Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159         fix1             = _mm_setzero_pd();
160         fiy1             = _mm_setzero_pd();
161         fiz1             = _mm_setzero_pd();
162         fix2             = _mm_setzero_pd();
163         fiy2             = _mm_setzero_pd();
164         fiz2             = _mm_setzero_pd();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188             dx10             = _mm_sub_pd(ix1,jx0);
189             dy10             = _mm_sub_pd(iy1,jy0);
190             dz10             = _mm_sub_pd(iz1,jz0);
191             dx20             = _mm_sub_pd(ix2,jx0);
192             dy20             = _mm_sub_pd(iy2,jy0);
193             dz20             = _mm_sub_pd(iz2,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203
204             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
205             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
206             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212
213             fjx0             = _mm_setzero_pd();
214             fjy0             = _mm_setzero_pd();
215             fjz0             = _mm_setzero_pd();
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_pd(iq0,jq0);
223             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
224                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
225
226             /* REACTION-FIELD ELECTROSTATICS */
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
228             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
229
230             /* LENNARD-JONES DISPERSION/REPULSION */
231
232             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
233             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
234             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
235             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
236             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
237
238             /* Update potential sum for this i atom from the interaction with this j atom. */
239             velecsum         = _mm_add_pd(velecsum,velec);
240             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
241
242             fscal            = _mm_add_pd(felec,fvdw);
243
244             /* Calculate temporary vectorial force */
245             tx               = _mm_mul_pd(fscal,dx00);
246             ty               = _mm_mul_pd(fscal,dy00);
247             tz               = _mm_mul_pd(fscal,dz00);
248
249             /* Update vectorial force */
250             fix0             = _mm_add_pd(fix0,tx);
251             fiy0             = _mm_add_pd(fiy0,ty);
252             fiz0             = _mm_add_pd(fiz0,tz);
253
254             fjx0             = _mm_add_pd(fjx0,tx);
255             fjy0             = _mm_add_pd(fjy0,ty);
256             fjz0             = _mm_add_pd(fjz0,tz);
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq10             = _mm_mul_pd(iq1,jq0);
264
265             /* REACTION-FIELD ELECTROSTATICS */
266             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
267             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velecsum         = _mm_add_pd(velecsum,velec);
271
272             fscal            = felec;
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_pd(fscal,dx10);
276             ty               = _mm_mul_pd(fscal,dy10);
277             tz               = _mm_mul_pd(fscal,dz10);
278
279             /* Update vectorial force */
280             fix1             = _mm_add_pd(fix1,tx);
281             fiy1             = _mm_add_pd(fiy1,ty);
282             fiz1             = _mm_add_pd(fiz1,tz);
283
284             fjx0             = _mm_add_pd(fjx0,tx);
285             fjy0             = _mm_add_pd(fjy0,ty);
286             fjz0             = _mm_add_pd(fjz0,tz);
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq20             = _mm_mul_pd(iq2,jq0);
294
295             /* REACTION-FIELD ELECTROSTATICS */
296             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
297             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_pd(velecsum,velec);
301
302             fscal            = felec;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_pd(fscal,dx20);
306             ty               = _mm_mul_pd(fscal,dy20);
307             tz               = _mm_mul_pd(fscal,dz20);
308
309             /* Update vectorial force */
310             fix2             = _mm_add_pd(fix2,tx);
311             fiy2             = _mm_add_pd(fiy2,ty);
312             fiz2             = _mm_add_pd(fiz2,tz);
313
314             fjx0             = _mm_add_pd(fjx0,tx);
315             fjy0             = _mm_add_pd(fjy0,ty);
316             fjz0             = _mm_add_pd(fjz0,tz);
317
318             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
319
320             /* Inner loop uses 111 flops */
321         }
322
323         if(jidx<j_index_end)
324         {
325
326             jnrA             = jjnr[jidx];
327             j_coord_offsetA  = DIM*jnrA;
328
329             /* load j atom coordinates */
330             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
331                                               &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm_sub_pd(ix0,jx0);
335             dy00             = _mm_sub_pd(iy0,jy0);
336             dz00             = _mm_sub_pd(iz0,jz0);
337             dx10             = _mm_sub_pd(ix1,jx0);
338             dy10             = _mm_sub_pd(iy1,jy0);
339             dz10             = _mm_sub_pd(iz1,jz0);
340             dx20             = _mm_sub_pd(ix2,jx0);
341             dy20             = _mm_sub_pd(iy2,jy0);
342             dz20             = _mm_sub_pd(iz2,jz0);
343
344             /* Calculate squared distance and things based on it */
345             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
346             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
347             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
348
349             rinv00           = gmx_mm_invsqrt_pd(rsq00);
350             rinv10           = gmx_mm_invsqrt_pd(rsq10);
351             rinv20           = gmx_mm_invsqrt_pd(rsq20);
352
353             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
354             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
355             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
356
357             /* Load parameters for j particles */
358             jq0              = _mm_load_sd(charge+jnrA+0);
359             vdwjidx0A        = 2*vdwtype[jnrA+0];
360
361             fjx0             = _mm_setzero_pd();
362             fjy0             = _mm_setzero_pd();
363             fjz0             = _mm_setzero_pd();
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq00             = _mm_mul_pd(iq0,jq0);
371             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
372
373             /* REACTION-FIELD ELECTROSTATICS */
374             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
375             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
376
377             /* LENNARD-JONES DISPERSION/REPULSION */
378
379             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
380             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
381             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
382             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
383             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
387             velecsum         = _mm_add_pd(velecsum,velec);
388             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
389             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
390
391             fscal            = _mm_add_pd(felec,fvdw);
392
393             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_pd(fscal,dx00);
397             ty               = _mm_mul_pd(fscal,dy00);
398             tz               = _mm_mul_pd(fscal,dz00);
399
400             /* Update vectorial force */
401             fix0             = _mm_add_pd(fix0,tx);
402             fiy0             = _mm_add_pd(fiy0,ty);
403             fiz0             = _mm_add_pd(fiz0,tz);
404
405             fjx0             = _mm_add_pd(fjx0,tx);
406             fjy0             = _mm_add_pd(fjy0,ty);
407             fjz0             = _mm_add_pd(fjz0,tz);
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq10             = _mm_mul_pd(iq1,jq0);
415
416             /* REACTION-FIELD ELECTROSTATICS */
417             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
418             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
422             velecsum         = _mm_add_pd(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_pd(fscal,dx10);
430             ty               = _mm_mul_pd(fscal,dy10);
431             tz               = _mm_mul_pd(fscal,dz10);
432
433             /* Update vectorial force */
434             fix1             = _mm_add_pd(fix1,tx);
435             fiy1             = _mm_add_pd(fiy1,ty);
436             fiz1             = _mm_add_pd(fiz1,tz);
437
438             fjx0             = _mm_add_pd(fjx0,tx);
439             fjy0             = _mm_add_pd(fjy0,ty);
440             fjz0             = _mm_add_pd(fjz0,tz);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq20             = _mm_mul_pd(iq2,jq0);
448
449             /* REACTION-FIELD ELECTROSTATICS */
450             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
451             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
455             velecsum         = _mm_add_pd(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_pd(fscal,dx20);
463             ty               = _mm_mul_pd(fscal,dy20);
464             tz               = _mm_mul_pd(fscal,dz20);
465
466             /* Update vectorial force */
467             fix2             = _mm_add_pd(fix2,tx);
468             fiy2             = _mm_add_pd(fiy2,ty);
469             fiz2             = _mm_add_pd(fiz2,tz);
470
471             fjx0             = _mm_add_pd(fjx0,tx);
472             fjy0             = _mm_add_pd(fjy0,ty);
473             fjz0             = _mm_add_pd(fjz0,tz);
474
475             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
476
477             /* Inner loop uses 111 flops */
478         }
479
480         /* End of innermost loop */
481
482         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
483                                               f+i_coord_offset,fshift+i_shift_offset);
484
485         ggid                        = gid[iidx];
486         /* Update potential energies */
487         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
488         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
489
490         /* Increment number of inner iterations */
491         inneriter                  += j_index_end - j_index_start;
492
493         /* Outer loop uses 20 flops */
494     }
495
496     /* Increment number of outer iterations */
497     outeriter        += nri;
498
499     /* Update outer/inner flops */
500
501     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
502 }
503 /*
504  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_double
505  * Electrostatics interaction: ReactionField
506  * VdW interaction:            LennardJones
507  * Geometry:                   Water3-Particle
508  * Calculate force/pot:        Force
509  */
510 void
511 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_double
512                     (t_nblist                    * gmx_restrict       nlist,
513                      rvec                        * gmx_restrict          xx,
514                      rvec                        * gmx_restrict          ff,
515                      t_forcerec                  * gmx_restrict          fr,
516                      t_mdatoms                   * gmx_restrict     mdatoms,
517                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
518                      t_nrnb                      * gmx_restrict        nrnb)
519 {
520     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
521      * just 0 for non-waters.
522      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
523      * jnr indices corresponding to data put in the four positions in the SIMD register.
524      */
525     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
526     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
527     int              jnrA,jnrB;
528     int              j_coord_offsetA,j_coord_offsetB;
529     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
530     real             rcutoff_scalar;
531     real             *shiftvec,*fshift,*x,*f;
532     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
533     int              vdwioffset0;
534     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
535     int              vdwioffset1;
536     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
537     int              vdwioffset2;
538     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
539     int              vdwjidx0A,vdwjidx0B;
540     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
541     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
542     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
543     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
544     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
545     real             *charge;
546     int              nvdwtype;
547     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
548     int              *vdwtype;
549     real             *vdwparam;
550     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
551     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
552     __m128d          dummy_mask,cutoff_mask;
553     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
554     __m128d          one     = _mm_set1_pd(1.0);
555     __m128d          two     = _mm_set1_pd(2.0);
556     x                = xx[0];
557     f                = ff[0];
558
559     nri              = nlist->nri;
560     iinr             = nlist->iinr;
561     jindex           = nlist->jindex;
562     jjnr             = nlist->jjnr;
563     shiftidx         = nlist->shift;
564     gid              = nlist->gid;
565     shiftvec         = fr->shift_vec[0];
566     fshift           = fr->fshift[0];
567     facel            = _mm_set1_pd(fr->epsfac);
568     charge           = mdatoms->chargeA;
569     krf              = _mm_set1_pd(fr->ic->k_rf);
570     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
571     crf              = _mm_set1_pd(fr->ic->c_rf);
572     nvdwtype         = fr->ntype;
573     vdwparam         = fr->nbfp;
574     vdwtype          = mdatoms->typeA;
575
576     /* Setup water-specific parameters */
577     inr              = nlist->iinr[0];
578     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
579     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
580     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
581     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
582
583     /* Avoid stupid compiler warnings */
584     jnrA = jnrB = 0;
585     j_coord_offsetA = 0;
586     j_coord_offsetB = 0;
587
588     outeriter        = 0;
589     inneriter        = 0;
590
591     /* Start outer loop over neighborlists */
592     for(iidx=0; iidx<nri; iidx++)
593     {
594         /* Load shift vector for this list */
595         i_shift_offset   = DIM*shiftidx[iidx];
596
597         /* Load limits for loop over neighbors */
598         j_index_start    = jindex[iidx];
599         j_index_end      = jindex[iidx+1];
600
601         /* Get outer coordinate index */
602         inr              = iinr[iidx];
603         i_coord_offset   = DIM*inr;
604
605         /* Load i particle coords and add shift vector */
606         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
607                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
608
609         fix0             = _mm_setzero_pd();
610         fiy0             = _mm_setzero_pd();
611         fiz0             = _mm_setzero_pd();
612         fix1             = _mm_setzero_pd();
613         fiy1             = _mm_setzero_pd();
614         fiz1             = _mm_setzero_pd();
615         fix2             = _mm_setzero_pd();
616         fiy2             = _mm_setzero_pd();
617         fiz2             = _mm_setzero_pd();
618
619         /* Start inner kernel loop */
620         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
621         {
622
623             /* Get j neighbor index, and coordinate index */
624             jnrA             = jjnr[jidx];
625             jnrB             = jjnr[jidx+1];
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628
629             /* load j atom coordinates */
630             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
631                                               &jx0,&jy0,&jz0);
632
633             /* Calculate displacement vector */
634             dx00             = _mm_sub_pd(ix0,jx0);
635             dy00             = _mm_sub_pd(iy0,jy0);
636             dz00             = _mm_sub_pd(iz0,jz0);
637             dx10             = _mm_sub_pd(ix1,jx0);
638             dy10             = _mm_sub_pd(iy1,jy0);
639             dz10             = _mm_sub_pd(iz1,jz0);
640             dx20             = _mm_sub_pd(ix2,jx0);
641             dy20             = _mm_sub_pd(iy2,jy0);
642             dz20             = _mm_sub_pd(iz2,jz0);
643
644             /* Calculate squared distance and things based on it */
645             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
646             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
647             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
648
649             rinv00           = gmx_mm_invsqrt_pd(rsq00);
650             rinv10           = gmx_mm_invsqrt_pd(rsq10);
651             rinv20           = gmx_mm_invsqrt_pd(rsq20);
652
653             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
654             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
655             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
656
657             /* Load parameters for j particles */
658             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
659             vdwjidx0A        = 2*vdwtype[jnrA+0];
660             vdwjidx0B        = 2*vdwtype[jnrB+0];
661
662             fjx0             = _mm_setzero_pd();
663             fjy0             = _mm_setzero_pd();
664             fjz0             = _mm_setzero_pd();
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq00             = _mm_mul_pd(iq0,jq0);
672             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
673                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
674
675             /* REACTION-FIELD ELECTROSTATICS */
676             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
677
678             /* LENNARD-JONES DISPERSION/REPULSION */
679
680             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
681             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
682
683             fscal            = _mm_add_pd(felec,fvdw);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_pd(fscal,dx00);
687             ty               = _mm_mul_pd(fscal,dy00);
688             tz               = _mm_mul_pd(fscal,dz00);
689
690             /* Update vectorial force */
691             fix0             = _mm_add_pd(fix0,tx);
692             fiy0             = _mm_add_pd(fiy0,ty);
693             fiz0             = _mm_add_pd(fiz0,tz);
694
695             fjx0             = _mm_add_pd(fjx0,tx);
696             fjy0             = _mm_add_pd(fjy0,ty);
697             fjz0             = _mm_add_pd(fjz0,tz);
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq10             = _mm_mul_pd(iq1,jq0);
705
706             /* REACTION-FIELD ELECTROSTATICS */
707             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
708
709             fscal            = felec;
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm_mul_pd(fscal,dx10);
713             ty               = _mm_mul_pd(fscal,dy10);
714             tz               = _mm_mul_pd(fscal,dz10);
715
716             /* Update vectorial force */
717             fix1             = _mm_add_pd(fix1,tx);
718             fiy1             = _mm_add_pd(fiy1,ty);
719             fiz1             = _mm_add_pd(fiz1,tz);
720
721             fjx0             = _mm_add_pd(fjx0,tx);
722             fjy0             = _mm_add_pd(fjy0,ty);
723             fjz0             = _mm_add_pd(fjz0,tz);
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq20             = _mm_mul_pd(iq2,jq0);
731
732             /* REACTION-FIELD ELECTROSTATICS */
733             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
734
735             fscal            = felec;
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm_mul_pd(fscal,dx20);
739             ty               = _mm_mul_pd(fscal,dy20);
740             tz               = _mm_mul_pd(fscal,dz20);
741
742             /* Update vectorial force */
743             fix2             = _mm_add_pd(fix2,tx);
744             fiy2             = _mm_add_pd(fiy2,ty);
745             fiz2             = _mm_add_pd(fiz2,tz);
746
747             fjx0             = _mm_add_pd(fjx0,tx);
748             fjy0             = _mm_add_pd(fjy0,ty);
749             fjz0             = _mm_add_pd(fjz0,tz);
750
751             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
752
753             /* Inner loop uses 91 flops */
754         }
755
756         if(jidx<j_index_end)
757         {
758
759             jnrA             = jjnr[jidx];
760             j_coord_offsetA  = DIM*jnrA;
761
762             /* load j atom coordinates */
763             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
764                                               &jx0,&jy0,&jz0);
765
766             /* Calculate displacement vector */
767             dx00             = _mm_sub_pd(ix0,jx0);
768             dy00             = _mm_sub_pd(iy0,jy0);
769             dz00             = _mm_sub_pd(iz0,jz0);
770             dx10             = _mm_sub_pd(ix1,jx0);
771             dy10             = _mm_sub_pd(iy1,jy0);
772             dz10             = _mm_sub_pd(iz1,jz0);
773             dx20             = _mm_sub_pd(ix2,jx0);
774             dy20             = _mm_sub_pd(iy2,jy0);
775             dz20             = _mm_sub_pd(iz2,jz0);
776
777             /* Calculate squared distance and things based on it */
778             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
779             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
780             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
781
782             rinv00           = gmx_mm_invsqrt_pd(rsq00);
783             rinv10           = gmx_mm_invsqrt_pd(rsq10);
784             rinv20           = gmx_mm_invsqrt_pd(rsq20);
785
786             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
787             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
788             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
789
790             /* Load parameters for j particles */
791             jq0              = _mm_load_sd(charge+jnrA+0);
792             vdwjidx0A        = 2*vdwtype[jnrA+0];
793
794             fjx0             = _mm_setzero_pd();
795             fjy0             = _mm_setzero_pd();
796             fjz0             = _mm_setzero_pd();
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq00             = _mm_mul_pd(iq0,jq0);
804             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
805
806             /* REACTION-FIELD ELECTROSTATICS */
807             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
808
809             /* LENNARD-JONES DISPERSION/REPULSION */
810
811             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
812             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
813
814             fscal            = _mm_add_pd(felec,fvdw);
815
816             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
817
818             /* Calculate temporary vectorial force */
819             tx               = _mm_mul_pd(fscal,dx00);
820             ty               = _mm_mul_pd(fscal,dy00);
821             tz               = _mm_mul_pd(fscal,dz00);
822
823             /* Update vectorial force */
824             fix0             = _mm_add_pd(fix0,tx);
825             fiy0             = _mm_add_pd(fiy0,ty);
826             fiz0             = _mm_add_pd(fiz0,tz);
827
828             fjx0             = _mm_add_pd(fjx0,tx);
829             fjy0             = _mm_add_pd(fjy0,ty);
830             fjz0             = _mm_add_pd(fjz0,tz);
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq10             = _mm_mul_pd(iq1,jq0);
838
839             /* REACTION-FIELD ELECTROSTATICS */
840             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
841
842             fscal            = felec;
843
844             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
845
846             /* Calculate temporary vectorial force */
847             tx               = _mm_mul_pd(fscal,dx10);
848             ty               = _mm_mul_pd(fscal,dy10);
849             tz               = _mm_mul_pd(fscal,dz10);
850
851             /* Update vectorial force */
852             fix1             = _mm_add_pd(fix1,tx);
853             fiy1             = _mm_add_pd(fiy1,ty);
854             fiz1             = _mm_add_pd(fiz1,tz);
855
856             fjx0             = _mm_add_pd(fjx0,tx);
857             fjy0             = _mm_add_pd(fjy0,ty);
858             fjz0             = _mm_add_pd(fjz0,tz);
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             /* Compute parameters for interactions between i and j atoms */
865             qq20             = _mm_mul_pd(iq2,jq0);
866
867             /* REACTION-FIELD ELECTROSTATICS */
868             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
869
870             fscal            = felec;
871
872             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm_mul_pd(fscal,dx20);
876             ty               = _mm_mul_pd(fscal,dy20);
877             tz               = _mm_mul_pd(fscal,dz20);
878
879             /* Update vectorial force */
880             fix2             = _mm_add_pd(fix2,tx);
881             fiy2             = _mm_add_pd(fiy2,ty);
882             fiz2             = _mm_add_pd(fiz2,tz);
883
884             fjx0             = _mm_add_pd(fjx0,tx);
885             fjy0             = _mm_add_pd(fjy0,ty);
886             fjz0             = _mm_add_pd(fjz0,tz);
887
888             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
889
890             /* Inner loop uses 91 flops */
891         }
892
893         /* End of innermost loop */
894
895         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
896                                               f+i_coord_offset,fshift+i_shift_offset);
897
898         /* Increment number of inner iterations */
899         inneriter                  += j_index_end - j_index_start;
900
901         /* Outer loop uses 18 flops */
902     }
903
904     /* Increment number of outer iterations */
905     outeriter        += nri;
906
907     /* Update outer/inner flops */
908
909     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
910 }