(rt);
1242             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1243             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1244
1245             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1246             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1247             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1248             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1249             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1250             _MM_TRANSPOSE4_PS(Y,F,G,H);
1251             Heps             = _mm_mul_ps(vfeps,H);
1252             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1253             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1254             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm_mul_ps(fscal,dx20);
1262             ty               = _mm_mul_ps(fscal,dy20);
1263             tz               = _mm_mul_ps(fscal,dz20);
1264
1265             /* Update vectorial force */
1266             fix2             = _mm_add_ps(fix2,tx);
1267             fiy2             = _mm_add_ps(fiy2,ty);
1268             fiz2             = _mm_add_ps(fiz2,tz);
1269
1270             fjx0             = _mm_add_ps(fjx0,tx);
1271             fjy0             = _mm_add_ps(fjy0,ty);
1272             fjz0             = _mm_add_ps(fjz0,tz);
1273
1274             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1275             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1276             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1277             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1278
1279             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1280
1281             /* Inner loop uses 142 flops */
1282         }
1283
1284         /* End of innermost loop */
1285
1286         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1287                                               f+i_coord_offset,fshift+i_shift_offset);
1288
1289         /* Increment number of inner iterations */
1290         inneriter                  += j_index_end - j_index_start;
1291
1292         /* Outer loop uses 18 flops */
1293     }
1294
1295     /* Increment number of outer iterations */
1296     outeriter        += nri;
1297
1298     /* Update outer/inner flops */
1299
1300     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1301 }