Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_pd(fr->ic->k_rf);
116     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_pd(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
153                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158         fix1             = _mm_setzero_pd();
159         fiy1             = _mm_setzero_pd();
160         fiz1             = _mm_setzero_pd();
161         fix2             = _mm_setzero_pd();
162         fiy2             = _mm_setzero_pd();
163         fiz2             = _mm_setzero_pd();
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_pd(ix0,jx0);
185             dy00             = _mm_sub_pd(iy0,jy0);
186             dz00             = _mm_sub_pd(iz0,jz0);
187             dx10             = _mm_sub_pd(ix1,jx0);
188             dy10             = _mm_sub_pd(iy1,jy0);
189             dz10             = _mm_sub_pd(iz1,jz0);
190             dx20             = _mm_sub_pd(ix2,jx0);
191             dy20             = _mm_sub_pd(iy2,jy0);
192             dz20             = _mm_sub_pd(iz2,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198
199             rinv00           = sse41_invsqrt_d(rsq00);
200             rinv10           = sse41_invsqrt_d(rsq10);
201             rinv20           = sse41_invsqrt_d(rsq20);
202
203             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
204             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
205             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_pd(iq0,jq0);
222             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
224
225             /* REACTION-FIELD ELECTROSTATICS */
226             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
227             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
233             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
234             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
235             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_pd(velecsum,velec);
239             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
240
241             fscal            = _mm_add_pd(felec,fvdw);
242
243             /* Calculate temporary vectorial force */
244             tx               = _mm_mul_pd(fscal,dx00);
245             ty               = _mm_mul_pd(fscal,dy00);
246             tz               = _mm_mul_pd(fscal,dz00);
247
248             /* Update vectorial force */
249             fix0             = _mm_add_pd(fix0,tx);
250             fiy0             = _mm_add_pd(fiy0,ty);
251             fiz0             = _mm_add_pd(fiz0,tz);
252
253             fjx0             = _mm_add_pd(fjx0,tx);
254             fjy0             = _mm_add_pd(fjy0,ty);
255             fjz0             = _mm_add_pd(fjz0,tz);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq10             = _mm_mul_pd(iq1,jq0);
263
264             /* REACTION-FIELD ELECTROSTATICS */
265             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
266             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_pd(velecsum,velec);
270
271             fscal            = felec;
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_pd(fscal,dx10);
275             ty               = _mm_mul_pd(fscal,dy10);
276             tz               = _mm_mul_pd(fscal,dz10);
277
278             /* Update vectorial force */
279             fix1             = _mm_add_pd(fix1,tx);
280             fiy1             = _mm_add_pd(fiy1,ty);
281             fiz1             = _mm_add_pd(fiz1,tz);
282
283             fjx0             = _mm_add_pd(fjx0,tx);
284             fjy0             = _mm_add_pd(fjy0,ty);
285             fjz0             = _mm_add_pd(fjz0,tz);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq20             = _mm_mul_pd(iq2,jq0);
293
294             /* REACTION-FIELD ELECTROSTATICS */
295             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
296             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_pd(velecsum,velec);
300
301             fscal            = felec;
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_pd(fscal,dx20);
305             ty               = _mm_mul_pd(fscal,dy20);
306             tz               = _mm_mul_pd(fscal,dz20);
307
308             /* Update vectorial force */
309             fix2             = _mm_add_pd(fix2,tx);
310             fiy2             = _mm_add_pd(fiy2,ty);
311             fiz2             = _mm_add_pd(fiz2,tz);
312
313             fjx0             = _mm_add_pd(fjx0,tx);
314             fjy0             = _mm_add_pd(fjy0,ty);
315             fjz0             = _mm_add_pd(fjz0,tz);
316
317             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
318
319             /* Inner loop uses 111 flops */
320         }
321
322         if(jidx<j_index_end)
323         {
324
325             jnrA             = jjnr[jidx];
326             j_coord_offsetA  = DIM*jnrA;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
330                                               &jx0,&jy0,&jz0);
331
332             /* Calculate displacement vector */
333             dx00             = _mm_sub_pd(ix0,jx0);
334             dy00             = _mm_sub_pd(iy0,jy0);
335             dz00             = _mm_sub_pd(iz0,jz0);
336             dx10             = _mm_sub_pd(ix1,jx0);
337             dy10             = _mm_sub_pd(iy1,jy0);
338             dz10             = _mm_sub_pd(iz1,jz0);
339             dx20             = _mm_sub_pd(ix2,jx0);
340             dy20             = _mm_sub_pd(iy2,jy0);
341             dz20             = _mm_sub_pd(iz2,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
345             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
346             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
347
348             rinv00           = sse41_invsqrt_d(rsq00);
349             rinv10           = sse41_invsqrt_d(rsq10);
350             rinv20           = sse41_invsqrt_d(rsq20);
351
352             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
353             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
354             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
355
356             /* Load parameters for j particles */
357             jq0              = _mm_load_sd(charge+jnrA+0);
358             vdwjidx0A        = 2*vdwtype[jnrA+0];
359
360             fjx0             = _mm_setzero_pd();
361             fjy0             = _mm_setzero_pd();
362             fjz0             = _mm_setzero_pd();
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq00             = _mm_mul_pd(iq0,jq0);
370             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
371
372             /* REACTION-FIELD ELECTROSTATICS */
373             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
374             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
375
376             /* LENNARD-JONES DISPERSION/REPULSION */
377
378             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
379             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
380             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
381             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
382             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
386             velecsum         = _mm_add_pd(velecsum,velec);
387             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
388             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
389
390             fscal            = _mm_add_pd(felec,fvdw);
391
392             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx00);
396             ty               = _mm_mul_pd(fscal,dy00);
397             tz               = _mm_mul_pd(fscal,dz00);
398
399             /* Update vectorial force */
400             fix0             = _mm_add_pd(fix0,tx);
401             fiy0             = _mm_add_pd(fiy0,ty);
402             fiz0             = _mm_add_pd(fiz0,tz);
403
404             fjx0             = _mm_add_pd(fjx0,tx);
405             fjy0             = _mm_add_pd(fjy0,ty);
406             fjz0             = _mm_add_pd(fjz0,tz);
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq10             = _mm_mul_pd(iq1,jq0);
414
415             /* REACTION-FIELD ELECTROSTATICS */
416             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
417             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx10);
429             ty               = _mm_mul_pd(fscal,dy10);
430             tz               = _mm_mul_pd(fscal,dz10);
431
432             /* Update vectorial force */
433             fix1             = _mm_add_pd(fix1,tx);
434             fiy1             = _mm_add_pd(fiy1,ty);
435             fiz1             = _mm_add_pd(fiz1,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq20             = _mm_mul_pd(iq2,jq0);
447
448             /* REACTION-FIELD ELECTROSTATICS */
449             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
450             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
454             velecsum         = _mm_add_pd(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_pd(fscal,dx20);
462             ty               = _mm_mul_pd(fscal,dy20);
463             tz               = _mm_mul_pd(fscal,dz20);
464
465             /* Update vectorial force */
466             fix2             = _mm_add_pd(fix2,tx);
467             fiy2             = _mm_add_pd(fiy2,ty);
468             fiz2             = _mm_add_pd(fiz2,tz);
469
470             fjx0             = _mm_add_pd(fjx0,tx);
471             fjy0             = _mm_add_pd(fjy0,ty);
472             fjz0             = _mm_add_pd(fjz0,tz);
473
474             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
475
476             /* Inner loop uses 111 flops */
477         }
478
479         /* End of innermost loop */
480
481         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
482                                               f+i_coord_offset,fshift+i_shift_offset);
483
484         ggid                        = gid[iidx];
485         /* Update potential energies */
486         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
487         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
488
489         /* Increment number of inner iterations */
490         inneriter                  += j_index_end - j_index_start;
491
492         /* Outer loop uses 20 flops */
493     }
494
495     /* Increment number of outer iterations */
496     outeriter        += nri;
497
498     /* Update outer/inner flops */
499
500     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
501 }
502 /*
503  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_double
504  * Electrostatics interaction: ReactionField
505  * VdW interaction:            LennardJones
506  * Geometry:                   Water3-Particle
507  * Calculate force/pot:        Force
508  */
509 void
510 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_double
511                     (t_nblist                    * gmx_restrict       nlist,
512                      rvec                        * gmx_restrict          xx,
513                      rvec                        * gmx_restrict          ff,
514                      struct t_forcerec           * gmx_restrict          fr,
515                      t_mdatoms                   * gmx_restrict     mdatoms,
516                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
517                      t_nrnb                      * gmx_restrict        nrnb)
518 {
519     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
520      * just 0 for non-waters.
521      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
522      * jnr indices corresponding to data put in the four positions in the SIMD register.
523      */
524     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
525     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
526     int              jnrA,jnrB;
527     int              j_coord_offsetA,j_coord_offsetB;
528     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
529     real             rcutoff_scalar;
530     real             *shiftvec,*fshift,*x,*f;
531     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
532     int              vdwioffset0;
533     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
534     int              vdwioffset1;
535     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
536     int              vdwioffset2;
537     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
538     int              vdwjidx0A,vdwjidx0B;
539     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
540     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
541     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
542     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
543     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
544     real             *charge;
545     int              nvdwtype;
546     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
547     int              *vdwtype;
548     real             *vdwparam;
549     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
550     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
551     __m128d          dummy_mask,cutoff_mask;
552     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
553     __m128d          one     = _mm_set1_pd(1.0);
554     __m128d          two     = _mm_set1_pd(2.0);
555     x                = xx[0];
556     f                = ff[0];
557
558     nri              = nlist->nri;
559     iinr             = nlist->iinr;
560     jindex           = nlist->jindex;
561     jjnr             = nlist->jjnr;
562     shiftidx         = nlist->shift;
563     gid              = nlist->gid;
564     shiftvec         = fr->shift_vec[0];
565     fshift           = fr->fshift[0];
566     facel            = _mm_set1_pd(fr->ic->epsfac);
567     charge           = mdatoms->chargeA;
568     krf              = _mm_set1_pd(fr->ic->k_rf);
569     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
570     crf              = _mm_set1_pd(fr->ic->c_rf);
571     nvdwtype         = fr->ntype;
572     vdwparam         = fr->nbfp;
573     vdwtype          = mdatoms->typeA;
574
575     /* Setup water-specific parameters */
576     inr              = nlist->iinr[0];
577     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
578     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
579     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
580     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
581
582     /* Avoid stupid compiler warnings */
583     jnrA = jnrB = 0;
584     j_coord_offsetA = 0;
585     j_coord_offsetB = 0;
586
587     outeriter        = 0;
588     inneriter        = 0;
589
590     /* Start outer loop over neighborlists */
591     for(iidx=0; iidx<nri; iidx++)
592     {
593         /* Load shift vector for this list */
594         i_shift_offset   = DIM*shiftidx[iidx];
595
596         /* Load limits for loop over neighbors */
597         j_index_start    = jindex[iidx];
598         j_index_end      = jindex[iidx+1];
599
600         /* Get outer coordinate index */
601         inr              = iinr[iidx];
602         i_coord_offset   = DIM*inr;
603
604         /* Load i particle coords and add shift vector */
605         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
606                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
607
608         fix0             = _mm_setzero_pd();
609         fiy0             = _mm_setzero_pd();
610         fiz0             = _mm_setzero_pd();
611         fix1             = _mm_setzero_pd();
612         fiy1             = _mm_setzero_pd();
613         fiz1             = _mm_setzero_pd();
614         fix2             = _mm_setzero_pd();
615         fiy2             = _mm_setzero_pd();
616         fiz2             = _mm_setzero_pd();
617
618         /* Start inner kernel loop */
619         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
620         {
621
622             /* Get j neighbor index, and coordinate index */
623             jnrA             = jjnr[jidx];
624             jnrB             = jjnr[jidx+1];
625             j_coord_offsetA  = DIM*jnrA;
626             j_coord_offsetB  = DIM*jnrB;
627
628             /* load j atom coordinates */
629             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
630                                               &jx0,&jy0,&jz0);
631
632             /* Calculate displacement vector */
633             dx00             = _mm_sub_pd(ix0,jx0);
634             dy00             = _mm_sub_pd(iy0,jy0);
635             dz00             = _mm_sub_pd(iz0,jz0);
636             dx10             = _mm_sub_pd(ix1,jx0);
637             dy10             = _mm_sub_pd(iy1,jy0);
638             dz10             = _mm_sub_pd(iz1,jz0);
639             dx20             = _mm_sub_pd(ix2,jx0);
640             dy20             = _mm_sub_pd(iy2,jy0);
641             dz20             = _mm_sub_pd(iz2,jz0);
642
643             /* Calculate squared distance and things based on it */
644             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
645             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
646             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
647
648             rinv00           = sse41_invsqrt_d(rsq00);
649             rinv10           = sse41_invsqrt_d(rsq10);
650             rinv20           = sse41_invsqrt_d(rsq20);
651
652             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
653             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
654             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
655
656             /* Load parameters for j particles */
657             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
658             vdwjidx0A        = 2*vdwtype[jnrA+0];
659             vdwjidx0B        = 2*vdwtype[jnrB+0];
660
661             fjx0             = _mm_setzero_pd();
662             fjy0             = _mm_setzero_pd();
663             fjz0             = _mm_setzero_pd();
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm_mul_pd(iq0,jq0);
671             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
672                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
673
674             /* REACTION-FIELD ELECTROSTATICS */
675             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
676
677             /* LENNARD-JONES DISPERSION/REPULSION */
678
679             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
680             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
681
682             fscal            = _mm_add_pd(felec,fvdw);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_pd(fscal,dx00);
686             ty               = _mm_mul_pd(fscal,dy00);
687             tz               = _mm_mul_pd(fscal,dz00);
688
689             /* Update vectorial force */
690             fix0             = _mm_add_pd(fix0,tx);
691             fiy0             = _mm_add_pd(fiy0,ty);
692             fiz0             = _mm_add_pd(fiz0,tz);
693
694             fjx0             = _mm_add_pd(fjx0,tx);
695             fjy0             = _mm_add_pd(fjy0,ty);
696             fjz0             = _mm_add_pd(fjz0,tz);
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             /* Compute parameters for interactions between i and j atoms */
703             qq10             = _mm_mul_pd(iq1,jq0);
704
705             /* REACTION-FIELD ELECTROSTATICS */
706             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
707
708             fscal            = felec;
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm_mul_pd(fscal,dx10);
712             ty               = _mm_mul_pd(fscal,dy10);
713             tz               = _mm_mul_pd(fscal,dz10);
714
715             /* Update vectorial force */
716             fix1             = _mm_add_pd(fix1,tx);
717             fiy1             = _mm_add_pd(fiy1,ty);
718             fiz1             = _mm_add_pd(fiz1,tz);
719
720             fjx0             = _mm_add_pd(fjx0,tx);
721             fjy0             = _mm_add_pd(fjy0,ty);
722             fjz0             = _mm_add_pd(fjz0,tz);
723
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq20             = _mm_mul_pd(iq2,jq0);
730
731             /* REACTION-FIELD ELECTROSTATICS */
732             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
733
734             fscal            = felec;
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm_mul_pd(fscal,dx20);
738             ty               = _mm_mul_pd(fscal,dy20);
739             tz               = _mm_mul_pd(fscal,dz20);
740
741             /* Update vectorial force */
742             fix2             = _mm_add_pd(fix2,tx);
743             fiy2             = _mm_add_pd(fiy2,ty);
744             fiz2             = _mm_add_pd(fiz2,tz);
745
746             fjx0             = _mm_add_pd(fjx0,tx);
747             fjy0             = _mm_add_pd(fjy0,ty);
748             fjz0             = _mm_add_pd(fjz0,tz);
749
750             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
751
752             /* Inner loop uses 91 flops */
753         }
754
755         if(jidx<j_index_end)
756         {
757
758             jnrA             = jjnr[jidx];
759             j_coord_offsetA  = DIM*jnrA;
760
761             /* load j atom coordinates */
762             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
763                                               &jx0,&jy0,&jz0);
764
765             /* Calculate displacement vector */
766             dx00             = _mm_sub_pd(ix0,jx0);
767             dy00             = _mm_sub_pd(iy0,jy0);
768             dz00             = _mm_sub_pd(iz0,jz0);
769             dx10             = _mm_sub_pd(ix1,jx0);
770             dy10             = _mm_sub_pd(iy1,jy0);
771             dz10             = _mm_sub_pd(iz1,jz0);
772             dx20             = _mm_sub_pd(ix2,jx0);
773             dy20             = _mm_sub_pd(iy2,jy0);
774             dz20             = _mm_sub_pd(iz2,jz0);
775
776             /* Calculate squared distance and things based on it */
777             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
778             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
779             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
780
781             rinv00           = sse41_invsqrt_d(rsq00);
782             rinv10           = sse41_invsqrt_d(rsq10);
783             rinv20           = sse41_invsqrt_d(rsq20);
784
785             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
786             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
787             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
788
789             /* Load parameters for j particles */
790             jq0              = _mm_load_sd(charge+jnrA+0);
791             vdwjidx0A        = 2*vdwtype[jnrA+0];
792
793             fjx0             = _mm_setzero_pd();
794             fjy0             = _mm_setzero_pd();
795             fjz0             = _mm_setzero_pd();
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq00             = _mm_mul_pd(iq0,jq0);
803             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
804
805             /* REACTION-FIELD ELECTROSTATICS */
806             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
807
808             /* LENNARD-JONES DISPERSION/REPULSION */
809
810             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
811             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
812
813             fscal            = _mm_add_pd(felec,fvdw);
814
815             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
816
817             /* Calculate temporary vectorial force */
818             tx               = _mm_mul_pd(fscal,dx00);
819             ty               = _mm_mul_pd(fscal,dy00);
820             tz               = _mm_mul_pd(fscal,dz00);
821
822             /* Update vectorial force */
823             fix0             = _mm_add_pd(fix0,tx);
824             fiy0             = _mm_add_pd(fiy0,ty);
825             fiz0             = _mm_add_pd(fiz0,tz);
826
827             fjx0             = _mm_add_pd(fjx0,tx);
828             fjy0             = _mm_add_pd(fjy0,ty);
829             fjz0             = _mm_add_pd(fjz0,tz);
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq10             = _mm_mul_pd(iq1,jq0);
837
838             /* REACTION-FIELD ELECTROSTATICS */
839             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
840
841             fscal            = felec;
842
843             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm_mul_pd(fscal,dx10);
847             ty               = _mm_mul_pd(fscal,dy10);
848             tz               = _mm_mul_pd(fscal,dz10);
849
850             /* Update vectorial force */
851             fix1             = _mm_add_pd(fix1,tx);
852             fiy1             = _mm_add_pd(fiy1,ty);
853             fiz1             = _mm_add_pd(fiz1,tz);
854
855             fjx0             = _mm_add_pd(fjx0,tx);
856             fjy0             = _mm_add_pd(fjy0,ty);
857             fjz0             = _mm_add_pd(fjz0,tz);
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             /* Compute parameters for interactions between i and j atoms */
864             qq20             = _mm_mul_pd(iq2,jq0);
865
866             /* REACTION-FIELD ELECTROSTATICS */
867             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
868
869             fscal            = felec;
870
871             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm_mul_pd(fscal,dx20);
875             ty               = _mm_mul_pd(fscal,dy20);
876             tz               = _mm_mul_pd(fscal,dz20);
877
878             /* Update vectorial force */
879             fix2             = _mm_add_pd(fix2,tx);
880             fiy2             = _mm_add_pd(fiy2,ty);
881             fiz2             = _mm_add_pd(fiz2,tz);
882
883             fjx0             = _mm_add_pd(fjx0,tx);
884             fjy0             = _mm_add_pd(fjy0,ty);
885             fjz0             = _mm_add_pd(fjz0,tz);
886
887             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
888
889             /* Inner loop uses 91 flops */
890         }
891
892         /* End of innermost loop */
893
894         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
895                                               f+i_coord_offset,fshift+i_shift_offset);
896
897         /* Increment number of inner iterations */
898         inneriter                  += j_index_end - j_index_start;
899
900         /* Outer loop uses 18 flops */
901     }
902
903     /* Increment number of outer iterations */
904     outeriter        += nri;
905
906     /* Update outer/inner flops */
907
908     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
909 }