f6fe2ae5c56109e046f151cb5b64f98f6e9bedb3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
146                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
147
148         fix1             = _mm_setzero_pd();
149         fiy1             = _mm_setzero_pd();
150         fiz1             = _mm_setzero_pd();
151         fix2             = _mm_setzero_pd();
152         fiy2             = _mm_setzero_pd();
153         fiz2             = _mm_setzero_pd();
154         fix3             = _mm_setzero_pd();
155         fiy3             = _mm_setzero_pd();
156         fiz3             = _mm_setzero_pd();
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx10             = _mm_sub_pd(ix1,jx0);
177             dy10             = _mm_sub_pd(iy1,jy0);
178             dz10             = _mm_sub_pd(iz1,jz0);
179             dx20             = _mm_sub_pd(ix2,jx0);
180             dy20             = _mm_sub_pd(iy2,jy0);
181             dz20             = _mm_sub_pd(iz2,jz0);
182             dx30             = _mm_sub_pd(ix3,jx0);
183             dy30             = _mm_sub_pd(iy3,jy0);
184             dz30             = _mm_sub_pd(iz3,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
190
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193             rinv30           = gmx_mm_invsqrt_pd(rsq30);
194
195             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
196             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
197             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
201
202             fjx0             = _mm_setzero_pd();
203             fjy0             = _mm_setzero_pd();
204             fjz0             = _mm_setzero_pd();
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq10             = _mm_mul_pd(iq1,jq0);
212
213             /* REACTION-FIELD ELECTROSTATICS */
214             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
215             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
216
217             /* Update potential sum for this i atom from the interaction with this j atom. */
218             velecsum         = _mm_add_pd(velecsum,velec);
219
220             fscal            = felec;
221
222             /* Calculate temporary vectorial force */
223             tx               = _mm_mul_pd(fscal,dx10);
224             ty               = _mm_mul_pd(fscal,dy10);
225             tz               = _mm_mul_pd(fscal,dz10);
226
227             /* Update vectorial force */
228             fix1             = _mm_add_pd(fix1,tx);
229             fiy1             = _mm_add_pd(fiy1,ty);
230             fiz1             = _mm_add_pd(fiz1,tz);
231
232             fjx0             = _mm_add_pd(fjx0,tx);
233             fjy0             = _mm_add_pd(fjy0,ty);
234             fjz0             = _mm_add_pd(fjz0,tz);
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq20             = _mm_mul_pd(iq2,jq0);
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
245             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm_add_pd(velecsum,velec);
249
250             fscal            = felec;
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx20);
254             ty               = _mm_mul_pd(fscal,dy20);
255             tz               = _mm_mul_pd(fscal,dz20);
256
257             /* Update vectorial force */
258             fix2             = _mm_add_pd(fix2,tx);
259             fiy2             = _mm_add_pd(fiy2,ty);
260             fiz2             = _mm_add_pd(fiz2,tz);
261
262             fjx0             = _mm_add_pd(fjx0,tx);
263             fjy0             = _mm_add_pd(fjy0,ty);
264             fjz0             = _mm_add_pd(fjz0,tz);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq30             = _mm_mul_pd(iq3,jq0);
272
273             /* REACTION-FIELD ELECTROSTATICS */
274             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
275             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velecsum         = _mm_add_pd(velecsum,velec);
279
280             fscal            = felec;
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx30);
284             ty               = _mm_mul_pd(fscal,dy30);
285             tz               = _mm_mul_pd(fscal,dz30);
286
287             /* Update vectorial force */
288             fix3             = _mm_add_pd(fix3,tx);
289             fiy3             = _mm_add_pd(fiy3,ty);
290             fiz3             = _mm_add_pd(fiz3,tz);
291
292             fjx0             = _mm_add_pd(fjx0,tx);
293             fjy0             = _mm_add_pd(fjy0,ty);
294             fjz0             = _mm_add_pd(fjz0,tz);
295
296             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
297
298             /* Inner loop uses 99 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             jnrA             = jjnr[jidx];
305             j_coord_offsetA  = DIM*jnrA;
306
307             /* load j atom coordinates */
308             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
309                                               &jx0,&jy0,&jz0);
310
311             /* Calculate displacement vector */
312             dx10             = _mm_sub_pd(ix1,jx0);
313             dy10             = _mm_sub_pd(iy1,jy0);
314             dz10             = _mm_sub_pd(iz1,jz0);
315             dx20             = _mm_sub_pd(ix2,jx0);
316             dy20             = _mm_sub_pd(iy2,jy0);
317             dz20             = _mm_sub_pd(iz2,jz0);
318             dx30             = _mm_sub_pd(ix3,jx0);
319             dy30             = _mm_sub_pd(iy3,jy0);
320             dz30             = _mm_sub_pd(iz3,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
324             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
325             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
326
327             rinv10           = gmx_mm_invsqrt_pd(rsq10);
328             rinv20           = gmx_mm_invsqrt_pd(rsq20);
329             rinv30           = gmx_mm_invsqrt_pd(rsq30);
330
331             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
332             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
333             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
334
335             /* Load parameters for j particles */
336             jq0              = _mm_load_sd(charge+jnrA+0);
337
338             fjx0             = _mm_setzero_pd();
339             fjy0             = _mm_setzero_pd();
340             fjz0             = _mm_setzero_pd();
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq10             = _mm_mul_pd(iq1,jq0);
348
349             /* REACTION-FIELD ELECTROSTATICS */
350             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
351             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
355             velecsum         = _mm_add_pd(velecsum,velec);
356
357             fscal            = felec;
358
359             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_pd(fscal,dx10);
363             ty               = _mm_mul_pd(fscal,dy10);
364             tz               = _mm_mul_pd(fscal,dz10);
365
366             /* Update vectorial force */
367             fix1             = _mm_add_pd(fix1,tx);
368             fiy1             = _mm_add_pd(fiy1,ty);
369             fiz1             = _mm_add_pd(fiz1,tz);
370
371             fjx0             = _mm_add_pd(fjx0,tx);
372             fjy0             = _mm_add_pd(fjy0,ty);
373             fjz0             = _mm_add_pd(fjz0,tz);
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq20             = _mm_mul_pd(iq2,jq0);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
384             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx20);
396             ty               = _mm_mul_pd(fscal,dy20);
397             tz               = _mm_mul_pd(fscal,dz20);
398
399             /* Update vectorial force */
400             fix2             = _mm_add_pd(fix2,tx);
401             fiy2             = _mm_add_pd(fiy2,ty);
402             fiz2             = _mm_add_pd(fiz2,tz);
403
404             fjx0             = _mm_add_pd(fjx0,tx);
405             fjy0             = _mm_add_pd(fjy0,ty);
406             fjz0             = _mm_add_pd(fjz0,tz);
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq30             = _mm_mul_pd(iq3,jq0);
414
415             /* REACTION-FIELD ELECTROSTATICS */
416             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
417             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx30);
429             ty               = _mm_mul_pd(fscal,dy30);
430             tz               = _mm_mul_pd(fscal,dz30);
431
432             /* Update vectorial force */
433             fix3             = _mm_add_pd(fix3,tx);
434             fiy3             = _mm_add_pd(fiy3,ty);
435             fiz3             = _mm_add_pd(fiz3,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 99 flops */
444         }
445
446         /* End of innermost loop */
447
448         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
449                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
450
451         ggid                        = gid[iidx];
452         /* Update potential energies */
453         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 19 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*99);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW4P1_F_sse4_1_double
470  * Electrostatics interaction: ReactionField
471  * VdW interaction:            None
472  * Geometry:                   Water4-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecRF_VdwNone_GeomW4P1_F_sse4_1_double
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
486      * just 0 for non-waters.
487      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB;
493     int              j_coord_offsetA,j_coord_offsetB;
494     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
495     real             rcutoff_scalar;
496     real             *shiftvec,*fshift,*x,*f;
497     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
498     int              vdwioffset1;
499     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
500     int              vdwioffset2;
501     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
502     int              vdwioffset3;
503     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
504     int              vdwjidx0A,vdwjidx0B;
505     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
506     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
507     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
508     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
509     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
510     real             *charge;
511     __m128d          dummy_mask,cutoff_mask;
512     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
513     __m128d          one     = _mm_set1_pd(1.0);
514     __m128d          two     = _mm_set1_pd(2.0);
515     x                = xx[0];
516     f                = ff[0];
517
518     nri              = nlist->nri;
519     iinr             = nlist->iinr;
520     jindex           = nlist->jindex;
521     jjnr             = nlist->jjnr;
522     shiftidx         = nlist->shift;
523     gid              = nlist->gid;
524     shiftvec         = fr->shift_vec[0];
525     fshift           = fr->fshift[0];
526     facel            = _mm_set1_pd(fr->epsfac);
527     charge           = mdatoms->chargeA;
528     krf              = _mm_set1_pd(fr->ic->k_rf);
529     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
530     crf              = _mm_set1_pd(fr->ic->c_rf);
531
532     /* Setup water-specific parameters */
533     inr              = nlist->iinr[0];
534     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
535     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
536     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
537
538     /* Avoid stupid compiler warnings */
539     jnrA = jnrB = 0;
540     j_coord_offsetA = 0;
541     j_coord_offsetB = 0;
542
543     outeriter        = 0;
544     inneriter        = 0;
545
546     /* Start outer loop over neighborlists */
547     for(iidx=0; iidx<nri; iidx++)
548     {
549         /* Load shift vector for this list */
550         i_shift_offset   = DIM*shiftidx[iidx];
551
552         /* Load limits for loop over neighbors */
553         j_index_start    = jindex[iidx];
554         j_index_end      = jindex[iidx+1];
555
556         /* Get outer coordinate index */
557         inr              = iinr[iidx];
558         i_coord_offset   = DIM*inr;
559
560         /* Load i particle coords and add shift vector */
561         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
562                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
563
564         fix1             = _mm_setzero_pd();
565         fiy1             = _mm_setzero_pd();
566         fiz1             = _mm_setzero_pd();
567         fix2             = _mm_setzero_pd();
568         fiy2             = _mm_setzero_pd();
569         fiz2             = _mm_setzero_pd();
570         fix3             = _mm_setzero_pd();
571         fiy3             = _mm_setzero_pd();
572         fiz3             = _mm_setzero_pd();
573
574         /* Start inner kernel loop */
575         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
576         {
577
578             /* Get j neighbor index, and coordinate index */
579             jnrA             = jjnr[jidx];
580             jnrB             = jjnr[jidx+1];
581             j_coord_offsetA  = DIM*jnrA;
582             j_coord_offsetB  = DIM*jnrB;
583
584             /* load j atom coordinates */
585             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
586                                               &jx0,&jy0,&jz0);
587
588             /* Calculate displacement vector */
589             dx10             = _mm_sub_pd(ix1,jx0);
590             dy10             = _mm_sub_pd(iy1,jy0);
591             dz10             = _mm_sub_pd(iz1,jz0);
592             dx20             = _mm_sub_pd(ix2,jx0);
593             dy20             = _mm_sub_pd(iy2,jy0);
594             dz20             = _mm_sub_pd(iz2,jz0);
595             dx30             = _mm_sub_pd(ix3,jx0);
596             dy30             = _mm_sub_pd(iy3,jy0);
597             dz30             = _mm_sub_pd(iz3,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
601             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
602             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
603
604             rinv10           = gmx_mm_invsqrt_pd(rsq10);
605             rinv20           = gmx_mm_invsqrt_pd(rsq20);
606             rinv30           = gmx_mm_invsqrt_pd(rsq30);
607
608             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
609             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
610             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
611
612             /* Load parameters for j particles */
613             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
614
615             fjx0             = _mm_setzero_pd();
616             fjy0             = _mm_setzero_pd();
617             fjz0             = _mm_setzero_pd();
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq10             = _mm_mul_pd(iq1,jq0);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
628
629             fscal            = felec;
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm_mul_pd(fscal,dx10);
633             ty               = _mm_mul_pd(fscal,dy10);
634             tz               = _mm_mul_pd(fscal,dz10);
635
636             /* Update vectorial force */
637             fix1             = _mm_add_pd(fix1,tx);
638             fiy1             = _mm_add_pd(fiy1,ty);
639             fiz1             = _mm_add_pd(fiz1,tz);
640
641             fjx0             = _mm_add_pd(fjx0,tx);
642             fjy0             = _mm_add_pd(fjy0,ty);
643             fjz0             = _mm_add_pd(fjz0,tz);
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq20             = _mm_mul_pd(iq2,jq0);
651
652             /* REACTION-FIELD ELECTROSTATICS */
653             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
654
655             fscal            = felec;
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm_mul_pd(fscal,dx20);
659             ty               = _mm_mul_pd(fscal,dy20);
660             tz               = _mm_mul_pd(fscal,dz20);
661
662             /* Update vectorial force */
663             fix2             = _mm_add_pd(fix2,tx);
664             fiy2             = _mm_add_pd(fiy2,ty);
665             fiz2             = _mm_add_pd(fiz2,tz);
666
667             fjx0             = _mm_add_pd(fjx0,tx);
668             fjy0             = _mm_add_pd(fjy0,ty);
669             fjz0             = _mm_add_pd(fjz0,tz);
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             /* Compute parameters for interactions between i and j atoms */
676             qq30             = _mm_mul_pd(iq3,jq0);
677
678             /* REACTION-FIELD ELECTROSTATICS */
679             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
680
681             fscal            = felec;
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_pd(fscal,dx30);
685             ty               = _mm_mul_pd(fscal,dy30);
686             tz               = _mm_mul_pd(fscal,dz30);
687
688             /* Update vectorial force */
689             fix3             = _mm_add_pd(fix3,tx);
690             fiy3             = _mm_add_pd(fiy3,ty);
691             fiz3             = _mm_add_pd(fiz3,tz);
692
693             fjx0             = _mm_add_pd(fjx0,tx);
694             fjy0             = _mm_add_pd(fjy0,ty);
695             fjz0             = _mm_add_pd(fjz0,tz);
696
697             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
698
699             /* Inner loop uses 84 flops */
700         }
701
702         if(jidx<j_index_end)
703         {
704
705             jnrA             = jjnr[jidx];
706             j_coord_offsetA  = DIM*jnrA;
707
708             /* load j atom coordinates */
709             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
710                                               &jx0,&jy0,&jz0);
711
712             /* Calculate displacement vector */
713             dx10             = _mm_sub_pd(ix1,jx0);
714             dy10             = _mm_sub_pd(iy1,jy0);
715             dz10             = _mm_sub_pd(iz1,jz0);
716             dx20             = _mm_sub_pd(ix2,jx0);
717             dy20             = _mm_sub_pd(iy2,jy0);
718             dz20             = _mm_sub_pd(iz2,jz0);
719             dx30             = _mm_sub_pd(ix3,jx0);
720             dy30             = _mm_sub_pd(iy3,jy0);
721             dz30             = _mm_sub_pd(iz3,jz0);
722
723             /* Calculate squared distance and things based on it */
724             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
725             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
726             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
727
728             rinv10           = gmx_mm_invsqrt_pd(rsq10);
729             rinv20           = gmx_mm_invsqrt_pd(rsq20);
730             rinv30           = gmx_mm_invsqrt_pd(rsq30);
731
732             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
733             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
734             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
735
736             /* Load parameters for j particles */
737             jq0              = _mm_load_sd(charge+jnrA+0);
738
739             fjx0             = _mm_setzero_pd();
740             fjy0             = _mm_setzero_pd();
741             fjz0             = _mm_setzero_pd();
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq10             = _mm_mul_pd(iq1,jq0);
749
750             /* REACTION-FIELD ELECTROSTATICS */
751             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
752
753             fscal            = felec;
754
755             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
756
757             /* Calculate temporary vectorial force */
758             tx               = _mm_mul_pd(fscal,dx10);
759             ty               = _mm_mul_pd(fscal,dy10);
760             tz               = _mm_mul_pd(fscal,dz10);
761
762             /* Update vectorial force */
763             fix1             = _mm_add_pd(fix1,tx);
764             fiy1             = _mm_add_pd(fiy1,ty);
765             fiz1             = _mm_add_pd(fiz1,tz);
766
767             fjx0             = _mm_add_pd(fjx0,tx);
768             fjy0             = _mm_add_pd(fjy0,ty);
769             fjz0             = _mm_add_pd(fjz0,tz);
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq20             = _mm_mul_pd(iq2,jq0);
777
778             /* REACTION-FIELD ELECTROSTATICS */
779             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
780
781             fscal            = felec;
782
783             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
784
785             /* Calculate temporary vectorial force */
786             tx               = _mm_mul_pd(fscal,dx20);
787             ty               = _mm_mul_pd(fscal,dy20);
788             tz               = _mm_mul_pd(fscal,dz20);
789
790             /* Update vectorial force */
791             fix2             = _mm_add_pd(fix2,tx);
792             fiy2             = _mm_add_pd(fiy2,ty);
793             fiz2             = _mm_add_pd(fiz2,tz);
794
795             fjx0             = _mm_add_pd(fjx0,tx);
796             fjy0             = _mm_add_pd(fjy0,ty);
797             fjz0             = _mm_add_pd(fjz0,tz);
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq30             = _mm_mul_pd(iq3,jq0);
805
806             /* REACTION-FIELD ELECTROSTATICS */
807             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
808
809             fscal            = felec;
810
811             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
812
813             /* Calculate temporary vectorial force */
814             tx               = _mm_mul_pd(fscal,dx30);
815             ty               = _mm_mul_pd(fscal,dy30);
816             tz               = _mm_mul_pd(fscal,dz30);
817
818             /* Update vectorial force */
819             fix3             = _mm_add_pd(fix3,tx);
820             fiy3             = _mm_add_pd(fiy3,ty);
821             fiz3             = _mm_add_pd(fiz3,tz);
822
823             fjx0             = _mm_add_pd(fjx0,tx);
824             fjy0             = _mm_add_pd(fjy0,ty);
825             fjz0             = _mm_add_pd(fjz0,tz);
826
827             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
828
829             /* Inner loop uses 84 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
835                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
836
837         /* Increment number of inner iterations */
838         inneriter                  += j_index_end - j_index_start;
839
840         /* Outer loop uses 18 flops */
841     }
842
843     /* Increment number of outer iterations */
844     outeriter        += nri;
845
846     /* Update outer/inner flops */
847
848     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
849 }