Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
140
141         fix0             = _mm_setzero_pd();
142         fiy0             = _mm_setzero_pd();
143         fiz0             = _mm_setzero_pd();
144
145         /* Load parameters for i particles */
146         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
147         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         velecsum         = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = sse41_invsqrt_d(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
181             vdwjidx0A        = 2*vdwtype[jnrA+0];
182             vdwjidx0B        = 2*vdwtype[jnrB+0];
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             /* Compute parameters for interactions between i and j atoms */
189             qq00             = _mm_mul_pd(iq0,jq0);
190             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
192
193             /* REACTION-FIELD ELECTROSTATICS */
194             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
195             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
196
197             /* LENNARD-JONES DISPERSION/REPULSION */
198
199             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
200             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
201             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
202             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
203             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
204
205             /* Update potential sum for this i atom from the interaction with this j atom. */
206             velecsum         = _mm_add_pd(velecsum,velec);
207             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
208
209             fscal            = _mm_add_pd(felec,fvdw);
210
211             /* Calculate temporary vectorial force */
212             tx               = _mm_mul_pd(fscal,dx00);
213             ty               = _mm_mul_pd(fscal,dy00);
214             tz               = _mm_mul_pd(fscal,dz00);
215
216             /* Update vectorial force */
217             fix0             = _mm_add_pd(fix0,tx);
218             fiy0             = _mm_add_pd(fiy0,ty);
219             fiz0             = _mm_add_pd(fiz0,tz);
220
221             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
222
223             /* Inner loop uses 44 flops */
224         }
225
226         if(jidx<j_index_end)
227         {
228
229             jnrA             = jjnr[jidx];
230             j_coord_offsetA  = DIM*jnrA;
231
232             /* load j atom coordinates */
233             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
234                                               &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm_sub_pd(ix0,jx0);
238             dy00             = _mm_sub_pd(iy0,jy0);
239             dz00             = _mm_sub_pd(iz0,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
243
244             rinv00           = sse41_invsqrt_d(rsq00);
245
246             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
247
248             /* Load parameters for j particles */
249             jq0              = _mm_load_sd(charge+jnrA+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_pd(iq0,jq0);
258             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
262             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
268             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
269             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
270             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
274             velecsum         = _mm_add_pd(velecsum,velec);
275             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
276             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
277
278             fscal            = _mm_add_pd(felec,fvdw);
279
280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx00);
284             ty               = _mm_mul_pd(fscal,dy00);
285             tz               = _mm_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_pd(fix0,tx);
289             fiy0             = _mm_add_pd(fiy0,ty);
290             fiz0             = _mm_add_pd(fiz0,tz);
291
292             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
293
294             /* Inner loop uses 44 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
300                                               f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
305         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
306
307         /* Increment number of inner iterations */
308         inneriter                  += j_index_end - j_index_start;
309
310         /* Outer loop uses 9 flops */
311     }
312
313     /* Increment number of outer iterations */
314     outeriter        += nri;
315
316     /* Update outer/inner flops */
317
318     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
319 }
320 /*
321  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_double
322  * Electrostatics interaction: ReactionField
323  * VdW interaction:            LennardJones
324  * Geometry:                   Particle-Particle
325  * Calculate force/pot:        Force
326  */
327 void
328 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_double
329                     (t_nblist                    * gmx_restrict       nlist,
330                      rvec                        * gmx_restrict          xx,
331                      rvec                        * gmx_restrict          ff,
332                      struct t_forcerec           * gmx_restrict          fr,
333                      t_mdatoms                   * gmx_restrict     mdatoms,
334                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
335                      t_nrnb                      * gmx_restrict        nrnb)
336 {
337     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
338      * just 0 for non-waters.
339      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
340      * jnr indices corresponding to data put in the four positions in the SIMD register.
341      */
342     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
343     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
344     int              jnrA,jnrB;
345     int              j_coord_offsetA,j_coord_offsetB;
346     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
347     real             rcutoff_scalar;
348     real             *shiftvec,*fshift,*x,*f;
349     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
350     int              vdwioffset0;
351     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
352     int              vdwjidx0A,vdwjidx0B;
353     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
354     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
355     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
356     real             *charge;
357     int              nvdwtype;
358     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
359     int              *vdwtype;
360     real             *vdwparam;
361     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
362     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
363     __m128d          dummy_mask,cutoff_mask;
364     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
365     __m128d          one     = _mm_set1_pd(1.0);
366     __m128d          two     = _mm_set1_pd(2.0);
367     x                = xx[0];
368     f                = ff[0];
369
370     nri              = nlist->nri;
371     iinr             = nlist->iinr;
372     jindex           = nlist->jindex;
373     jjnr             = nlist->jjnr;
374     shiftidx         = nlist->shift;
375     gid              = nlist->gid;
376     shiftvec         = fr->shift_vec[0];
377     fshift           = fr->fshift[0];
378     facel            = _mm_set1_pd(fr->ic->epsfac);
379     charge           = mdatoms->chargeA;
380     krf              = _mm_set1_pd(fr->ic->k_rf);
381     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
382     crf              = _mm_set1_pd(fr->ic->c_rf);
383     nvdwtype         = fr->ntype;
384     vdwparam         = fr->nbfp;
385     vdwtype          = mdatoms->typeA;
386
387     /* Avoid stupid compiler warnings */
388     jnrA = jnrB = 0;
389     j_coord_offsetA = 0;
390     j_coord_offsetB = 0;
391
392     outeriter        = 0;
393     inneriter        = 0;
394
395     /* Start outer loop over neighborlists */
396     for(iidx=0; iidx<nri; iidx++)
397     {
398         /* Load shift vector for this list */
399         i_shift_offset   = DIM*shiftidx[iidx];
400
401         /* Load limits for loop over neighbors */
402         j_index_start    = jindex[iidx];
403         j_index_end      = jindex[iidx+1];
404
405         /* Get outer coordinate index */
406         inr              = iinr[iidx];
407         i_coord_offset   = DIM*inr;
408
409         /* Load i particle coords and add shift vector */
410         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
411
412         fix0             = _mm_setzero_pd();
413         fiy0             = _mm_setzero_pd();
414         fiz0             = _mm_setzero_pd();
415
416         /* Load parameters for i particles */
417         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
418         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
419
420         /* Start inner kernel loop */
421         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrA             = jjnr[jidx];
426             jnrB             = jjnr[jidx+1];
427             j_coord_offsetA  = DIM*jnrA;
428             j_coord_offsetB  = DIM*jnrB;
429
430             /* load j atom coordinates */
431             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
432                                               &jx0,&jy0,&jz0);
433
434             /* Calculate displacement vector */
435             dx00             = _mm_sub_pd(ix0,jx0);
436             dy00             = _mm_sub_pd(iy0,jy0);
437             dz00             = _mm_sub_pd(iz0,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
441
442             rinv00           = sse41_invsqrt_d(rsq00);
443
444             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq00             = _mm_mul_pd(iq0,jq0);
457             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
458                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
462
463             /* LENNARD-JONES DISPERSION/REPULSION */
464
465             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
466             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
467
468             fscal            = _mm_add_pd(felec,fvdw);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_pd(fscal,dx00);
472             ty               = _mm_mul_pd(fscal,dy00);
473             tz               = _mm_mul_pd(fscal,dz00);
474
475             /* Update vectorial force */
476             fix0             = _mm_add_pd(fix0,tx);
477             fiy0             = _mm_add_pd(fiy0,ty);
478             fiz0             = _mm_add_pd(fiz0,tz);
479
480             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
481
482             /* Inner loop uses 34 flops */
483         }
484
485         if(jidx<j_index_end)
486         {
487
488             jnrA             = jjnr[jidx];
489             j_coord_offsetA  = DIM*jnrA;
490
491             /* load j atom coordinates */
492             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
493                                               &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm_sub_pd(ix0,jx0);
497             dy00             = _mm_sub_pd(iy0,jy0);
498             dz00             = _mm_sub_pd(iz0,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
502
503             rinv00           = sse41_invsqrt_d(rsq00);
504
505             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
506
507             /* Load parameters for j particles */
508             jq0              = _mm_load_sd(charge+jnrA+0);
509             vdwjidx0A        = 2*vdwtype[jnrA+0];
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq00             = _mm_mul_pd(iq0,jq0);
517             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
518
519             /* REACTION-FIELD ELECTROSTATICS */
520             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
521
522             /* LENNARD-JONES DISPERSION/REPULSION */
523
524             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
525             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
526
527             fscal            = _mm_add_pd(felec,fvdw);
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
542
543             /* Inner loop uses 34 flops */
544         }
545
546         /* End of innermost loop */
547
548         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
549                                               f+i_coord_offset,fshift+i_shift_offset);
550
551         /* Increment number of inner iterations */
552         inneriter                  += j_index_end - j_index_start;
553
554         /* Outer loop uses 7 flops */
555     }
556
557     /* Increment number of outer iterations */
558     outeriter        += nri;
559
560     /* Update outer/inner flops */
561
562     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
563 }