Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwNone_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
143                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
144
145         fix0             = _mm_setzero_pd();
146         fiy0             = _mm_setzero_pd();
147         fiz0             = _mm_setzero_pd();
148         fix1             = _mm_setzero_pd();
149         fiy1             = _mm_setzero_pd();
150         fiz1             = _mm_setzero_pd();
151         fix2             = _mm_setzero_pd();
152         fiy2             = _mm_setzero_pd();
153         fiz2             = _mm_setzero_pd();
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176             dx10             = _mm_sub_pd(ix1,jx0);
177             dy10             = _mm_sub_pd(iy1,jy0);
178             dz10             = _mm_sub_pd(iz1,jz0);
179             dx20             = _mm_sub_pd(ix2,jx0);
180             dy20             = _mm_sub_pd(iy2,jy0);
181             dz20             = _mm_sub_pd(iz2,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
186             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
187
188             rinv00           = sse41_invsqrt_d(rsq00);
189             rinv10           = sse41_invsqrt_d(rsq10);
190             rinv20           = sse41_invsqrt_d(rsq20);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
194             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198
199             fjx0             = _mm_setzero_pd();
200             fjy0             = _mm_setzero_pd();
201             fjz0             = _mm_setzero_pd();
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209
210             /* REACTION-FIELD ELECTROSTATICS */
211             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
212             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             velecsum         = _mm_add_pd(velecsum,velec);
216
217             fscal            = felec;
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_pd(fscal,dx00);
221             ty               = _mm_mul_pd(fscal,dy00);
222             tz               = _mm_mul_pd(fscal,dz00);
223
224             /* Update vectorial force */
225             fix0             = _mm_add_pd(fix0,tx);
226             fiy0             = _mm_add_pd(fiy0,ty);
227             fiz0             = _mm_add_pd(fiz0,tz);
228
229             fjx0             = _mm_add_pd(fjx0,tx);
230             fjy0             = _mm_add_pd(fjy0,ty);
231             fjz0             = _mm_add_pd(fjz0,tz);
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq10             = _mm_mul_pd(iq1,jq0);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
242             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246
247             fscal            = felec;
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm_mul_pd(fscal,dx10);
251             ty               = _mm_mul_pd(fscal,dy10);
252             tz               = _mm_mul_pd(fscal,dz10);
253
254             /* Update vectorial force */
255             fix1             = _mm_add_pd(fix1,tx);
256             fiy1             = _mm_add_pd(fiy1,ty);
257             fiz1             = _mm_add_pd(fiz1,tz);
258
259             fjx0             = _mm_add_pd(fjx0,tx);
260             fjy0             = _mm_add_pd(fjy0,ty);
261             fjz0             = _mm_add_pd(fjz0,tz);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq20             = _mm_mul_pd(iq2,jq0);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
272             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_pd(velecsum,velec);
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx20);
281             ty               = _mm_mul_pd(fscal,dy20);
282             tz               = _mm_mul_pd(fscal,dz20);
283
284             /* Update vectorial force */
285             fix2             = _mm_add_pd(fix2,tx);
286             fiy2             = _mm_add_pd(fiy2,ty);
287             fiz2             = _mm_add_pd(fiz2,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
294
295             /* Inner loop uses 99 flops */
296         }
297
298         if(jidx<j_index_end)
299         {
300
301             jnrA             = jjnr[jidx];
302             j_coord_offsetA  = DIM*jnrA;
303
304             /* load j atom coordinates */
305             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
306                                               &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx00             = _mm_sub_pd(ix0,jx0);
310             dy00             = _mm_sub_pd(iy0,jy0);
311             dz00             = _mm_sub_pd(iz0,jz0);
312             dx10             = _mm_sub_pd(ix1,jx0);
313             dy10             = _mm_sub_pd(iy1,jy0);
314             dz10             = _mm_sub_pd(iz1,jz0);
315             dx20             = _mm_sub_pd(ix2,jx0);
316             dy20             = _mm_sub_pd(iy2,jy0);
317             dz20             = _mm_sub_pd(iz2,jz0);
318
319             /* Calculate squared distance and things based on it */
320             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
321             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
322             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
323
324             rinv00           = sse41_invsqrt_d(rsq00);
325             rinv10           = sse41_invsqrt_d(rsq10);
326             rinv20           = sse41_invsqrt_d(rsq20);
327
328             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
329             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
330             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
331
332             /* Load parameters for j particles */
333             jq0              = _mm_load_sd(charge+jnrA+0);
334
335             fjx0             = _mm_setzero_pd();
336             fjy0             = _mm_setzero_pd();
337             fjz0             = _mm_setzero_pd();
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq00             = _mm_mul_pd(iq0,jq0);
345
346             /* REACTION-FIELD ELECTROSTATICS */
347             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
348             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
352             velecsum         = _mm_add_pd(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_pd(fscal,dx00);
360             ty               = _mm_mul_pd(fscal,dy00);
361             tz               = _mm_mul_pd(fscal,dz00);
362
363             /* Update vectorial force */
364             fix0             = _mm_add_pd(fix0,tx);
365             fiy0             = _mm_add_pd(fiy0,ty);
366             fiz0             = _mm_add_pd(fiz0,tz);
367
368             fjx0             = _mm_add_pd(fjx0,tx);
369             fjy0             = _mm_add_pd(fjy0,ty);
370             fjz0             = _mm_add_pd(fjz0,tz);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq10             = _mm_mul_pd(iq1,jq0);
378
379             /* REACTION-FIELD ELECTROSTATICS */
380             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
381             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
385             velecsum         = _mm_add_pd(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_pd(fscal,dx10);
393             ty               = _mm_mul_pd(fscal,dy10);
394             tz               = _mm_mul_pd(fscal,dz10);
395
396             /* Update vectorial force */
397             fix1             = _mm_add_pd(fix1,tx);
398             fiy1             = _mm_add_pd(fiy1,ty);
399             fiz1             = _mm_add_pd(fiz1,tz);
400
401             fjx0             = _mm_add_pd(fjx0,tx);
402             fjy0             = _mm_add_pd(fjy0,ty);
403             fjz0             = _mm_add_pd(fjz0,tz);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq20             = _mm_mul_pd(iq2,jq0);
411
412             /* REACTION-FIELD ELECTROSTATICS */
413             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
414             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
418             velecsum         = _mm_add_pd(velecsum,velec);
419
420             fscal            = felec;
421
422             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
423
424             /* Calculate temporary vectorial force */
425             tx               = _mm_mul_pd(fscal,dx20);
426             ty               = _mm_mul_pd(fscal,dy20);
427             tz               = _mm_mul_pd(fscal,dz20);
428
429             /* Update vectorial force */
430             fix2             = _mm_add_pd(fix2,tx);
431             fiy2             = _mm_add_pd(fiy2,ty);
432             fiz2             = _mm_add_pd(fiz2,tz);
433
434             fjx0             = _mm_add_pd(fjx0,tx);
435             fjy0             = _mm_add_pd(fjy0,ty);
436             fjz0             = _mm_add_pd(fjz0,tz);
437
438             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 99 flops */
441         }
442
443         /* End of innermost loop */
444
445         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
446                                               f+i_coord_offset,fshift+i_shift_offset);
447
448         ggid                        = gid[iidx];
449         /* Update potential energies */
450         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
451
452         /* Increment number of inner iterations */
453         inneriter                  += j_index_end - j_index_start;
454
455         /* Outer loop uses 19 flops */
456     }
457
458     /* Increment number of outer iterations */
459     outeriter        += nri;
460
461     /* Update outer/inner flops */
462
463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*99);
464 }
465 /*
466  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_F_sse4_1_double
467  * Electrostatics interaction: ReactionField
468  * VdW interaction:            None
469  * Geometry:                   Water3-Particle
470  * Calculate force/pot:        Force
471  */
472 void
473 nb_kernel_ElecRF_VdwNone_GeomW3P1_F_sse4_1_double
474                     (t_nblist                    * gmx_restrict       nlist,
475                      rvec                        * gmx_restrict          xx,
476                      rvec                        * gmx_restrict          ff,
477                      struct t_forcerec           * gmx_restrict          fr,
478                      t_mdatoms                   * gmx_restrict     mdatoms,
479                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
480                      t_nrnb                      * gmx_restrict        nrnb)
481 {
482     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
483      * just 0 for non-waters.
484      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
485      * jnr indices corresponding to data put in the four positions in the SIMD register.
486      */
487     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
488     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
489     int              jnrA,jnrB;
490     int              j_coord_offsetA,j_coord_offsetB;
491     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
492     real             rcutoff_scalar;
493     real             *shiftvec,*fshift,*x,*f;
494     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
495     int              vdwioffset0;
496     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
497     int              vdwioffset1;
498     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
499     int              vdwioffset2;
500     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
501     int              vdwjidx0A,vdwjidx0B;
502     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
503     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
504     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
505     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
506     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     __m128d          dummy_mask,cutoff_mask;
509     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
510     __m128d          one     = _mm_set1_pd(1.0);
511     __m128d          two     = _mm_set1_pd(2.0);
512     x                = xx[0];
513     f                = ff[0];
514
515     nri              = nlist->nri;
516     iinr             = nlist->iinr;
517     jindex           = nlist->jindex;
518     jjnr             = nlist->jjnr;
519     shiftidx         = nlist->shift;
520     gid              = nlist->gid;
521     shiftvec         = fr->shift_vec[0];
522     fshift           = fr->fshift[0];
523     facel            = _mm_set1_pd(fr->ic->epsfac);
524     charge           = mdatoms->chargeA;
525     krf              = _mm_set1_pd(fr->ic->k_rf);
526     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
527     crf              = _mm_set1_pd(fr->ic->c_rf);
528
529     /* Setup water-specific parameters */
530     inr              = nlist->iinr[0];
531     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
532     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
533     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
534
535     /* Avoid stupid compiler warnings */
536     jnrA = jnrB = 0;
537     j_coord_offsetA = 0;
538     j_coord_offsetB = 0;
539
540     outeriter        = 0;
541     inneriter        = 0;
542
543     /* Start outer loop over neighborlists */
544     for(iidx=0; iidx<nri; iidx++)
545     {
546         /* Load shift vector for this list */
547         i_shift_offset   = DIM*shiftidx[iidx];
548
549         /* Load limits for loop over neighbors */
550         j_index_start    = jindex[iidx];
551         j_index_end      = jindex[iidx+1];
552
553         /* Get outer coordinate index */
554         inr              = iinr[iidx];
555         i_coord_offset   = DIM*inr;
556
557         /* Load i particle coords and add shift vector */
558         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
559                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
560
561         fix0             = _mm_setzero_pd();
562         fiy0             = _mm_setzero_pd();
563         fiz0             = _mm_setzero_pd();
564         fix1             = _mm_setzero_pd();
565         fiy1             = _mm_setzero_pd();
566         fiz1             = _mm_setzero_pd();
567         fix2             = _mm_setzero_pd();
568         fiy2             = _mm_setzero_pd();
569         fiz2             = _mm_setzero_pd();
570
571         /* Start inner kernel loop */
572         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
573         {
574
575             /* Get j neighbor index, and coordinate index */
576             jnrA             = jjnr[jidx];
577             jnrB             = jjnr[jidx+1];
578             j_coord_offsetA  = DIM*jnrA;
579             j_coord_offsetB  = DIM*jnrB;
580
581             /* load j atom coordinates */
582             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_pd(ix0,jx0);
587             dy00             = _mm_sub_pd(iy0,jy0);
588             dz00             = _mm_sub_pd(iz0,jz0);
589             dx10             = _mm_sub_pd(ix1,jx0);
590             dy10             = _mm_sub_pd(iy1,jy0);
591             dz10             = _mm_sub_pd(iz1,jz0);
592             dx20             = _mm_sub_pd(ix2,jx0);
593             dy20             = _mm_sub_pd(iy2,jy0);
594             dz20             = _mm_sub_pd(iz2,jz0);
595
596             /* Calculate squared distance and things based on it */
597             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
598             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
599             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
600
601             rinv00           = sse41_invsqrt_d(rsq00);
602             rinv10           = sse41_invsqrt_d(rsq10);
603             rinv20           = sse41_invsqrt_d(rsq20);
604
605             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
606             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
607             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
608
609             /* Load parameters for j particles */
610             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
611
612             fjx0             = _mm_setzero_pd();
613             fjy0             = _mm_setzero_pd();
614             fjz0             = _mm_setzero_pd();
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq00             = _mm_mul_pd(iq0,jq0);
622
623             /* REACTION-FIELD ELECTROSTATICS */
624             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
625
626             fscal            = felec;
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm_mul_pd(fscal,dx00);
630             ty               = _mm_mul_pd(fscal,dy00);
631             tz               = _mm_mul_pd(fscal,dz00);
632
633             /* Update vectorial force */
634             fix0             = _mm_add_pd(fix0,tx);
635             fiy0             = _mm_add_pd(fiy0,ty);
636             fiz0             = _mm_add_pd(fiz0,tz);
637
638             fjx0             = _mm_add_pd(fjx0,tx);
639             fjy0             = _mm_add_pd(fjy0,ty);
640             fjz0             = _mm_add_pd(fjz0,tz);
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq10             = _mm_mul_pd(iq1,jq0);
648
649             /* REACTION-FIELD ELECTROSTATICS */
650             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
651
652             fscal            = felec;
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_pd(fscal,dx10);
656             ty               = _mm_mul_pd(fscal,dy10);
657             tz               = _mm_mul_pd(fscal,dz10);
658
659             /* Update vectorial force */
660             fix1             = _mm_add_pd(fix1,tx);
661             fiy1             = _mm_add_pd(fiy1,ty);
662             fiz1             = _mm_add_pd(fiz1,tz);
663
664             fjx0             = _mm_add_pd(fjx0,tx);
665             fjy0             = _mm_add_pd(fjy0,ty);
666             fjz0             = _mm_add_pd(fjz0,tz);
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq20             = _mm_mul_pd(iq2,jq0);
674
675             /* REACTION-FIELD ELECTROSTATICS */
676             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
677
678             fscal            = felec;
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm_mul_pd(fscal,dx20);
682             ty               = _mm_mul_pd(fscal,dy20);
683             tz               = _mm_mul_pd(fscal,dz20);
684
685             /* Update vectorial force */
686             fix2             = _mm_add_pd(fix2,tx);
687             fiy2             = _mm_add_pd(fiy2,ty);
688             fiz2             = _mm_add_pd(fiz2,tz);
689
690             fjx0             = _mm_add_pd(fjx0,tx);
691             fjy0             = _mm_add_pd(fjy0,ty);
692             fjz0             = _mm_add_pd(fjz0,tz);
693
694             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
695
696             /* Inner loop uses 84 flops */
697         }
698
699         if(jidx<j_index_end)
700         {
701
702             jnrA             = jjnr[jidx];
703             j_coord_offsetA  = DIM*jnrA;
704
705             /* load j atom coordinates */
706             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
707                                               &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm_sub_pd(ix0,jx0);
711             dy00             = _mm_sub_pd(iy0,jy0);
712             dz00             = _mm_sub_pd(iz0,jz0);
713             dx10             = _mm_sub_pd(ix1,jx0);
714             dy10             = _mm_sub_pd(iy1,jy0);
715             dz10             = _mm_sub_pd(iz1,jz0);
716             dx20             = _mm_sub_pd(ix2,jx0);
717             dy20             = _mm_sub_pd(iy2,jy0);
718             dz20             = _mm_sub_pd(iz2,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
722             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
723             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
724
725             rinv00           = sse41_invsqrt_d(rsq00);
726             rinv10           = sse41_invsqrt_d(rsq10);
727             rinv20           = sse41_invsqrt_d(rsq20);
728
729             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
730             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
731             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
732
733             /* Load parameters for j particles */
734             jq0              = _mm_load_sd(charge+jnrA+0);
735
736             fjx0             = _mm_setzero_pd();
737             fjy0             = _mm_setzero_pd();
738             fjz0             = _mm_setzero_pd();
739
740             /**************************
741              * CALCULATE INTERACTIONS *
742              **************************/
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq00             = _mm_mul_pd(iq0,jq0);
746
747             /* REACTION-FIELD ELECTROSTATICS */
748             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
749
750             fscal            = felec;
751
752             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
753
754             /* Calculate temporary vectorial force */
755             tx               = _mm_mul_pd(fscal,dx00);
756             ty               = _mm_mul_pd(fscal,dy00);
757             tz               = _mm_mul_pd(fscal,dz00);
758
759             /* Update vectorial force */
760             fix0             = _mm_add_pd(fix0,tx);
761             fiy0             = _mm_add_pd(fiy0,ty);
762             fiz0             = _mm_add_pd(fiz0,tz);
763
764             fjx0             = _mm_add_pd(fjx0,tx);
765             fjy0             = _mm_add_pd(fjy0,ty);
766             fjz0             = _mm_add_pd(fjz0,tz);
767
768             /**************************
769              * CALCULATE INTERACTIONS *
770              **************************/
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq10             = _mm_mul_pd(iq1,jq0);
774
775             /* REACTION-FIELD ELECTROSTATICS */
776             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
777
778             fscal            = felec;
779
780             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
781
782             /* Calculate temporary vectorial force */
783             tx               = _mm_mul_pd(fscal,dx10);
784             ty               = _mm_mul_pd(fscal,dy10);
785             tz               = _mm_mul_pd(fscal,dz10);
786
787             /* Update vectorial force */
788             fix1             = _mm_add_pd(fix1,tx);
789             fiy1             = _mm_add_pd(fiy1,ty);
790             fiz1             = _mm_add_pd(fiz1,tz);
791
792             fjx0             = _mm_add_pd(fjx0,tx);
793             fjy0             = _mm_add_pd(fjy0,ty);
794             fjz0             = _mm_add_pd(fjz0,tz);
795
796             /**************************
797              * CALCULATE INTERACTIONS *
798              **************************/
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq20             = _mm_mul_pd(iq2,jq0);
802
803             /* REACTION-FIELD ELECTROSTATICS */
804             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
805
806             fscal            = felec;
807
808             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm_mul_pd(fscal,dx20);
812             ty               = _mm_mul_pd(fscal,dy20);
813             tz               = _mm_mul_pd(fscal,dz20);
814
815             /* Update vectorial force */
816             fix2             = _mm_add_pd(fix2,tx);
817             fiy2             = _mm_add_pd(fiy2,ty);
818             fiz2             = _mm_add_pd(fiz2,tz);
819
820             fjx0             = _mm_add_pd(fjx0,tx);
821             fjy0             = _mm_add_pd(fjy0,ty);
822             fjz0             = _mm_add_pd(fjz0,tz);
823
824             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
825
826             /* Inner loop uses 84 flops */
827         }
828
829         /* End of innermost loop */
830
831         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
832                                               f+i_coord_offset,fshift+i_shift_offset);
833
834         /* Increment number of inner iterations */
835         inneriter                  += j_index_end - j_index_start;
836
837         /* Outer loop uses 18 flops */
838     }
839
840     /* Increment number of outer iterations */
841     outeriter        += nri;
842
843     /* Update outer/inner flops */
844
845     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*84);
846 }